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Abstract

This Note deals with the construction of a non-Gaussian positive definite matrix-valued random field whose math
properties allow the fourth-order elasticity tensor of random nonhomogeneous anisotropic three dimensional elastic m
to be modelled. If the usual parametricprobabilistic approach was used, then 21mutually dependent random fields shou
be modelled and identified by using experimental data. Such an approach would be very difficult because the syste
marginal probability distributions of these random fields have to be identified due to the fact that, for a boundary value pr
the displacement field of the random medium is a non-linear mapping of the random elasticity tensor. The theory pre
this paper allows such a probabilistic model of the fourth-order elasticity tensor field to be constructed and depend
four scalar parameters: three spatial correlation lengths and one parameter allowing the level of the random fluctuat
controlled.To cite this article: C. Soize, C. R. Mecanique 332 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Modèle de champ aléatoire pour le tenseur d’élasticité des milieux aléatoires anisotropes.On présente la constructio
d’un champ aléatoire à valeurs dans les matrices définies positives dont les propriétés mathématiques permettent de m
tenseur d’élasticité du quatrième ordre des mileux élastiques anisotropes tridimensionnels aléatoires. Si l’approche probabiliste
paramétrique usuelle était utilisée, alors il serait nécessaire de modéliser et d’identifier à l’aide de données expérimental
21 champs aléatoires mutuellement dépendants. Une telle approche serait très difficile de part le fait que le systèm
marginales de ces champs aléatoires doit être identifié parce que, pour un problème aux limites, le champ de déplacem
transformation non linéaire du tenseur d’élasticité. La théorie présentée dans ce papier permet de construire une mo
probabiliste du champ de tenseur d’élasticité qui ne dépend que de quatre paramètres scalaires : trois échelles de
spatiale et un paramètre permettant de contrôler le niveau des fluctuations aléatoires.Pour citer cet article : C. Soize, C. R.
Mecanique 332 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

An important problem is the construction of a stochastic representation for the fourth-order elasticity te
random non-homogeneous anisotropic three-dimensional elastic media. Let us consider the following determinis
elliptic partial differential operatorA on a bounded open domainΩ of R

3, related to the three-dimensional line
elasticity for a non-homogeneous anisotropic elastic material,

Au = −
3∑

i=1

ei

3∑
j=1

∂

∂xj

{
3∑

k,h=1

c ijkh(x)εkh(u )

}
(1)

in whichx = (x1, x2, x3) ∈ Ω ⊂ R
3, where{e1, e2, e3} are the three vectors of the canonical basis ofR

3 and where
x �→ u(x) = ( u1(x), u 2(x), u 3(x)) is a twice differentiable function fromΩ into R

3. The second-order strai
tensor is such thatεkh(u ) = (1/2)(∂uk/∂xh + ∂uh/∂xk). The fourth-order elasticity tensorc ijkh(x) has to verify
[1] the symmetry propertyc ijkh(x) = c jikh(x) = c ijhk(x) = c khij (x) and, for all symmetric second-order re
tensors{zij }ij , has to verify the positive-definiteness property,

∑3
i,j,k,h=1 c ijkh(x)zkhzij � c 0

∑3
i,j=1 z2

ij , in which
c 0 is a positive constant independent ofx. For a random medium, for allx fixed inΩ , the tensor{c ijkh(x)}ijkh is
replaced by a fourth-order tensor-valued random variable{Cijkh(x)}ijkh whose mean value is{c ijkh(x)}ijkh and
which has to verify the symmetry and the positive-definiteness properties in a probabilistic sense which
be defined. Nevertheless, for the random case, the deterministic constantc 0 (introduced above) cannot genera
be justified from a probabilistic modelling point of view. Finally,x �→ {Cijkh(x)}ijkh is a fourth-order tensor
valued random field indexed byΩ , constituted of 21 mutually dependent random fields and the stochastic p
differential operatorA associated with the operatorA written as

AU = −
3∑
i

ei
3∑

j=1

∂

∂xj

{
3∑

k,h=1

Cijkh(x)εkh(U)

}
(2)

It should be noted that the probability distribution of this fourth-order tensor-valued random field (that is to
the system of the marginal probability distributions) is required because the unknown solution of the stoch
boundary value problem is a non-linear mapping of the random fieldx �→ {Cijkh(x)}ijkh. If the usual parametri
probabilistic approach is used, then the identification of this probability model by using experimental data s
be difficult. This paper deals with a non-parametric construction of the random fieldx �→ {Cijkh(x)}ijkh. For that,
an ensemble of non-Gaussian positive-definite matrix-valued random fields is constructed and studied. W
a construction, the tensor-valued random field will dependonly on 4 scalar parameters: three spatial correla
lengths and one parameter allowing the level of the random fluctuations to be controlled. With such a model,
inverse problem related to the experimental identification seems to be more feasible.

Let x = (x1, . . . , xn) be a vector in the Euclidean spaceR
n equipped with the inner product〈x,y〉 = ∑n

j=1 xjyj

and the associated norm‖x‖ = 〈x,x〉1/2. Let Mn(R) be the set of all the square(n × n) real matrices,MS
n(R)

the subset of the symmetric matrices andM
+
n (R) the subset of the symmetric positive-definite matrices.

a matrix [A] ∈ Mn(R), one introduces the usual following notation:[A]T the transpose, tr[A] = ∑n
j=1[A]jj ,

‖A‖2
F = tr{[A]T [A]} and‖A‖ = sup‖x‖�1 ‖[A]x‖. One has‖A‖ � ‖A‖F � √

n‖A‖.
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2. Ensemble SFG+ of normalized non-Gaussian positive-definite matrix-valued random fields

2.1. Random fieldS as the germ of the ensemble SFG+

One introduces a random fieldS as the germ of the normalized non-Gaussian positive-definite matrix-va
random fields belonging to SFG+ which are defined as a non-linear mapping of independent copies of the geS.

Definition
Let d � 1 be an integer. Letx �→ S(x) be a second-order centered homogeneous Gaussian random field, d

on the probability space(Θ,T ,P ), indexed byRd , with values inR. LetL1, . . . ,Ld be positive real numbers. Th
autocorrelation functionRS(η) = E{S(x + η)S(x)} of this random field, defined for allη = (η1, . . . , ηd) in R

d ,
is written asRS(η) = ρ1(η1) × · · · × ρd(ηd) in which, for all j = 1, . . . , d , one hasρj (0) = 1 andρj (ηj ) =
4L2

j /(π
2η2

j )sin2(πηj/(2Lj)) for ηj 	= 0.

Properties
For all x in R

d , E{S(x)} = 0 andE{S(x)2} = 1. The random fieldS is mean-square continuous onR
d ans its

power spectral measure has a compact support. IntroducingLS
j as the spatial correlation length relative to co

dinatexj and defined byLS
j = ∫ +∞

0 |RS(0, . . . ,0, ηj ,0, . . . ,0)|dηj , it can be seen thatLS
j = Lj . Consequently

parametersL1, . . . ,Ld represent the spatial correlation lengths of random fieldS.

2.2. Ensemble SFG+

One begins in introducing a family of non-linear functionsh used to define the ensemble SFG+.

Definition of the family of functions{u �→ h(α,u)}α>0
Let α be a positive real number. The functionu �→ h(α,u) from R into ]0,+∞[ is such thatΓα = h(α,U) is a

gamma random variable with the parameterα while U is a normalized Gaussian random variable (E{U} = 0 and
E{U2} = 1). Consequently, for allu in R, we haveh(α,u) = F−1

Γα
(FU (u)) in which u �→ FU(u) = P(U � u) is

the cumulative distribution function of the normalized Gaussian random variableU . The functionp �→ F−1
Γα

(p)

from ]0,1[ into ]0,+∞[ is the reciprocical function of the cumulative distribution functionγ �→ FΓα (γ ) from
]0,+∞[ into ]0,1[ of the gamma random variableΓα with the parameterα, which is such that, for allγ in R

+,
FΓα (γ ) = ∫ γ

0
1

Γ (α)
tα−1e−t dt in whichΓ (α) is the gamma function.

Definition of the ensemble SFG+ of the random fieldx �→ [Gn(x)]
The ensemble SFG+ is defined as the set of all the random fieldsx �→ [Gn(x)], defined on the probability spac

(Θ,T ,P ), indexed byRd whered � 1 is a fixed integer, with values inM+
n (R) wheren � 2 is another fixed

integer, and defined as follows: (i) Let{Sjj ′(x),x ∈ R
d}, 1� j � j ′ � n, ben(n + 1)/2 independent copies of th

random field{S(x),x ∈ R
d} defined in Section 2.1. Consequently, for 1� j � j ′ � n, one hasE{Sjj ′(x)} = 0 and

E{Sjj ′(x)2} = 1 and the random fieldx �→ Sjj ′(x) is completely defined. (ii) Letδ be the real number, independe

of x andn, such that 0< δ <
√

(n + 1)(n + 5)−1 < 1. This parameter will allow the dispersion of the rand
field to be controlled. (iii) For allx in R

d , [Gn(x)] = [Ln(x)]T [Ln(x)] in which [Ln(x)] is the upper(n × n)

real triangular random matrix defined as follows. Then(n + 1)/2 random fieldsx �→ [Ln(x)]jj ′ for 1 � j �
j ′ � n, are independent. Forj < j ′, the real-valued random fieldx �→ [Ln(x)]jj ′ , indexed byRd , is defined by
[Ln(x)]jj ′ = σnSjj ′(x) in which σn is such thatσn = δ(n + 1)−1/2. For j = j ′, the positive-valued random fiel
x �→ [Ln(x)]jj , indexed byRd , is defined by[Ln(x)]jj = σn

√
2h(αj , Sjj (x)) in which, forj = 1, . . . , n, one has

αj = (n + 1)/(2δ2) + (1− j)/2.
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Basic properties
x �→ [Gn(x)] is a homogeneous second-order mean-square continuous random field indexed byR

d with values
in M

+
n (R). In addition, the trajectories of random fieldx �→ [Gn(x)] are continuous fromRd into M

+
n (R) almost

surely. For allx ∈ R
d , one hasE{‖[Gn(x)]‖2

F } < +∞ and E{[Gn(x)]} = [In]. The parameterδ is such that
δ = { 1

n
E{‖[Gn(x)] − [In]‖2

F }}1/2 which shows thatE{‖[Gn(x)]‖2
F } = n(δ2 + 1). The random fieldx �→ [Gn(x)]

is non-Gaussian. For allx fixed in R
d , the probability distribution onM+

n (R) the random matrix[Gn(x)] is
explicitly calculated in [2] and shows that, for allx fixed in R

d , the random variables{[Gn(x)]ij , 1 � i � j � n}
are mutually dependent. The system of the marginal probability distributions of the random fieldx �→ [Gn(x)]
is well defined but cannot be explicitly calculated. Finally, since[Gn(x)] belongs toM+

n (R) almost surely, then
[Gn(x)]−1 exists almost surely. However, since almost sure convergence does not yield mean-square converge
one does not have, a priori,E{‖[Gn(x)]−1‖2} < +∞. Nevertheless, it is proved in [2] that, for alln � 2 and for all
x ∈ R

d , there exists a positive constantc0 independent ofn and independent ofx, but depending onδ, such that
E{‖[Gn(x)]−1‖2} � c0 < +∞.

Fundamental property
Let Ω be a bounded open domain ofR

d and letΩ = Ω ∪ ∂Ω be its closure in which∂Ω is the boundary ofΩ .
One then has

E

{(
sup
x∈Ω

∥∥[
Gn(x)

]−1∥∥)2
}

= c2
G < +∞ (3)

in which sup is the supremum and where 0< cG < +∞ is a finite positive constant.

Remark concerning the proof of Eq. (3)
Let us consider the cased = 1 with Ω be a compact interval ofR. Since the stochastic process{‖Gn(x)−1‖,x ∈

Ω ⊂ R} is not a continuous local martingal with respect to an increasing family ofσ -fields, the following funda-
mental Doob maximal inequality [3]E{supx∈Ω ‖[Gn(x)]−1‖2} � 4E{‖[Gn(x)]−1‖2} cannot be used. In addition
one has to consider the non-Gaussian random field cased � 2. Consequently, there is no known result allowin
direct proof of Eq. (3) to be obtained and a complete proof of this fundamental result is given in [4].

3. Ensemble SFE+ of non-Gaussian positive-definite matrix-valued random fields

3.1. Definition of the ensemble SFE+

Let d � 1 andn � 2 be two fixed integers. LetΩ be an open (or closed) bounded (or not) domain ofR
d (one can

haveΩ = R
d ). Let x �→ [a n(x)] be a matrix-valued field fromΩ into M

+
n (R). Then, for allx fixed in Ω , there

is an upper triangular invertible matrix[Ln(x)] in Mn(R) such that[a n(x)] = [Ln(x)]T [Ln(x)]. It is assumed
that: (i) there is a real positive constant 0< c 0 < +∞ independent ofx such that, for allx in Ω and for ally ∈ R

n,
〈[a n(x)]y,y〉 � c 0‖y‖2; (ii) there is a real positive constant 0< c 1 < +∞ independent ofx such that, for all
x in Ω , one has‖[Ln(x)]‖ � √

c 1 which yields〈[a n(x)]y,y〉 � c 1‖y‖2, for all y in R
n and for allx in Ω .

Consequently, for allx in Ω , one has‖[a n(x)]‖ � c 1 and‖[a n(x)]‖F � √
nc 1. The ensemble SFE+ is then

defined as the set of all the random fieldsx �→ [An(x)], defined on the probability space(Θ,T ,P ), indexed byΩ ,
with values inM

+
n (R), such that

∀x ∈ Ω,
[
An(x)

] = [
Ln(x)

]T [
Gn(x)

][
Ln(x)

]
(4)

in which x �→ [Gn(x)] is the random field in SFG+, defined on(Θ,T ,P ), indexed byRd and with values in
M

+
n (R) (see Section 2.2).



C. Soize / C. R. Mecanique 332 (2004) 1007–1012 1011

ain
ces
by

h
ted

f

d by
3.2. Properties of the random fieldx �→ [An(x)]

Basic properties
For all x in Ω , [An(x)] is a random matrix with values inM+

n (R), the mean function isx �→ E{[An(x)]} =
[a n(x)] ∈ M

+
n (R) andE{‖[An(x)]‖2} � E{‖[An(x)]‖2

F } < +∞ which proves thatx �→ [An(x)] is a second-
order random field onΩ . In general, since[a n(x)] depends onx, then the random field{[An(x)], x ∈ Ω}
is non-homogeneous. We haveE{‖[An(x)] − [a n(x)]‖2

F } = {δ2/(n + 1)}{‖[a n(x)]‖2
F + (tr[a n(x)])2}. The

dispersion parameter, defined byδAn(x) = {E{‖[An(x)] − [a n(x)]‖2
F }/‖[a n(x)]‖2

F }1/2, is such thatδAn(x) =
(δ/

√
n + 1){1+ (tr[a n(x)])2/ tr{[a n(x)]2}}1/2.

Spatial correlation lengths for the homogeneous case
If [a n(x)] = [a n] is independent ofx, then the random field{[An(x)] = [Ln]T [Gn(x)][Ln],x ∈ Ω} can

be viewed as the restriction toΩ of a homogeneous random field indexed byR
d . Therefore,δAn(x) = δAn is

independent ofx. Let η = (η1, . . . , ηd) �→ rAn(η) = trE{([An(x + η)] − [a n])([An(x)] − [a n])}/E{‖[An(x)] −
[a n]‖2

F } from R
d into R. One hasrAn(0) = 1 andrAn(−η) = rAn(η). For all j = 1, . . . , d , the spatial correlation

lengthL
An

j of the homogeneous random fieldx �→ [An(x)] indexed byRd , relative to the coordinatexj , can then

be defined byLAn

j = ∫ +∞
0 |rAn(0, . . . ,0, ηj ,0, . . . ,0)|dηj .

4. Ellipticity of the stochastic elasticity operator

The stochastic elasticity operator given by Eq. (2) is assumed to be defined on an open bounded domΩ of
R

3 whose boundary∂Ω is written asΓ0 ∪ Γ . OnΓ0, there is a zero Dirichlet boundary condition. One introdu
the real Hilbert spacesH = (L2(Ω))3 andV = {u ∈ (H 1(Ω))3, u = 0 onΓ0} whose inner products are denoted
〈u,w〉H and〈u,w〉V respectively, and where the associated norms are denoted by‖u‖H and‖u‖V respectively.
Let H = L2(Θ,H) andV = L2(Θ,V ) be the real Hilbert spaces of all the second-order random variablesθ �→
{x �→ U (x, θ)} defined on the probability space(Θ,T ,P ), with values inH andV respectively, equipped wit
the inner products〈〈U ,W 〉〉H = E{〈U ,W 〉H } and〈〈U ,W 〉〉V = E{〈U ,W 〉V } respectively, and where the associa
norms are denoted by‖U‖H and‖U‖V respectively.

4.1. Weak formulation of the stochastic elasticity operator

Let n = 6 andd = 3. Let us introduce the new indicesI andJ belonging to{1, . . . ,6} such thatI = (i, j)

andJ = (k,h) with the following correspondence: 1= (1,1), 2 = (2,2), 3 = (3,3), 4 = (1,2), 5 = (2,3) and
6 = (3,1). Thus, for allx in Ω , one introduces the matrix[a n(x)] in M

+
n (R) such that[a n(x)]IJ = c ijkh(x) and

the random(n × n) real matrix[An(x)] such that[An(x)]IJ = Cijkh(x). A nonparametric probabilistic model o
the random fourth-order elasticity tensorCijkh(x) consists in choosing the random fieldx �→ [An(x)] in SFE+
with the mean value[a n(x)] = E{[An(x)]}. The weak formulation of the stochastic elasticity operator define
Eq. (2) leads the random bilinear form(U ,W ) �→ K(U ,W ) on V × V to be introduced, such that

K(U ,W ) =
∫
Ω

〈[
An(x)

]
e
(
U(x)

)
, e

(
W (x)

)〉
dx (5)

in whiche(u) = (ε11(u), ε22(u), ε33(u),2ε12(u),2ε23(u),2ε31(u)).

4.2. Ellipticity of the random bilinear form

Let (U ,W ) �→ K(U ,W ) be the bilinear form onV × V defined byK(U ,W ) = E{K(U ,W )}. If the fol-
lowing property was introduced: for allx ∈ Ω and for allRn-valued random variableY defined on(Θ,T ,P ),
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〈[An(x)]Y ,Y 〉 � c‖Y‖2 a.s. in which 0< c < +∞ is independent ofx, then the bilinear form(U ,W ) �→K(U ,W )

on V × V would be coercive inV (i.e. V-elliptic) because, we would haveK(U ,U) � cE{∫
Ω

‖e(U(x))‖2 dx} �
cK‖U‖2

V
with 0 < cK < +∞. This uniform ellipticity condition, which is generally not coherent with the ava

able information which can be deduced from the objective data, does not hold for the random fieldx �→ [An(x)]
belonging to SFE+ and consequently, the usual analysis given above cannot presently be used. A non-
ellipticity condition has to be developed using the fundamental property defined by Eq. (3): it is proved [4] tha
for all random field{x �→ U(x)} in V, we have√

E
{
K(U ,U)2

}
� cK‖U‖2

V
(6)

in whichcK is a positive finite real constant. Note that Eq. (6) differs fromE{K(U ,U )} � cK‖U‖2
V

due to the fact
that the two positive-valued random variables supx∈Ω ‖[Gn(x)]−1‖ andK(U ,U) are dependent.

4.3. Existence and uniqueness of a weak second-order stochastic solution for a stochastic BVP

Let w �→ f (w) be a given continuous linear form onV , that is to say such that‖f (w)‖ � cf ‖w‖V with
0 < cf < +∞. Then, the following random problem: find a random field{x �→ U (x)} in V such that, for all
W ∈ V, K(U ,W ) = f (W ) a.s., has a unique stochastic solution{x �→ U (x)} in V.

The proof can easily be constructed. From equationsK(U ,W ) = f (W ) and ‖f (w)‖ � cf ‖w‖V , it can
be deduced thatK(U ,U ) � cf ‖U‖V and consequently,E{K(U ,U )2} � c2

f E{‖U‖2
V }. Using Eq. (6) yields

c2
K‖U‖4

V
� c2

f ‖U‖2
V

which can be rewritten as‖U‖V � cU < +∞ with cU = cf /cK and yields the existence
Finally, the proof of the uniquenessis straightforward because, ifU andU ′ are two solutions inV, for all W in
V, one hasK(U − U ′,W ) = 0 a.s. and thusE{K(U − U ′,W )2} = 0. TakingW = U − U ′ and from Eq. (6) yield
‖U − U ′‖2

V
= 0, i.e.,U = U ′ in V.

5. Conclusions

One has presented the mathematical construction of a non-Gaussian positive-definite(n×n) real matrix-valued
random field, indexed by any domain ofR

d , depending only on the mean function and on a small number of s
parameters constituted of a dispersion parameter andd spatial correlation lengths. Such a random field is ada
to the stochastic inverse problem relative to the experimental identification of the random field. A funda
mathematical property is proved and allows the ellipticity of stochastic partial differential operators to be ob
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