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Abstract

We consider a partially fastened membrane with many concentrated masses near the boundary. Masses have the dia(aε);
the density isO(1) outside the masses andO((aε)−m), 0< m < 2, in the masses. We assume that the distance between m
is O(ε) anda is fixed. We obtain the leading terms of the asymptotic expansion of eigenvalues and eigenfunctions of the
tive spectral problems for the Laplacian in such a domain.To cite this article: G.A. Chechkin, C. R. Mecanique 332 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Vibration d’une membrane partiellement attachée avec plusieurs masses « légères » concentrées sur la frontiere. Nous
considérons une membrane partiellement attachée avec plusieurs masses concentrées prés de la frontière. Le d
masses est ègal à(aε) ; la densité est d’ordreO(1) en dehors des masses et la densité des masses d’ordreO((aε)−m), 0< m < 2.
Nous supposons que la distance entre les masses est d’ordreO(ε) et quea est fixé. Nous obtenons les termes principaux
développement asymptotique des valeurs propres et des fonctions propres du Laplacian dans un domaine de ce typePour citer
cet article : G.A. Chechkin, C. R. Mecanique 332 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

The study of the behavior of bodies with nonhomogeneous density (with concentrated masses) has attr
attention of mathematicians since the beginning of XXth century (see, for instance, [1]). In [2] the author
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1631-0721/$ – see front matter 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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Fig. 1. The model.

the problem with concentrated masses on the basis of the spectral perturbation theory and proved the co
theorem. For the first time global and local vibrations were introduced and investigated. It should be no
papers such as [3–10], where different problems in domains with concentrated masses were studied.

In this note we consider a two-dimensional domain with many concentrated masses on the boundary
in a periodic way. The distance between masses and the diameter of the mass have the same order. We a
masses to be ‘light’. Using the method of matching asymptotic expansions [11] (see also [12,13]), we construct
leading terms of the asymptotics of eigenelements to a problem for the Laplacian in such a domain.

Denote byΩ a domain inR
2, which lies in the upper semi-plane, with a piecewise smooth boundary∂Ω =

Γ1 ∪Γ2 ∪Γ3 ∪Γ4, whereΓ4 is a segment(−π/2,π/2) of the abscissa axis,Γ2 andΓ3 belongs to the straight line
x1 = −π/2 andx1 = π/2, respectively (see Fig. 1).

Let us describe in detail the fine-grained structure ofΓ4. Denoteγ = {ξ : −a < ξ1 < a, ξ2 = 0}, Γ =
{ξ : −π/2 < ξ1 < −a, a < ξ1 < π/2, ξ2 = 0}, a < π/2, for naturalN � 1 we defineε = 1/(2N + 1). Let
γε = {x ∈ Γ4: ε−1(x1 − j,0) ∈ γ, j ∈ Z} andΓε = Γ4\γε. Also we use the following notationΠ = {ξ : −π/2 <

ξ1 < π/2, ξ2 > 0}, B = {ξ : ξ2
1 + ξ2

2 < a2, ξ2 > 0} andBε = {x ∈ Ω : ε−1(x1 − j, x2) ∈ B, j ∈ Z}.
We construct an asymptotics asε → 0 of eigenelements to the following spectral problem:

−	uε = λερεuε in Ω,

uε = 0 onγε,
∂uε

∂ν
= 0 onΓε ∪ Γ1 ∪ Γ2 ∪ Γ3,

ρε =
{

1 in Ω\Bε,

(aε)−m in Bε
(1)

whereν is the unit outward normal to∂Ω . We assume the constants to be 0< m < 2 and 0< a < π
2 .

2. Construction of leading terms of asymptotics

Assume thatλ0 is a simple eigenvalue of the problem{−	u0 = λ0u0 in Ω,

u0 = 0 onΓ4,
∂u0
∂ν

= 0 onΓ1 ∪ Γ2 ∪ Γ3
(2)

Following [14,15] one can prove that (2) is the limit problem for (1), i.e. for each simple eigenvalueλ0 of prob-
lem (2), and sufficiently smallε, there exists only one and simple eigenvalueλε of problem (1), that converges t
λ0 and the corresponding normalized eigenfunctionuε converges weakly inH 1(Ω) to normalized eigenfunctio
u0 asε → 0.

Consider the case 1< m < 2. The functionu0(x) does not satisfy either the equation, or the boundary cond
of problem (1) in a neighborhood ofΓ4. We construct theexternal asymptotic expansion inΩ (outside small
neighborhood ofΓ4), the expansion of eigenvalues in the form

uε(x) = u0(x) + εu1(x) + ε3−mu3−m(x) + · · · , λε = λ0 + ελ1 + ε3−mλ3−m + · · · (3)



G.A. Chechkin / C. R. Mecanique 332 (2004) 949–954 951

d

)

y

e

where we assumeuj to be smooth, and theinternal asymptotic expansion in a neighborhood ofΓ4 as follows:

uε(x) = εv1(ξ;x1) + ε3−mv3−m(ξ;x1) + · · · , ξ = x/ε (4)

Remark 1. Moreover, we construct the coefficients of the internal expansion (4) in the form ofπ -periodic inξ1
functions. It is easy to see that in this case due to the geometry ofΓ2 andΓ3 the conditions∂vi

∂ξ1
= 0 asξ1 = ±π

2
and the periodicity ofvi lead to the condition∂vi

∂ξ1
= 0 onΓ2 andΓ3.

By virtue of problem (2) and the geometry ofΩ the asymptotics ofu0 ∈ C∞(Ω) asx2 → 0 can be expresse
as follows:

u0(x) = α0(x1)x2 + O
(
x3

2

)
, α0(x1) = ∂u0

∂x2

∣∣
x2=0 and α

(2j+1)

0

(±π
2

) = 0 (5)

Let us rewrite the asymptotics (5) in the variables(x1, ξ2), ξ2 = x2
ε

:

u0(x1, εξ2) = εα0(x1)ξ2 + O
(
ε3ξ3

2

)
(6)

In fact, bearing in mind (6), we havev1(ξ;x1) ∼ α0(x1)ξ2 asξ2 → +∞, ξ = x
ε
. Substituting (4) and (3) in (1

and keeping in mind Remark 1, we obtain the boundary-value problem forv1:
	ξv1 = 0 in Π, ∂v1

∂ξ1
= 0 asξ1 = ±π

2 ,

v1(ξ1,0;x1) = 0 asξ1 ∈ (−a, a), ∂v1
∂ξ2

(ξ1,0;x1) = 0 asξ1 ∈ (−π
2 ,−a

) ∪ (
a, π

2

)
,

v1 ∼ α0(x1)ξ2 asξ2 → +∞
Theπ -periodic solution of the problem does exist and can be calculated directly (see [12]):

v1(ξ;x1) = α0(x1)
(
Re ln

(
sinz +

√
sin2 z − sin2 a

) − ln sina
)

(7)

wherez = ξ1 + iξ2 is complex.

Remark 2. Note that due to the last relation in (5) we have∂v1
∂x1

(ξ;x1) = 0 asx1 = ±π
2 . Hence, the boundar

condition ∂v1
∂ξ1

(ξ;x1) = 0 asξ1 = ±π
2 and the periodicity ofv1 leads to∂v1

∂ν
( x

ε
;x1) = 0 onΓ2 ∪ Γ3.

The asymptotics of the function (7) asξ2 → +∞ have the form:

v1(ξ;x1) = α0(x1)
(
(ξ2 − ln sina) + O

(
e−2ξ2

))
(8)

Rewriting the asymptotics (4), (8) inx, we obtain the asymptotics ofu1 in the following form u1(x) ∼
−α0(x1)ln sina asx2 → 0. It means thatu1(x) = −α0(x1) ln sina asx ∈ Γ4 because of the smoothness ofu1.
Substituting the series (3) in problem (1) and keeping in mind the last remark, we obtain the boundary-valu
problem foru1:{−	u1 = λ0u1 + λ1u0 in Ω,

u1 = −α0 lnsina onΓ4,
∂u1
∂ν

= 0 onΓ1 ∪ Γ2 ∪ Γ3
(9)

Writing down the solvability condition and applying the Green’sformula we obtain

λ1 = ln sina

∫
Γ4

(
∂u0

∂ν

)2

dx1 or λ1 = ln sina

π
2∫

− π
2

α2
0(x1)dx1 (10)
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∫
Ω

u0(x)u1(x)dx = 0. Thus, we constructed the leading ter
in the external expansion and moreover the asymptotics ofu1 ∈ C∞(Ω) asx2 → 0 reads

u1(x) = −α0(x1) ln sina + α1(x1)x2 + O
(
x2

2

)
, α1(x1) = ∂u1

∂x2

∣∣
x2=0 and α

(2j+1)

1

(±π
2

) = 0 (11)

Substituting (4) and (3) in the equation from (1) and keeping in mind Remark 1, we obtain the problem forv3−m:−	ξv3−m =
{

0 in Π\B,

a−mλ0v1 in B,

∂v3−m

∂ξ1
= 0 asξ1 = ±π

2 ,

v3−m(ξ1,0;x1) = 0 asξ1 ∈ (−a, a),
∂v3−m

∂ξ2
(ξ1,0;x1) = 0 asξ1 ∈ (−π

2 ,−a
) ∪ (

a, π
2

) (12)

In [13] it is shown that this problem has theπ -periodic inξ1 solutionv3−m(ξ;x1) = C3−m(x1)V3−m(ξ) with the
asymptotics

v3−m(ξ;x1) = C3−m(x1)
(
1+ O

(
e−2ξ2

))
asξ2 → ∞ (13)

where C3−m(x1) can be calculated directly. Multiplying the equation in (12) by the functionRe ln(sinz +√
sin2 z − sin2 a) − ln sina, integrating overΠR = {ξ ∈ Π,ξ2 < R}, using the Green’s formula and passing

the limit asR → ∞, we obtain

C3−m(x1) = λ0α0(x1)

πam

∫
B

(
Re ln

(
sinz +

√
sin2 z − sin2 a

) − ln sina
)2 dξ (14)

It should be noted that due to (14), the last relation in (5) and the boundary conditions in (12) asξ1 = ±π
2 , the

functionv3−m(x
ε
;x1) satisfies the Neumann boundary conditions onΓ2 ∪ Γ3.

The obtained discrepancy in (13) is compensated by the termε3−mu3−m in the external expansion. Hence, t
asymptotics ofu3−m has the formu3−m(x) ∼ C3−m(x1) asx2 → 0. Because of the smoothness ofu3−m it means
thatu3−m(x) = C3−m(x1) asx ∈ Γ4. Consequently, substituting (3) in (1), we obtain the problem foru3−m:{

−	u3−m = λ0u3−m + λ3−mu0 in Ω,

u3−m = C3−m onΓ4,
∂u3−m

∂ν
= 0 onΓ1 ∪ Γ2 ∪ Γ3

(15)

Writing down the solvability condition forthis problem, using the Green’s formula and bearing in mind (14), w
deduce

λ3−m = − λ0

πam

π
2∫

− π
2

α2
0(x1)dx1

∫
B

(
Re ln

(
sinz +

√
sin2 z − sin2 a

) − ln sina
)2 dξ (16)

Thus, in the case 1< m < 2 the leading terms of the asymptotics of eigenelements have the form (3), (4),
the coefficients are determined by (7), (10) and (16) and by the solutions to problems (9), (12) and (15).

Consider the case 0< m � 1. The external expansion and the series of eigenvalue has the form

uε(x) = u0(x) + εu1(x) + ε2u2(x) + · · · , λε = λ0 + ελ1 + ε2λ2 + · · · (17)

and the internal series can be expressed as follows:

uε(x) = εv1(ξ;x1) + ε2v2(ξ;x1) + · · · (18)

whereλ1, u1 andv1 has the same form as in the casem > 1. Keeping in mind (11) and (6) we conclude that
asymptotics ofv2 is v2(ξ;x1) ∼ α1(x1)ξ2 asξ2 → +∞. Substituting (18) and (3) in (1), we deduce the probl
for v2:

−	ξv2 = 2 ∂2v1
∂x1∂ξ1

+ δ1
m

{
0 in Π\B,

a−1λ0v1 in B,

∂v2
∂ξ1

(
ξ;±π

2

) = 0 asξ1 = ±π
2 ,

v2(ξ1,0;x1) = 0 asξ1 ∈ (−a, a), ∂v2
∂ξ2

(ξ1,0;x1) = 0 asξ1 ∈ (−π
2 ,−a

) ∪ (
a, π

2

)
,

v2 ∼ α1(x1)ξ2 asξ2 → ∞
(19)
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Here δi
j is the Kroneker symbol. Using the technique in [13], from the constructions we get that there ex

π -periodic inξ1 solution to problem (19), which has the structure

v2(ξ;x1) = α1(x1)
(
Re ln

(
sinz +

√
sin2 z − sin2 a

) − ln sina
) + δ1

mv3−m(ξ;x1) + α′
0(x1)X̃(ξ) (20)

wherev3−m is a solution of (12) and̃X(ξ) is odd in ξ1, X̃(±π
2 , ξ2) = 0 and exponentially decays asξ2 → ∞.

Hence, the asymptotics ofv2 readsv2(ξ;x1) ∼ α1(x1)(ξ2 − ln sina) + δ1
mC3−m(x1) asξ2 → +∞. Note that the

derivative ∂
∂ξ1

of the first and the second term in (20) is equal to zero forξ1 = ±π
2 and anyx1; finally, due to

X̃(±π
2 , ξ2) = 0, the last relations in (5) and (11), respectively, we have∂v2

∂ν
( x

ε
;x1) = 0 onΓ2 ∪ Γ3.

The boundary condition for u2 on Γ4 follows from the asymptotics asx2 → 0 of the form u2(x) ∼
−α1(x1)ln sina + δ1

mC3−m(x1). Substituting (17) in (1), we obtain the problem foru2:{−	u2 = λ0u2 + λ1u1 + λ2u0 in Ω,

u2 = −α1 lnsina + δ1
mC3−m onΓ4,

∂u2
∂ν

= 0 onΓ1 ∪ Γ2 ∪ Γ3
(21)

The solvability condition gives

λ2 = λ
(1)
2 + δ1

mλ3−m, λ
(1)
2 = ln sina

π
2∫

− π
2

α1(x1)α0(x1)dx1 = ln sina

∫
Γ4

∂u0

∂ν

∂u1

∂ν
dx1 (22)

andλ3−m is defined in (16).
Thus, in the case 0< m � 1 the leading terms of the asymptotics of eigenelements have the form (17)

where the coefficients are determined by (7), (10), (20) and (22) and by the solutions to problems (9), (3) a

3. Remarks on the complete asymptotic expansion

We construct the external asymptotic expansion ofuε, the series for the eigenvaluesλε and the respectiv
internal asymptotic expansion ofuε in the following form:

uε = u0 + ε

∞∑
i,j=0

εi+(2−m)jui,j (x), λε = λ0 + ε

∞∑
i,j=0

εi+(2−m)jλi,j ,

uε = ε

∞∑
i,j=0

εi+(2−m)j vi,j

(
x
ε
;x1

)
(23)

where the terms of the external expansionui,j ∈ C∞(Ω) and the series of eigenvalues satisfy
−	uk,l = ∑

p+i+(2−m)(q+j)=k+(2−m)l−2
λp,qui,j , in Ω,

uk,l = Ck,l onΓ4,
∂uk,l

∂ν
= 0 onΓ1 ∪ Γ2 ∪ Γ3

(24)

C
(2j+1)

k,l (±π
2 ) = 0, vk,l(ξ;x1) = βodd

k,l (x1)V
odd
k,l (ξ) + βeven

k,l (x1)V
even
k,l (ξ), whereβodd

k,l (±π
2 ) = 0, (βeven

k,l )′(±π
2 ) = 0,

V odd
k,l (±π

2 ) = 0 and
∂V even

k,l

∂ξ1
(±π

2 ) = 0. Hence, the terms of the internal series satisfy
−	ξvk,l = 2

∑
i+(2−m)j+1
=k+(2−m)l

∂2vi,j

∂x1∂ξ1
+ ∑

i+(2−m)j+2
=k+(2−m)l

∂2vi,j

∂x2
1

+


∑

p+i+(2−m)(q+j)
=k+(2−m)l−2

λp,qvi,j in Π\B,

∑
p+i+(2−m)(q+j)+2

=k+(2−m)l+m

a−mλp,qvi,j in B,

vk,l = 0 onγ,
∂vk,l

∂ξ2
= 0 onΓ,

∂vk,l

∂ξ1

(
ξ;±π

2

) = 0 asξ1 = ±π
2

(25)
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We assume the summation on the indexes satisfying the respective relations. In the new notation
λ1 = λ0,0; λ3−m = λ0,1; λ2 = λ1,0; u1 ≡ u0,0; u3−m ≡ u0,1; u2 ≡ u1,0; v1 ≡ v0,0; v3−m ≡ v0,1; v2 ≡ v1,0;
−α0 lnsina ≡ C0,0; C3−m ≡ C0,1; −α1ln sina + δ1

mC3−m ≡ C1,0. The functionsCk,l(x1) are chosen to matc
the asymptotic expansions andλk,l is defined by the solvability condition for (24).
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