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Abstract

A class of chaotic dynamical systems on tNedimensional torus is proposed for masking some information in secure
communications. The information is then recovered thanks to a chaos synchronization grocsshisarticle: L. Rosier et
al., C. R. Mecanique 332 (2004).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Synchronisation du chaos sur le toreN-dimensionnel et cryptographie.Nous proposons une classe de systemes chao-
tiques sur le toreV-dimensionnel pour masquer une information & transmettre dans une communication sécurisée. Cette
information est ensuite reconstruite a I'aide d’'un mécanisme de synchronisation du Ptw#ositer cet article: L. Rosier
et al., C. R. Mecanique 332 (2004).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

From the pioneering works reported in [1,2], information chaotic masking for private and secure communica-
tions has attracted much interest. Several works attempting to bring out a connection with conventional cryptog-
raphy have revealed that not all chaotic maps are good candidates for encryption purposes (see [3]). Indeed, on
one hand, from the sake of security, chaotic maps must pexsigoals which have no patterning, short correlation

E-mail addressegosier@iecn.u-nancy.fr (L. Rosier), millerioux@esastip-nancy.fr (G. Millérioux), bloch@esstin.uhp-nancy.fr
(G. Bloch).

1631-0721/$ — see front mattét 2004 Académie des sciences. PublishgdElsevier SAS. All rights reserved.
doi:10.1016/j.crme.2004.09.001



970 L. Rosier et al. / C. R. Mecanique 332 (2004) 969-972

times and flat spectra. On the other hand, the cryptographic techniques must be compatible with an ease of design
and implementation.

A cryptographic scheme must involve some classes of chaotic maps for which the dimension and the number
of parameters can be arbitrarily large while computatioequirements for masking and unmasking information
must not be too heavy.

The aim of this note is to show that all these requirements are fulfilled for a large class of affine transformations
of the N-dimensional torus.

2. Chaotic affine transformations of the N-torus
2.1. Affine transformations of thé-torus

Let TV denotes thev-dimensional torus, i.I'Y =R"/Z" (quotient vector space). For aiy=(X1, ..., Xy) €
RV, the class of¢ in TV (namely the coseX + Z") is denoted byt = X. The distance between two points Y
is defined ag/(X,Y) =inf,_,v |[X — Y + Z|.

For any matrixM € Z">*N (P, N > 1) and for anyX € R", the class oM X in T”, which clearly depends only
of X, will be denoted by X. We may associate to any matexe ZV¥*" and to any» € TV a discrete dynamical
system orTV defined as

Xk+1= f(xx) := Axp + b,
i B @

The mapf is called amaffine transformatiomf the N-torus.
2.2. Chaotic systems
The following definition of a chaotic system is due to Devaney [4] (see also [5]).
Definition 2.1. The dynamical syster@i¥ 4 ) is said to bechaoticif the following conditions are fulfilled:
(C1) (Sensitive dependence on initial conditipfibere exists a number> 0 such that for anyg € TV and any
8 > 0, there exists a pointy € TV with d(xo, yo) < 8 and an integek > 0 such thatl (x, yx) > ¢.
(C2) (One-sided topological transitivijyThere exists somey € TV with (x)x>o dense irlT?.
(C3) (Density of periodic poinjsThe setD = {xg € TV; 3k > 0, x; = xo} is dense irlT".

The first result in this note characterizes the chaotic affine transformati@is.of

Theorem 2.2[6]. LetA € Z¥*N andb € TV. Assume that is not an eigenvalue of. Then(X, ;) is chaotic if,
and only if,detA £ 0 and A has no roots of unity as eigenvalues.

2.3. Equidistribution

Let us consider now a discrete dynamical system with soatput

Xiy1=Axi + b,
yi = Cxi

wherexg e TV, yr e TL, A € ZV*N b e TV andC e Z™NV . Itis expected (and desired, as the output has to convey
the information through the channel) that the outpuinherits the chaotic behavior af,. However, Devaney’s
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definition of a chaotic system cannot be tested on the sequepgesince this sequence is not a trajectory of a
dynamical system. Instead, we may give a condition ensuring that the sequgniseequidistributed [7] (hence
dense) inT? for a.e.xp, a property which may be seen asesatzof (C2).

Theorem 2.3[6]. LetA € ZV*N b e TV andC € Z*N \ {0}. Assume thadletA 0 and thatA has no roots of
unity as eigenvaluehienceX , , is chaotig. Then for a.exg € R" the sequenceéy;) (defined in(1)) is equidis-
tributed in TV, and the sequender) = (Cx;) is equidistributed irl'L.

The proof of Theorem 2.3 rests on some ergodicity property [8] for such affine transformations.

3. Chaos synchronization and cryptography

The aim of this section is to suggest a chaos-based encryption scheme resorting to the modulo maps presented
in the previous section. It is well known that an encryption scheme must ensure both confusion and diffusion [3].
To this end, at each discrete tirh¢he symbols of a plaintext(u) >0 is injected in a chaotic recursion. Besides,
confusion is reinforced by a suitable output function acting as a mapping from a high dimensional state space to a
low dimensional state space (e.g., of dimension 1).

A discrete dynamical system (at the encryptiontpffilling the above requirements is as follows

Xp+1= Ak + Muy) +b =: Axy + b,

(%) {)’k = Cx

Here A € ZV*N (N > 1), C e ZVN, M € ZN*1, x; € TV is the statey; € T is the input containing the in-
formation to be masked, ang is the output conveyed to the receiver through the channel. Let us turn to the
synchronization problem. A rather natural attérmognsists of selecting as a candidate observeEfdhne system

) {)kar_l zAAXk + L(yk — yk) + b,

e = Cxg
where the Luenberger matrixis chosen irzV %1 (so thatt;, 1 is defined in a unique way V). As usual %o is
an arbitrary point irfl’V .

Settingey = xx — k(e TV), the error dynamics reads
exrr1=(A—LC)(Xx — X)) = (A — LC)(ex + Muy) (2

The gain matrix. has then to be chosen in such a way thattkie spectrum oA — LC lies in the se{z € C;
|z| < 1}; (ii") L is Z-valued. This imposes some restrictions on the choice of thg pait).
A pair (A°, C) is said to be in @ompanion canonical forri it takes the form

—aN 1 0 --- 0O
—ay_1 0 1 .- 0
A= Lo s e=(10--00)
—an 00 --- 1
—aq 00 --- 0

It is then well known that the characteristic polynomial4f readsy 4» (1) = AY + ayA¥ ™1 + ... 4+ @ + a1.
Two pairs(A, C1) and(Ao, Co) in ZN*N x Z*N are said to bsimilar overZ if there exists a matrif’ € ZV*V
with detT = +1 (hencel' ~1 € ZV*¥) such that

Ap=T7 AT,  Co=0C1T
The next result provides a sufficient condition for the existence of a gain niafulfilling the conditions (i)—(ii’).
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Proposition 3.1[6]. Let A € ZV*N andC € Z™N. Assume thatA, C) is similar overZ to a pair (A*, C*) in a
companion canonical form. Then there exists a unique matéxZ"*! such that the matrid — LC is Hurwitz.
Furthermore, (A — LC)N =0.

The next result shows that the information may be recovered at the receiver part.

Corollary 3.2 [6]. Let A, C and L be as in Propositior8.1 Then we may find a matri& € ZV*! such that
(A—LC)M =0andCM =1. Then

up=vr—yr Vk>=N 3)

From a practical viewpoint, a pai”, C*) in companion canonical form is first chosen in such a way #iais
invertible and it has no roots of unity as eigenvalue. Next we picktaayl'? and any matrixt’ € ZV*VN with
detT =41, and setd = T~1A"T andC = C°T. L andM are designed as in Proposition 3.1 and Corollary 3.2.
Then (X4 ) is a chaotic system, the output sequetgg (which conveys the information) is equidistributed for
a.e.xp, and the information may be recovered at the receiver part Afitgrations.

4. Conclusion

An encryption based on a synchraation of a chaotic motion on th¥-torus has been proposed in this note.
A real-time implementation has been carried out on an experimental platform involving a secured multimedia
communication [9].
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