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Abstract

This Note deals with the construction of a non-Gaussian positive definite matrix-valued random field whose mathematical
properties allow the fourth-order elasticity tensor of random homogeneous anisotropic three dimensional elastic media
to be modelled. If the usual parametpeoobabilistic approach was used, thenlitually dependent random fields should
be modelled and identified by using experimental data. Such an approach would be very difficult because the systems of the
marginal probability distributins of these random fields have to be identified due to the fact that, for a boundary value problem,
the displacement field of the random medium is a non-linear mapping of the random elasticity tensor. The theory presented in
this paper allows such a probabilistic model of the fourth-order elasticity tensor field to be constructed and depends only of
four scalar parameters: three spatial correlation lengths and one parameter allowing the level of the random fluctuations to be
controlled.To citethisarticle: C. Soize, C. R. Mecanique 332 (2004).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Modéle de champ aléatoire pour le tenseur d’élasticité des milieux aléatoires anisotropé&3n présente la construction
d’un champ aléatoire a valeurs dans les matrices définies positives dont les propriétés mathématiques permettent de modéliser le
tenseur d’élasticité du quatrieme ordre des mileux élastiquestaopes tridimenshnnels aléatoires. Sidpproche probabiliste
paramétrique usuelle était utilisée, alorserait nécessaire de modéliser et d'itheer a I'aide de données expérimentales
21 champs aléatoires mutuellement dépendants. Une telle approche serait tres difficile de part le fait que le systeme de lois
marginales de ces champs aléatoires doit étre identifié parce que, pour un probléeme aux limites, le champ de déplacement est une
transformation non linéaire du tenseur d’élasticité. La théorie présentée dans ce papier permet de construire une modélisation
probabiliste du champ de tenseur d’élasticité qui ne dépend que de quatre parametres scalaires : trois échelles de corrélation
spatiale et un paramétre permettant de contrdler le niveau des fluctuations aléRtirester cet article: C. Soize, C. R.
Mecanique 332 (2004).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

An important problem is the construction of a stochastic representation for the fourth-order elasticity tensor of
random non-homogeneous anisotropic three-dimensiongibetaadia. Let us consider the following deterministic
elliptic partial differential operatoA on a bounded open domain of R3, related to the three-dimensional linear
elasticity for a non-homogeneous anisotropic elastic material,

3 3
Au=-Y"¢y" 8?}{ 3 c,,kh(xm(u), 1)

k,h=1

in whichx = (x1, x2, x3) € £2 C R3, where{el, 2, €3} are the three vectors of the canonical basi@dand where

x > u(x) = (u1(x), u2(x), u3(x)) is a twice differentiable function fron®2 into R3. The second-order strain
tensor is such that, (u) = (1/2)(0u x/dx;, + du »/9xi). The fourth-order elasticity tensof; ., (x) has to verify

[1] the symmetry property i, (x) = ¢ jikn(x) = cijnk () = ckrij (x) and, for all symmetric second-order real
tensorgz;;}i;, has to verify the positive-definiteness propeEf:’j,k’hzlgijkh (X)Zknzij = €0 ijzl 2%, inwhich

co is a positive constant independentwoffFor a random medium, for atl fixed in £2, the tensofc ; jxn (x)}ijkn 1S
replaced by a fourth-order tensor-valued random varigbla., (x)};jx» whose mean value ig ;jx (x)}ijrn and
which has to verify the symmetry and the positive-definiteness properties in a probabilistic sense which has to
be defined. Nevertheless, for the random case, the deterministic congt@mtroduced above) cannot generally

be justified from a probabilistic modelling point of view. Finally,— {C;j.(x)}ijxs is a fourth-order tensor-
valued random field indexed kg, constituted of 21 mutually dependent random fields and the stochastic partial
differential operatod associated with the operatarwritten as

Z Z {Z c,,kh(x)ekh(v), (2

k,h=1

It should be noted that the probability distribution ofgtiourth-order tensor-valued random field (that is to say
the system of the marginal probability distributions)required because the unknown solution of the stochastic
boundary value problem is a non-linear mapping of the random fielel {C;;xx (x)}i k. If the usual parametric
probabilistic approach is used, then the identification of this probability model by using experimental data seems to
be difficult. This paper deals with a nonfaanetric construction of the random fietd— {C;;is (x)}ijk. For that,
an ensemble of non-Gaussian positive-definite matrix-valued random fields is constructed and studied. With such
a construction, the tensor-valued random field will depenly on 4 scalar parameters: three spatial correlation
lengths and one parameter allowing the level of thredoan fluctuations to be controlled. With such a model, the
inverse problem related to the experimental identification seems to be more feasible.

Letx = (x1, ..., x,) be avectorin the Euclidean spdkeé equipped with the inner produtt, y) = Z’}zl Xjyj
and the associated norjx || = (x, x)1/2. Let M,,(R) be the set of all the square x n) real matricesM,f(R)
the subset of the symmetric matrices aif (R) the subset of the symmetric positive-definite matrices. For
a matrix [A] € M,,(R), one introduces the usual following notatignt]” the transpose, tA] = Z’}zl[A]jj,

1A =tr{[A]"[A]} and||A]| = Sup <1 I[Alx]|. One had|A|l < [[Allr < vallA].
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2. Ensemble SFG of normalized non-Gaussian positive-definite matrix-valued random fields
2.1. Random field as the germ of the ensemble SFG

One introduces a random fieKlas the germ of the normalized non-Gaussian positive-definite matrix-valued
random fields belonging to SPGwhich are defined as a non-linear mapping of independent copies of theSgerm

Definition

Letd > 1 be aninteger. Let — S(x) be a second-order centered homogeneous Gaussian random field, defined
on the probability space?, 7, P), indexed byR¢, with values inR. Let L1, ..., Ly be positive real numbers. The
autocorrelation functiomRs(n) = E{S(x + )S(x)} of this random field, defined for alj = (i1, ..., n4) in RY,
is written asRs(n) = p1(n1) X --- x pg(ng) in which, for all j =1,...,d, one hasp;(0) =1 andp;(n;) =
4L%/(w2n7)sinf(zn; /(2L ) for n; #0.

Properties

For allx in R, E{S(x)} = 0 andE{S(x)?} = 1. The random field is mean-square continuous &9 ans its
power spectral measure has a compact support. Introducﬁrcgs the spatial correlation length relative to coor-
dinatex; and defined b}LS *|Rs(0,...,0,1;,0,. O)|dn,, it can be seen thatf L;. Consequently,
parameterd.1,..., Ly represent the spatlal correlatlon Iengths of random feld

2.2. Ensemble SFG
One begins in introducing a family of non-linear functignased to define the ensemble SFG

Definition of the family of functiong: — h(a, u)}y>0
Let o be a positive real number. The functiom> A («, 1) from R into 0, +oo[ is such thatly, = (e, U) is a
gamma random variable with the parameiterhile U is a normallzed Gaussian random variakig( } = 0 and
E{U?} = 1). Consequently, for alk in R, we haveh(«, u) = (FU(u)) in whichu — Fy(u) = P(U < u) is
the cumulative distribution function of the normalized Gau55|an random variablhe functionp — Fr. (p)
from ]0, 1[ into ]O, +oo[ is the reciprocical function of the cumulative distribution functier-> Fr;, () ‘from
10, 4+-o0[ into ]0, 1] of the gamma random variablg, with the parametes, which is such that, for aly in R*,
Fr,on)=Jg F(la)t"‘*le*’ dz in which I' («) is the gamma function.

Definition of the ensemble SEGf the random field: — [G, (x)]

The ensemble SFGis defined as the set of all the random fields> [G,,(x)], defined on the probability space
(©,T, P), indexed byR? whered > 1 is a fixed integer, with values iNLT(R) wheren > 2 is another fixed
integer, and defined as follows: (i) LES;;/ (x), x € R}, 1< j < j' <n, ben(n + 1)/2 independent copies of the
random field{S(x), x € R} defined in Section 2.1. Consequently, fo£lj < j' <n, one hasE{S;;/(x)} =0and
E{(S;;(x)?} = 1 and the random field — S;; (x) is completely defined. (ii) Let be the real number, independent

of x andn, such that O< § < /(n +1)(n +5)~1 < 1. This parameter will allow the dispersion of the random

field to be controlled. (iii) For alle in R?, [G,(x)] = [L,(x)]’[L,(x)] in which [L,(x)] is the uppern x n)

real triangular random matrix defined as follows. Th@ + 1)/2 random fieldsx — [L,(x)];;» for 1 < j <

j' < n, are independent. Fgr < j’, the real-valued random fietd — [L,(x)];;, indexed byR¢, is defined by

[Ln(x)]jjr = 0,8y (x) in which o, is such thab, = §(n + 1)~1/2, For j = j’, the positive-valued random field

x > [L,(x)];;, indexed byR?, is defined by[L, (x)1;; = 0,,/2h (e}, S;; (x)) in which, for j =1,...,n, one has
=mn+1)/28%+1-j)/2.
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Basic properties

x — [G,(x)] is a homogeneous second-order mean-sgcantinuous random field indexed By with values
in M} (R). In addition, the trajectories of random fietd— [G, (x)] are continuous fronR9 into M (R) almost
surely. For allx € R¢, one hasE{||[Gn(x)]||%} < 400 and E{[G,(x)]} = [I,]. The paramete$ is such that
8 = {XE{I[G,(x)] - [1,11%}}¥2 which shows thaE{|[[G,(x)1||2} = n(5? + 1). The random field - [G, (x)]
is non-Gaussian. For ak fixed in R¢, the probability distribution oML (R) the random matriXG,(x)] is
explicitly calculated in [2] and shows that, for ailfixed in R4, the random variable§G,, x)]ij, 1<i<j<n}
are mutually dependent. The system of the maabprobability distributions of the random field— [G,, (x)]
is well defined but cannot be explicitly calculated. Finally, sifiGg (x)] belongs toVLF (R) almost surely, then
[G,.(x)]~! exists almost surely. However, since almost sureegence does not yield mean-square convergence,
one does not have, a priofi{||[[G,(x)] 1|2} < +oc. Nevertheless, it is proved in [2] that, for alt> 2 and for all
x € R?, there exists a positive constantindependent of and independent of, but depending o#, such that
E{I[G, ()12} < co < +o0.

Fundamental property _
Let £2 be a bounded open domainf and let2 = 2 U 352 be its closure in which 2 is the boundary of2.
One then has

E{(SU_D” [Gn(x)]lH)z} =cZ < +oo 3)

xesf2

in which sup is the supremum and where:@s < +o0 is a finite positive constant.

Remark concerning the proof of Eg. (3)

Let us consider the caske= 1 with 2 be a compact interval @&. Since the stochastic proce$&, (x) 1|, x €
£ C R} is not a continuous local martingal with respect to an increasing famibyfélds, the following funda-
mental Doob maximal inequality [3{sup, .5 (G, (x)171[1%} <4 E{[|[G,(x)]~1||?} cannot be used. In addition,
one has to consider the non-Gaussian random field£as2. Consequently, there is no known result allowing a
direct proof of Eq. (3) to be obtained and a complete proof of this fundamental result is given in [4].

3. Ensemble SFE of non-Gaussian positive-definite matrix-valued random fields
3.1. Definition of the ensemble SFE

Letd > 1 andn > 2 be two fixed integers. L& be an open (or closed) bounded (or not) domaiR6{one can
haves2 = R?). Letx — [a,(x)] be a matrix-valued field fron® into M;F(R). Then, for allx fixed in £2, there
is an upper triangular invertible matrfx , (x)] in M, (R) such thaf a ,(x)] = [L,®)]7[L,(x)]. It is assumed
that: (i) there is a real positive constantQ ¢ < +oo independent of such that, for alk in £2 and for ally € R”,
(Lan(X)1y, y) = collyll?; (i) there is a real positive constant<Oc1 < +oc independent ok such that, for all
x in 2, one hag|[ L, (x)]|l < ,/c1 Which yields([a,(x)]y, y) < c1|ly|l3 for all y in R” and for allx in £2.
Consequently, for alk in 2, one has|[a,(x)]|| <c1 and|/[a,(x)]|r < +/nc1. The ensemble SFEis then
defined as the set of all the random fields> [A,,(x)], defined on the probability spa¢e, 7', P), indexed bys2,
with values inM;f (R), such that

Ve, [A@)]=[L.®)] [Gn0][Lr(x)] (4)

in which x — [G,(x)] is the random field in SFG, defined on(®, 7, P), indexed byR? and with values in
M (R) (see Section 2.2).
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3.2. Properties of the random field— [A,, (x)]

Basic properties

For all x in £, [A,(x)] is a random matrix with values iV (R), the mean function is — E{[A,(x)]} =
[a,(x)] € M (R) and E{I[A,()]11%} < E{||[An(x)]||%} < +o00 which proves thak +— [A,(x)] is a second-
order random field or2. In general, sincda,(x)] depends orx, then the random field[A,(x)], x € £2}
is non-homogeneous. We hav&{[[[A,(x)] — [a,(®)]II3} = {6%/(n + D}{[[a. ()] + (trla,(x)])?). The
dispersion parameter, defined by, (x) = {E{||[[A,(x)] — [gn(x)]||2F}/||[g,1(x)]||2F}1/2, is such tha 4, (x) =
(8/v/n+D{L+ (trla,(x)))?/tr{la,(x)]2}}Y2.

Spatial correlation lengths for the homogeneous case

If [a,(x)]=[a,] is independent ok, then the random field[A,(x)] = [L .17 [G.(x)][L,],x € £2} can
be viewed as the restriction 1@ of a homogeneous random field indexed®y. Thereforesa, (x) = 84, is
independent of. Lety = (n1,...,ng) > r () =tr E{([An(x + )] — [axD([An(x)] — [asD}/E{[An(x)] —
[a,]l2} fromR? into R. One has4#(0) = 1 andrA"(—y) = rA=(y). Forall j =1,..., d, the spatial correlation
IengthL?" of the homogeneous random fietd— [A,,(x)] indexed byR?, relative to the coordinate;, can then

be defined b;L;‘n = [ Ir*(0,...,0,1;,0,...,0) dn;.

4. Ellipticity of the stochastic elasticity operator

The stochastic elasticity operator given by Eg. (2) is assumed to be defined on an open boundeddofnain
R3 whose boundary 2 is written asio U I". On Iy, there is a zero Dirichlet boundary condition. One introduces
the real Hilbert spaced = (L2(£2))% andV = {u € (H(£2))3, u = 0 on Iy} whose inner products are denoted by
(u, w)y and{u, w)y respectively, and where thesociated norms are denoted ||z and |lu||y respectively.
Let H = L%(®, H) andV = L?(©, V) be the real Hilbert spaces of all the second-order random variébles
{x = U(x, 0)} defined on the probability spa¢®, 7, P), with values inH andV respectively, equipped with
the inner product§U, W)y = E{(U, W)y} and{(U, W)y = E{{U, W)y} respectively, and where the associated
norms are denoted by |y and || U ||y respectively.

4.1. Weak formulation of the stochastic elasticity operator

Letn = 6 andd = 3. Let us introduce the new indicdsand J belonging to{1, ..., 6} such that/ = (i, j)
and J = (k, h) with the following correspondence:2 (1,1), 2=(2,2), 3=(3,3), 4= (1,2), 5=(2,3) and
6=(3,1). Thus, for allx in £2, one introduces the matrpu , (x)] in M} (R) such thaf @, (x)17; = cijin(x) and
the random(n x n) real matrix[A,(x)] such thaf{ A, (x)1;; = Cijkn (x). A nonparametric probabilistic model of
the random fourth-order elasticity tensy;x, (x) consists in choosing the random fietd— [A4,(x)] in SFE"
with the mean valuéa , (x)] = E{[A,(x)]}. The weak formulation of the stochastic elasticity operator defined by
Eq. (2) leads the random bilinear for®, W) — KU, W) onV x V to be introduced, such that

KU, W)= /([A,,(x)]e(U(x)), e(W(x)))dx (5)
2
inwhiche(u) = (e11(u), £22(u), £33(n), 2e12(u), 2e23(u), 2631(1)).

4.2. Ellipticity of the random bilinear form

Let (U, W) — KU, W) be the bilinear form oV x V defined byKX(U, W) = E{K(U, W)}. If the fol-
lowing property was introduced: for all € £2 and for allR"-valued random variabl¥ defined on(®, 7, P),
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([A,(X)]Y,Y) > ¢||Y||? a.s. in which O< ¢ < +oc is independent of, then the bilinear forniU, W) — K(U, W)

onV x V would be coercive iV (i.e. V-elliptic) because, we would havé(U, U) > cE{f_Q le(U(x))||2dx} >
c,C||U||%, with 0 < ¢ < 4o0. This uniform ellipticity condition, whichd generally not coherent with the avail-

able information which can be deduced from the objective data, does not hold for the randam-ild ,, (x)]
belonging to SFE and consequently, the usual analysis given above cannot presently be used. A non-uniform
ellipticity condition has to be developed using the fundatakproperty defined by Eq. (3): it is proved [4] that,

for all random field{x — U (x)} in V, we have

VE{KWU, U2} > ckllUIG 6)

in which ck is a positive finite real constant. Note that Eq. (6) differs frB{K (U, U)} > ¢ ||U||§, due to the fact
that the two positive-valued random variables sypl|[G, (x)]7Y andK (U, U) are dependent.

4.3. Existence and uniqueness of a weak seavdédr stochastic solution for a stochastic BVP

Let w — f(w) be a given continuous linear form dn, that is to say such thatf(w)| < cyllwllv with
0 < ¢y < +o00. Then, the following random problem: find a random figdd— U (x)} in V such that, for all
WeV, KU, W)= f(W)a.s., has a unique stochastic solutjgn— U (x)} in V.

The proof can easily be constructed. From equatiiifd/, W) = f(W) and | f(w)| < ¢y [lw]y, it can
be deduced thak (U, U) < ¢/ ||U|lv and consequentlyE (K (U, U)?} < c§, E{|U|2}. Using Eq. (6) yields
ZNUNS < c% U2 which can be rewritten agU ||y < cy < +oo With cy = c¢/cx and yields the existence.
Finally, the proof of the uniqueness straightforward because, #f andU’ are two solutions ifV, for all W in
V, one hask (U — U’, W) =0 a.s. and thug{K (U — U’, W)?} = 0. TakingW = U — U’ and from Eq. (6) yield
IU-U'II3=0,ie,U=U"inV.

5. Conclusions

One has presented the mathematical construction of a non-Gaussian positive-gefinijereal matrix-valued
random field, indexed by any domainf , depending only on the mean function and on a small number of scalar
parameters constituted of a dispersion parametedaspmhtial correlation lengths. Such a random field is adapted
to the stochastic inverse problem relative to the experimental identification of the random field. A fundamental
mathematical property is proved and allows the ellipticity of stochastic partial differential operators to be obtained.
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