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Abstract

We consider a partially fastened membrane with many concentrated masses near the boundary. Masses have ttae gliameter
the density is0 (1) outside the masses atf (ae) ™), 0 < m < 2, in the masses. We assume that the distance between masses
is O(¢e) anda is fixed. We obtain the leading terms of the asymptotic expansion of eigenvalues and eigenfunctions of the respec-
tive spectral problems for the Laplacian in such a doni&irtite thisarticle: G.A. Chechkin, C. R. Mecanique 332 (2004).

0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé
Vibration d’'unemembrane partiellement attachée avec plusieur s masses «|égéres» concentrées sur lafrontiere. Nous
considérons une membrane partiellement attachée avec plusieurs masses concentrées prés de la frontiere. Le diamétre des
masses est égalac) ; la densité estd’ordr® (1) en dehors des masses et la densité des masses dni@me ™), 0 <m < 2.
Nous supposons que la distance entre les masses est dtdret quea est fixé. Nous obtenons les termes principaux du
développement asymptotique des valeurs propres et des fonctions propres du Laplacian dans un domaine Beucesitgoe.
cet article: G.A. Chechkin, C. R. Mecanique 332 (2004).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

The study of the behavior of bodies with nonhomogeneous density (with concentrated masses) has attracted the
attention of mathematicians since the beginning of XXth century (see, for instance, [1]). In [2] the author studied
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Fig. 1. The model.

the problem with concentrated masses on the basis of the spectral perturbation theory and proved the convergence
theorem. For the first time global and local vibrations were introduced and investigated. It should be noted also
papers such as [3-10], where different problems in domains with concentrated masses were studied.

In this note we consider a two-dimensional domain with many concentrated masses on the boundary situated
in a periodic way. The distance between masses and the diameter of the mass have the same order. We assume the
masses to be ‘light’. Using the method of matching asytiptxpansions [11] (see also [12,13]), we construct the
leading terms of the asymptoticEeigenelements to a problemrfthe Laplacian in such a domain.

Denote bys2 a domain inR2, which lies in the upper semi-plane, with a piecewise smooth bourtary:

MU UT3U Ty, wherely is a segment—r /2, /2) of the abscissa axig» and 3 belongs to the straight lines
x1=—m/2 andx1 = /2, respectively (see Fig. 1).

Let us describe in detail the fine-grained structurelaf Denotey = {£: —a < & <a, & =0}, I' =
{€: —m/2 <& < —a,a <& <n/2,& =0}, a <m/2, for naturalN > 1 we defines = 1/(2N +1). Let
ve={xely e Y(x1—j,0 ey, jeZ}andl, = I';\y.. Also we use the following notatiolf = {&: —n/2 <
£1<7/2, & >0}, B={£: £2+£2 <a? & >0l andB, = {x € 2: e L(x1— j,x2) € B, j € Z}.

We construct an asymptotics as> 0 of eigenelements to thelfowing spectral problem:

—Aug = Aepeue in 2,
us =0 ony,,

e =0 onl,UIMUILUTS,

_[1 in2\B.,
e2_{(a£)’” in B, (1)

wherev is the unit outward normal t852. We assume the constantsto be ®: <2 and O<a < %.

2. Construction of leading terms of asymptotics

Assume that is a simple eigenvalue of the problem

—Aug=»Xoug in 2, o)
ug=0 onry, %":0 oniuUul»UI3

Following [14,15] one can prove that (2) is the limit problem for (1), i.e. for each simple eigenvalofeprob-
lem (2), and sufficiently small, there exists only one and simple eigenvalyef problem (1), that converges to
1o and the corresponding normalized eigenfunciigrconverges weakly itH1(£2) to normalized eigenfunction
up ase — 0.

Consider the case4 m < 2. The function:g(x) does not satisfy either the equation, or the boundary condition
of problem (1) in a neighborhood dfs. We construct thexternal asymptotic expansion it (outside small
neighborhood of ), the expansion of eigenvalues in the form

e (x) = uo(x) + eur(x) + &3 Mug_p (x) + - -, Ae=Aro+er1+& M Az +--- (3)
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where we assume; to be smooth, and thiaternal asymptotic expansion in a neighborhoodafas follows:
ue(x) =ev1(8:x1) + &> " vg pu(Ex)) + o, E=x/e 4)

Remark 1. Moreover, we construct the coefficients of the internal expansion (4) in the formpefriodic in&;
functions. It is easy to see that in this case due to the geometfy ahd I'; the conditionsg% =0ast1=+%
and the periodicity of; lead to the conditio% =0onlyandls.

By virtue of problem (2) and the geometry 6f the asymptotics ofig € C*°(£2) asxz — 0 can be expressed
as follows:
ug(x) = ao(x1)x2 + O(x3), ao(x1) = gixg o and ac(,z-’ +1)(i%) =0 (5)
Let us rewrite the asymptotics (5) in the variables, &2), & = %:

uo(x1, £62) = eap(x1)&2 + 0 (33) (6)

In fact, bearing in mind (6), we hawg (£; x1) ~ ao(x1)&2 asé&z — +o0, £ = <. Substituting (4) and (3) in (1)
and keeping in mind Remark 1, we obtain the boundary-value problem for

: d
Asv1=0 in/l, a—g:o aSEJ_::I:%,
i, 0x1) =0 aséie(—a,a), 5B, 0x)=0 asée(—F,—a)U(a 5),
v1 ~ap(x1)é2  aséz — +oo

The -periodic solution of the problem does exist and can be calculated directly (see [12]):

v1(§; x1) = ao(x1) (ReIn(sinz + v/si z — sirfa ) — In sina) 7)

wherez = &1 + i&> is complex.

Remark 2. Note that due to the last relation in (5) we haglgg(g; x1) = 0 asx; = £%. Hence, the boundary

3¢, x1) = 0 aséy = =2 and the periodicity ob1 leads 0% (£; x1) = 0 on I3 U I35,

condition oE, o (5

The asymptotics of the function (7) &— +oo have the form:
v1(€; x1) = ao(x1) ((€2 — In sina) + O (e~%2)) (8)

Rewriting the asymptotics (4), (8) in, we obtain the asymptotics af; in the following form ui(x) ~
—ap(xp)In sina asxp, — 0. It means thaii1(x) = —ag(x1) In sina asx € I'; because of the smoothnessuaf
Substituting the series (3) in problem (1) and kegpim mind the last remark, & obtain the boundary-value
problem foruq:

—Au1=Aoui+ Aug in $2, ©)
u1 = —aglnsina on I, 1 =0 onlMUILUTI3
Writing down the solvability condition andpplying the Green’$ormula we obtain
2 7
. oup . 2
A1=1In sma/(a—> dx;1 or Ai=Insina / ag(x1) dxg (10)
Vv

Iy -5
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To determine uniquely the solution we assume yl?;mo(x)ul(x) dx = 0. Thus, we constructed the leading terms
in the external expansion and moreover the asymptotiag efC>(£2) asx, — 0 reads

u1(x) = —ao(x) Insina + a1 (x)x2+ 0(x),  ea(r) =34 o and a’ ™ (£%)=0 (11)

Substituting (4) and (3) in the equation from (1) and keeping in mind Remark 1, we obtain the problem,for

)0 inm\B, vz _ 1
A‘E V3-m = {a_m}»ovl in B, 051 0 ast1 ==+ 2

v3-m(§1,0;x1) =0 asé1 € (—a,a), 3733—5‘2’"(51, 0;x1)=0 ast1e(—%,—a)U(a,%)
In [13] it is shown that this problem has theperiodic in&; solutionvs_,, (&; x1) = C3—;,; (x1) Va—n,, (§) with the
asymptotics
v3-m(§; x1) = C3- (x1) (14 O(e7%2)) as&; — oo (13)
where C3_,,(x1) can be calculated directly. Multiplying the equation in (12) by the functein(sinz +

Vsir?z — sirfa) — Insina, integrating overlTz = {& € IT, & < R}, using the Green’s formula and passing to
the limit asR — oo, we obtain

Cam(xy) = “:L(nfl) /(Reln(sinz +V/siz — sitfa) — Insina)? d (14)
a
B

(12)

It should be noted that due to (14), the ladatien in (5) and the boundary conditions in (12)@as= +7, the
functionvz_,, (5; x1) satisfies the Neumann boundary conditionggn I3.

The obtained discrepancy i) is compensated by the tee¥"u3_,, in the external expansion. Hence, the
asymptotics ofiz_,, has the formuz_,, (x) ~ C3_,;,(x1) asx2 — 0. Because of the smoothnessugf ,, it means
thatuz_,, (x) = C3_,,(x1) asx € I'y. Consequently, substituting (3) in (1), we obtain the problemifer,,:

:_Au3—m = AoU3—m + A3—puo N $2,

15
uz—m = C3z—p 0ONIy, 31433—;m=0 onlpuUl»UIl3 (15)

Writing down the solvability condition fothis problem, using the Green’srfaula and bearing in mind (14), we
deduce

A
Maem =~ / g (x1) dxlf(Reln(sinz +/siz —sirfa) — Insina)” d& (16)
Ta”
_% B
Thus, in the case & m < 2 the leading terms of the asymptotics of eigenelements have the form (3), (4), where
the coefficients are determined by (7), (10) and (16) and by the solutions to problems (9), (12) and (15).

Consider the case© m < 1. The external expansion and the series of eigenvalue has the form

e (x) = ug(x) + sur(x) + e2up(x) +---,  re=hro+eri+eho+--- (17)
and the internal series can be expressed as follows:
e (x) = v1(€; x1) + 20285 x1) + - -+ (18)

wherel1, u1 andvy has the same form as in the case- 1. Keeping in mind (11) and (6) we conclude that the
asymptotics ofup is v2(&; x1) ~ a1(x1)&2 asér — +oo. Substituting (18) and (3) in (1), we deduce the problem
for vo:

_ 5 0% 1 J0 inM\B, vy
AE v2= 23)61351 + 5’" a71A0U1 in B, 0&1

v2 ~ai(x1)é2  aséz — oo

(6:£%)=0 ase1==7%,
(19)
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Here 85. is the Kroneker symbol. Using the technique in [1Bpm the constructions we get that there exists
m-periodic in&; solution to problem (19), which has the structure

v2(&; x1) = a1(x1) (Reln(sinz + V/sirf z — sirfa ) — Insina) + 8 va_m (&; x1) + ap(x1) X (§) (20)

wherevs_, is a solution of (12) and (¢) is odd in&1, X (£Z, &) = 0 and exponentially decays §s — oo.
Hence, the asymptotics @b readsva(&; x1) ~ a1(x1)(é2 — Insina) + 8}1C3,m (x1) as&» — +o00. Note that the
derivativea%1 of the first and the second term in (20) is equal to zerotfoe +£7% and anyxy; finally, due to
X(£%,&) =0, the last relations in (5) and (11), respectively, we h§§e<; x1) =0 on % U I's.

The boundary endition for up on I'; follows from the asymptotics as, — 0 of the form uz(x) ~
—a1(xp)In sina + 5,}1 C3_, (x1). Substituting (17) in (1), we obtain the problem fgr.

—Aup = houo + Aur + doug  in £2,
{uzz—allnsina—i—al}ICgm onlju, 3_‘12 =0 onMUILUT; (21)
The solvability condition gives
z
A2 = )‘(21) + 81 A3 m. )‘(21) =Insina / a1(x1)ao(x1) dxg = Insina / % % dxy (22)

Iy

(V]

andiz_,, is defined in (16).
Thus, in the case @ m < 1 the leading terms of the asymptotics of eigenelements have the form (17), (18),
where the coefficients are determined by (7), (10), (20) and (22) and by the solutions to problems (9), (3) and (21).

3. Remarks on the complete asymptotic expansion

We construct the external asymptotic expansionigfthe series for the eigenvalugs and the respective
internal asymptotic expansion of in the following form:

) )
Ue = o+ & Z 8i+(27n1)jui)j(x), Ae =Ao+ & Z 8i+(27m)j)w.)j’
i,j=0 i,j=0

oo
Ug=¢ Z 8i+(2_”‘)-"vi,./(§; x1) (23)
i,j=0
where the terms of the external expansign € C*°(£2) and the series of eigenvalues satisfy

_Auk,l: Z )\'p,qui,jv in .Q,
i+ 2—m) (g ))=k+(2—m) 2 (24)

uk =Cry1 ONIy, %zO onlpUrizUl3s

TV ED) =0, v (€: x0) = BP0 VETUE) + BRI xn) VEIENE), wherepddET) =0, (B (%) =0,

aveven . . .
Vk"?d(ﬂ:%) =0and a’; (£%) = 0. Hence, the terms of the internal series satisfy
Z Ap.qUi,j in IT\ B,
2, 2, | TEAG
—Agupy =2 ) mt X 5 TR - :
P S SER T LT S SUP R X aMipguij InB, (25)
=k+(2—m)! =k+(2-m)l pHi+2=m)(g+))+2

=k+(2—m)l+m

v =0 ony, 5 =0 onl, aav—gl"(é;:l:%)zo asé; ==+7%
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We assume the summation on the indexes satisfying the respective relations. In the new notation we have
AL =200; A3—m = A0,1; A2 = A10; Ul = UQ,0; U3—m = UQ,1; U2 = U10; V1 = V0,0; V3—m = V0,1; V2 = V1,0;
—aglnsina = Coo; C3—; = Cp.1; —a1ln sina + 8,}1C3,m = C1,0. The functionsCy ;(x1) are chosen to match

the asymptotic expansions ahg; is defined by the solvability condition for (24).
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