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Abstract

Stability of ahypersonic shock layer on a flat plaéxamined with allowance for digsbances conditions on the shock
wave within the framework of the linear stability theory. The characteristics of the main flow are calculated on the basis of
the Full Viscous Shock Layer model. Conditions for velocity, pressure, and temperature perturbations are derived from steady
Rankine—Hugoniot relation on the shock wave. These canditare used as boundary conditions on the shock wave for linear
stability equations. The growth rates of disturbances and density fluctuations are compared with experimental data obtained at
ITAM by the method of electron-beam fluorescence and with theoretical data of other atithdts.thisarticle: A.A. Maslov
etal., C. R. Mecanique 332 (2004).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Résumé

Stabilité d’ une couche de choc hyper sonique sur une plague plane. On examine la stabilité dhe couche de choc hyper-
sonique sur une plaquegrie en tenant compte des pebitions de I'onde de choc dans le oade la théorie de la stabilité
linéaire. Les caractéristiques du flux principal sont calculées a I'aide du modele complet de la couche de choc visqueuse. Des
conditions sur les perturbations de la vitesse, de la pression et de la température sont dérivées de la relation stationnaire de
Rankine—Hugoniot sur les ondes de choes@onditions sonttilisées commeonditions aux limites sur I'onde de choc pour
les équations de stabilité linéaire. Les vitesses de croissance des perturbations et des fluctuations de densité sont comparées avec
des données expérimentales obtenues a I''TAM par la méthode de fluorescence par faisceau d’électrons a et avec les résultats
théoriques d’autres auteufour citer cet article: A.AA. Maslov et al., C. R. Mecanique 332 (2004).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

Investigations of stdlity of boundary aml shock layers at high Mach numbebg & 10) and moderate Reynolds
numbers (Rg,, = 10°*—10°) are important because these conditioresemcountered on the leading edges of the
wing and fuselage of promising hypersonic aircraft. For the viscous shock layer, there are currently few experi-
mental measurements of density fluctuations, temperature, and mass flow rate on the test-section walls [1-4].

Experimental measurements of the growth rate dudiances in the shock layer on a flat plate by the method
of electron-beam fluorescence dfrngen were first performed in [5].

Theoretical investigations of stability of high-velbcboundary layers are also scarce. In such papers, linear
problems of stability for a supersonic self-similar boundayer are usually solved [6]. There are only few numer-
ical solutions for the equations ofadtility of a hypersonidoundary layer [7].

Because of the difficulties asso@dtwith computing hypersonic boundagyers within the linear stability
problem, asymptotic methods were develoged M — oo) [8,9].

In classical problems of the linear stability theory, thegance of the shock wave (SW) was ignored, since the
SW was located far from the boundary-layer edge. In tltases, free-stream conditis (decaying disturbances)
were used or asymptotic conditions outside the boundary layer were imposed.

In hypersonic flows, however, where the boundary-layer thickness is comparable with the distance between the
body and SW, the presence of the SW should be takeraittount. Therefore, it is necessary to replace the free-
stream conditions by the correspondouanditions on the SW. The paper [10] was the first attempt to consider the
SW effect on stability of the boundary layer on a wedge inttiipersonic limit (i.e., the SW is almost parallel to
the wall andy — 1 is very small). In a similar formulation (but with the use of all conditions on the shock wave for
disturbances), the pradn of stability for a hypersoniéM, = 8) boundary layer on a wedge and on a cone was
solved in [11]. The stabilizing effect of the SW on the first and second modes of disturbances was demonstrated.

In this Note, a hypersonic viscous gas flow in the shock layer on a flat plate is considered. The velocity, temper-
ature, density, and pressure profiles calculated on the basis of the Full Viscous Shock Layer (FVSL) equations are
tested for stability within the franveork of the linear stability theory witlallowance for conditions on the shock
wave.

2. Formulation of the problem

At high Mach numbers and moderate Reynolds nusib@ thick boundary layer is formed on the body; its
thickness can be compared with the distance from the body to the shock wave. Therefore, the FVSL model is a
good approximation for such flows. The flow past a flat plate within the framework of this model was considered
in [12,13]. In the present work, the FVSL model was used to compute the characteristics of the mean flow on a flat
plate. The shock-wave position in FSomputations was set on the basisexperimentaliata. The boundary
conditions on the SW were the genléerad Rankine—Hugowoit conditions.

The points (experimental data) [12] and the solid curve (FVSL computation) in Fig. 1(a) show the mean density
profiles normal to the body in the cross sectioa 0.078 m for the following test conditions: Re= 6 x 10° m™1,

My =21,T,/To = 0.26, L = 360 mm, andlpy = 1150 K. The FVSL solution is in good agreement with the
experimental values of density. The boundary layer occu%)ief;the shock layer, and the inviscid flow region

is only ;11, i.e., the SW is located close to the boundary-layer edge. The computations also show that the velocity
(Fig. 1(b)) and temperature (Fig. 1(c)) are almost constant in the inviscid part of the shock layer, whereas the
pressure (and, hence, the density) normal to the surface changes twofold exactly in the inviscid region behind
the SW (Fig. 1(b)). The same figure shows the density, velocity, and temperature profiles obtained by solving the
equations of a self-similar boundary layer for a flat platedashed curves) for the same test conditions. The
boundary-layer profiles differ from the FVSL solution, iwh involves more significant differences in stability
characteristics.
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Fig. 1. The characteristics of the mean flow on a flat plate in the cross sectidh078 m for Rg = 6 x 10 m1, My =21, Tw/To=0.26,
L =0.36 m, andlp = 1150 K. — FVSL computation;x- x - self-similar boundary layera experimental data [12].

The shock-layer profiles computed by the FVSL model and the self-similar boundary-layer profiles were then
tested for stability within the framework of the locally parallel approximation. The shock-layer stability was cal-
culated using the Dan and Lin system of linear equations [14].

By means of replacing the variables= f,z2 = f/,z3=a¢,z4 = n/yMg, z5 =0, z6 = 0’, this system of
linear stability equations reduces to a system of six ordinary differential equa;ieﬂg?zl a;jz; solved by the
Runge—Kutta method. Outside the shock layeryfor yg, all flow parameters are constant, and the solution of the
system of linear stability equations is presented in the f@ﬁmZ?zl A; exp(r;y), wherex; are the eigenvalues of
the problem, which have the follomgj values with acceptable accuracy:

ra1==%ViaR(1—0), As2==+viaRo(1—c), re3=Ea,/1— M2(1—c)?

The classical approach usually involves the conditiérdisturbance decay outside the boundary layer, and
rapidly growing solutions (corresponding ta, A5, 1e) are left out of consideration. In hypersonic flow, where
the boundary-layer thickness is compdealith the shock-layer thickness, decay of disturbances in the inviscid
portion of the shock layer, because of its small thicknessbesinsufficient for neglegag disturbances reflected
from the shock wave. In the present work, the decay itmmdis replaced by the conditioof disturbance propa-
gation only within the shock layer, with linearized Rankikigoniot equations being satisfied on the shock wave.
Therefore, all six particular solutions, correspondin@{oiz, A3, A4, A5, A, are considered. The general solution
of the system of stability equations, determined by the st Y-°_; C;A{”€"? (i =1.....6), should satisfy

six boundary conditions on the plate surface and on the SW:

y=0. f=¢=6=0

y = Ay: linearized conditions on the SW for dimensionless amplitfideelocity u), ¢ (velocity v), 8 (tempera-
ture), andr (pressure) of disturbances:

f=A¢’ A:—M, ﬂ=Q¢,
tgB coZ B
1/(psitsy M2.) + sir? B/ (psits) — ifs ___(y—-1MZ

0=(01-Atgp) , 0=8¢, S=-—-Augug

tgpus cpsTs
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Here Ay is the thickness of the shock layer normalized to the transverse scale of sindifasty/ . cx*/u’s o3, p

is the densityy andv are the velocity components in theandy directions, respectively, is the pressure} is

the SW slope counted from theaxis, y is the ratio of specific heats in the free stream, &fd is the free-stream

Mach number; the subscrigtindicates the parameters behind the SW, and the barred quantities refer to the mean
flow characteristics (solution of FVSL equations). The problem formulation is described in more detail in [15].
The boundary conditions on the SW stated above, however, differ from those in [15] by the abseg.c&los

is more correct because the stability problem is solved in a quasi-parallel approximation. Since only the density,
temperature, and pressure changaigicantly on the SW, elimination afs does not affect the results.

3. Results

The points in Fig. 2 show the experimentally measured growth rates of disturbances in the shock layer on a
flat plate (the cross section=0.078 m) for Rg = 6 x 10®> m™%, My, = 21, T,/ To = 0.26, L = 360 mm, and
To = 1150 K [15]. This corresponds to the follawg parameters of the stability problem:

Reynolds numbeR = ,/Re; , = 2727,

Mach number behind the shock waMlg = 10.2;

Surface temperature normalized to the temperature behind th&,S¥W6.7;
Ay = 57.68 the thickness of the shock layer.
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Fig. 2. The growth rate of disturbances wes<requency in the shock layer on a flat plaie=£ 2727; Mg = 10.2; T, = 6.7; Ay = 57.68).
1,4- - - solutions without allowance for the SW; 2,3,5— solutions with allowance for the SWasymptotic theory [9]; x-x- self-similar
boundary layer$ experimental data [12].



A.A. Maslov et al. / C. R. Mecanique 332 (2004) 875-880 879

0.001

WOF=0*Cy

0 —

-0.001 —

-0.002 —

-0.003

Fig. 3. Time-dependent growth rate of disturbances versus-ig. 4. Density fluctuations in the shock layer on a flat plate for
the wavenumber foMg = 6.72, R = 305, Ay = 34.26, and R =2727, Mg =102, Ty, = 6.7, and Ay = 57.68. — compu-

Tw = 8.65. 1,2 solutions on a°5wedge [11]; 3,4,5,6 solu- tation with SW capturing; - - - - without SW capturing; experi-
tions on a flat plate at an angle of attack 6f 5- - - without mental data [12].

allowance for the SW; — with allowance for the SW.

For these conditions, Fig. 2(a) shows the data [9] obtained by an asymptotic method (dash-and dotted curve)
and the growth rate of disturbances in a self-similar boundary layer on a pladaghed curve). Then, using the
algorithm described above, we abted growth rate coefficientg without allowance for the bow SW (dashed
curve 1) and with allowance for the SW (solid curve 2). Fig. 2(a) reveals a destabilizing effect of the shock wave.
However, this contradicts the data of [10,11] that demonstrated a stabilizing effect of the shock wave on a wedge
flow. Let us consider possible reasons of this contradiction.

Fig. 3 shows the growth rates of disturbanagsn time versus the wavenumbey computed without the SW
effect (dashed curve 1) and with the SW effect (solid curve 2) for the flow SnaeBige, taken from [11]. For flow
over wedges, the mean flow is obtained by the boundary kxyaations with the edge conditions taken as the flow
conditions behind the shock.

For comparison, stability of the shock layer on a plate at an angle of attackvedi$computed in the present
work (M = 8, Re. = 4 x 108, adiabatic surface). The mean charastass were computed within the FVSL
model. In the cross section= 0.15, the parameters behind the $Ws = 6.72, R = 305,Ay = 34.26,T,, = 8.65)
corresponded to the parameters of [11] behind the SW ohwesige M5 = 6.8, R = 300, Ay = 30.7). The
equations of stability without allowance for the SW on a flt@ at incidence yielded two solutions, in contrast
to [11]. One of them, solution 3 in Fig. 3, almost coincides with a similar solution 1 on a wedge with a small shift
in terms of frequency, and the other one is the strongly unstable solution 5. Emergence of solution 5 is, apparently,
related to the difference in the mean profiles of FVSL and self-similar boundary layer equations (similar to Fig. 1).

Similarly, computations of the stability problem with shock-wave capturing yielded not only a stable solution,
as was obtained in [11] (curve 4) but also an unstable solution (curve 6). Solution 6 arrived from the region of
strongly unstable sotions (curve 5) under the influence o&tlsW-induced stabilizing effect as well.

Thus, there is no contradiction. One only has to trace all disturbances, including rapidly growing ones. Computa-
tions of the stability characteristics without allowancetfoe bow shock wave yielded a weakly unstable solution 1
and stable solution 4 (Fig. 2(b)). Under the SW influence, solution 4 is stabilized and yields solution 5; weakly
unstable solution 3 is close to the solution of the stabjiityblem without shock captumy, but it also demonstrates
the stabilizing effect of the shock wave. Because of the SW presence, however, solution 2 also arrives from the
region of strongly unstableptutions. This is an unstadkolution, which is yet in ieer qualitative agreement with
the experimental data.
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Fig. 4 shows the distributions of density fluctuations: the dashed curve 1 is the solution of stability equations
without allowance for the SW, and the solid curve 2 is fiolution with the SW taken into account. In the case of
the solution without the SW, the maximm of fluctuations is located under tl8&V, in the transition region from
the viscous to inviscid part of the shock layer, i.e.thet boundary-layer edge. In the solution with allowance for
the SW, the maximum of fluctuations is shifted to the SW. This shift is caused by allowance for rapidly growing
disturbances interacting with the SW. A comparison with the experimental distribution of density fluctuations
(points) [12] shows that the solution with allowance for the SW is closer to experimental data.

4. Conclusions

Calculation of the mean flow within the framework of FVSL (with allowance for the viscid-inviscid interaction)
leads to better agreement of the stability characteristics with experimental data.
It is shown that the interaction of disturbances and the SW results in:

(1) branching of the solutions of the linear stability problem, i.e., more than one solution were obtained for a
comparatively narrow range of frequencies;

(2) stabilizing effect of the SW all digstbances in the shock layer. In reabéstion of disturbances, one should
take into account strongly unstable modes, whichusteally skipped in the classical stability theory;

(3) shifting of the maximum of fluctuations to the SW, which is caused by rapidly growing disturbances.
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