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Abstract

We consider the small transient motions of a coupled system constituted by a linearly elastic body and two heavy, incom
pressible, non-Newtonian fluids.Through a formulation in terms of non-linear evolution equations in Hilbert spaces of
states with finite mechanical energy, we obtain existence and uniqueness results and study the influence of gravity.To cite this
article: C. Licht, Tran Thu Ha, C. R. Mecanique 333 (2005).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Petites vibrations d’un corps linéairement élastique baigné par des fluides non-Newtoniens, incompressibles, pesa
à surfaces libres.On considère les petits mouvements instationnairesd’un système couplé constitué d’un solide linéairemen
élastique et de deux fluides non-Newtoniens, incompressibles, pesants à surfaces libres. Une formulation en termes d
d’évolution non-linéaires dans des espaces de Hilbert d’états possibles d’énergie mécanique finie permet d’obtenir de
d’existence et d’unicité et d’étudier l’influence de la gravité.Pour citer cet article : C. Licht, Tran Thu Ha, C. R. Mecanique
333 (2005).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

Some problems of offshore engineering lead us to consider thesmall transient vibrations of a coupled fluids
structure system around an equilibrium configuration which can be described as follows. A linearly elastic b
occupies the closure�B of a domainB of R

3 with a Lipschitz-continuous boundary∂B. The heavy, incompressib
and not necessarily Newtonian viscous fluids fill up the reunionΩ of two disjoint connected open sets ofR

3 with
Lipschitz boundariesΩi (the inner fluid) andΩe (the outer fluid);Ωi is bounded andΩe may be unbounded
they respectively lie in the half space{x3 � hi} and in the strip{de � x3 � he}. Parts of the boundaries∂Ωi and
∂Ωe of Ωi andΩe, the so-called free surfacesSi

F andSe
F , are included in the planes{x3 = hi} and{x3 = he}, let

SF = Si
F ∪ Se

F . The body domain and the fluid region share a boundarySw, the wet surfaces, letSi
w = Sw ∩ ∂Ωi

andSe
w = Sw ∩ ∂Ωe. Whereas the fluid particles adhere perfectly to a rigid ‘bottom’SB = ∂Ωe \ (Se

w ∪ SF
e ), we

have∂Ωi = Si
w ∪ SF

i . The body is respectively clamped and free of surface loading on the remaining paΓ0
andΓ1 of ∂B. The state of the coupled system is determined by the quadrupletug = (vf , η, s, vb), vf is the fluid
velocity,η the free surface elevation,s andvb the fields of displacement and velocity in the body; we will use
indexg to specify that gravity effects are taken into account (see Section 3.2 also). Letσf andσb the (fluctuations
of) stresses in the fluid and in the body, the equations of the small motions may be expressed as:

ρf

∂vf

∂t
− divσf = ff in Ω (1)

σf n = −ρf gηn onSF (2)
∂η

∂t
= vf · n onSF (3)

vf = 0 onSB (4)

σf n = σbn onSw (5)

vf = vb onSw (6)

ρb

∂vb

∂t
− divσb = fb in B (7)

vb = ∂s

∂t
in B (8)

s = 0 onΓ0 (9)

σbν = 0 onΓ1 (10)

Here,ρf , ρb are the densities in the fluids and in the body,g is the gravity acceleration,ff , fb are the densitie
of the applied body forces excluding the own-weights,n, ν are the unit normals outwardΩ andB, andt denotes
the time. The density isconstant in each fluid whileρb and 1/ρb are positive elements ofL∞(B). The constitutive
equations are:

divvf = 0, (σf )dev∈ ∂d
(
x, e(vf )

)
in Ω (11)

σb = ae(s) in B (12)

wherex is the space variable,e stands for the symmetrized gradient,(σf )dev is the deviatoric part ofσf , a is
the linearized tensor of elasticity and∂d denotes the sub-differential of the convex density function of dissipa
potentiald(x, ·). We assume thata enjoys the usual uniform properties of symmetry, boundedness and elliptici
while d(·, e) is constant in each fluid andd(x, ·) is a convex lower semi-continuous function in the setS3

dev of 3×3
symmetric matrices with vanishing traces, such that:

d(x,0) = 0, ∀x ∈ Ω ∃c > 0, p > 1; d(x, q) � c|q|p, ∀q ∈ S3
dev, ∀x ∈ Ω (13)

An initial stateu0
g being given, the problem is to findug(t), t ∈ [0, T ], satisfying (1)–(12). In [1,2], similar sim

plified situations were considered with Newtonian fluids, here the dissipation potential is not necessarily qu



C. Licht, Tran Thu Ha / C. R. Mecanique 333 (2005) 117–122 119

aximal-
ery open

ightfor-

-
tics
ua-
2. An existence and uniqueness result

We choose to formulate the previous problem in terms of a nonlinear evolution equation governed by a m
monotone operator acting on a Hilbert space of possible states with finite mechanical energy. First, for ev
setG of R

3 we denote byH 1
Γ (G) the subset of the Sobolev spaceH 1(G) whose elements vanish onΓ ⊂ ∂G and

let

L2
div,SB

(Ω) :=
{
ϕ ∈ L2(Ω)3;

∫
Ω

ϕ · ∇w dx = 0 ∀w ∈ H 1
Sw∪SF

(Ω)

}

then twice the total mechanical energy of the system defines the square of a Hilbert-norm

|ug|2g :=
∫
Ω

ρf |vf |2 dx + g

∫
SF

ρf η2 ds +
∫
B

ae(s) · e(s)dx +
∫
B

ρb|vb|2 dx (14)

on

Hg := L2
div,SB

(Ω) × L2(SF ) × H 1
Γ0

(B)3 × L2(B)3 (15)

Furthermore, the total dissipation

D(ϕ) :=
∫
Ω

d
(
x, e(ϕ)(x)

)
dx (16)

defines a convex, lower semi-continuous functional inXp(Ω) := {ϕ ∈ L2
div,SB

(Ω); e(ϕ) ∈ Lp(Ω)9}.
Next, lettingVp := {(ϕ,ψ) ∈ Xp(Ω)×H 1

Γ0
(B)3;ϕ ·n ∈ L2(SF ),ϕ = 0 onSB,ϕ = ψ onSw}, we introduce the

following multivoque operator:

dom(Ag) =




ug = (vf , η, s, vb) ∈ Hg; (vf , vb) ∈ Vp, vf ∈ dom(D)

∃(w, z) ∈ L2
div,SB

(Ω) × L2(B)3 such that{∀(ϕ,ψ) ∈ Vp, D(vf + ϕ) � D(vf ) + ∫
Ω

ρf w · ϕ dx − ∫
SF

ρf gηϕ · nds

− ∫
B

ae(s) · e(ψ)dx + ∫
B

ρbz · ψ ds
(
)




(17)

Agug := {
(w,−vf · n,−vb, z) ∈ Hg satisfying(
)

}
(18)

Eventually, we assume that the data satisfy:

u0
g ∈ dom(Ag), (ff , fb) ∈ BV

(
0, T ;L2(Ω)3 × L2(B)3) (19)

where the last functional space corresponds to functions with bounded time-variations [3]. Thereafter, stra
ward integrations by parts imply that the genuine problem is formally equivalent to:

dug

dt
+ Agug 
 (f 


f /ρf ,0,0, fb/ρb), ug(0) = u0
g (20)

f 

f being theL2(Ω)3-projection offf on L2

div,SB
(Ω). Actually, the definition of dom(Ag) involves the mechan

ical constraints not entering the definition ofHg . The differential inclusion in (20) corresponds to the kinema
conditions (3), (8) and to a virtual power formulation of the problem taking into account the constitutive eq
tions (11), (12). Then we have the following:

Theorem 2.1.There exists a uniqueug in W1,∞(0, T ;Hg) such thatug(0) = u0
g , ug(t) ∈ dom(Ag)∀t ∈ [0, T ],

dug/dt + Agug 
 (f 

f (t)/ρf ,0,0, fb(t)/ρb) almost everywhere in(0, T ).
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Proof. Because of the assumption (19), it suffices (see [3]) to prove thatAg is maximal-monotone. Actually, fo
all u1 = (u1

1, u
1
2, u

1
3, u

1
4), u

2 = (u2
1, u

2
2, u

2
3, u

2
4) in dom(Ag) and (ξ1, ξ2) in Agu

1 × Agu2, the very definition of
Agui, i = 1,2, implies:

0= D(u2
1) − D(u1

1) + (
D(u1

1) − D(u2
1)

)
� −(ξ2 − ξ1, u2 − u1)g

where(·, ·)g stands for the scalar product inHg associated with the norm (14).
Next, let f = (f1, f2, f3, f4) arbitrary in Hg . If there existsu = (u1, u2, u3, u4) in dom(Ag) such that

u + Agu 
 f , necessarilyu1 + w = f1, u2 − u1 · n = f2, u3 − u4 = f3, u4 + z = f4 with (w, z) satisfying the
inequality (
) involved in the definition ofAgu. Therefore,(u1, u4) does minimize the functional:

(ϕ,ψ) ∈ Vp �→ Jg(ϕ,ψ) = D(ϕ) + 1/2
∣∣(ϕ,ϕ · n,ψ,ψ)

∣∣2
g

− (
f, (ϕ,−ϕ · n,−ψ,ψ)

)
g

∈ R ∪ {+∞}
This functional, being strictly convex, lower semi-continuous and coercive onVp, admits a unique minimize
(ū1, ū4) in Vp , so thatū = (ū1, ū1 · n + f2, ū4 + f3, ū4) satisfiesū + Agū 
 f , which ends the proof. �

3. Comments and additional results

3.1. ‘Rigid-plastic’ fluids

The same method and result apply when the growth exponentp, occurring in (13), equals 1, but with th
boundary condition (4) relaxed by:

vf · n = 0, −(σf )T ∈ ∂j (vf ) onSB (4′)
here(σf )T is the tangent component ofσf n and j (vf ) = d∞(vf ⊗sym n), d∞ is the recession function ofd
and⊗sym stands for the symmetrized tensor product (cf. [4]). In this case,X1(Ω) := {ϕ ∈ L2

div,SB
(Ω); e(ϕ) is a

bounded measure onΩ}, V1 := {(ϕ,ψ) ∈ X1(Ω) × H 1
Γ0

(B)3;ϕ · n ∈ L2(SF ),ϕ = ψ onSw} and the total dissipa
tion entering the definition ofAg is the sum of

∫
SB

j (vf )ds and a term like (16), but to be understood in the se
of convex functions of measure [4].

3.2. Neglecting gravity effects

Such a simplified modelling describes the mechanical state by the tripletu0 = (vf , s, vb) only and considers
Eqs. (1), (2) and (4)–(12) withg = 0 and an initial stateu0

0. Let Wp := {(ϕ,ψ) ∈ Xp(Ω) × H 1
Γ0

(B)3;ϕ = 0 on
SB,ϕ = ψ onSw}, then in the Hilbert space

H0 := L2
div,SB

(Ω) × H 1
Γ0

(B)3 × L2(B)3 (21)

equipped with the norm:

|u0|20 :=
∫
Ω

ρf |vf |2 dx +
∫
B

ae(s) · e(s)dx +
∫
B

ρb|vb|2 dx (22)

we can define an operatorA0 by:

dom(A0) =




u0 = (vf , s, vb) ∈ H0; (vf , vb) ∈ Wp,vf ∈ dom(D)

∃(w, z) ∈ L2
div,SB

(Ω) × L2(B)3 such that{∀(ϕ,ψ) ∈ Wp, D(vf + ϕ) � D(vf ) + ∫
Ω

ρf w · ϕ dx

− ∫
B ae(s) · e(ψ)dx + ∫

B ρbz · ψ ds
(

)


 (23)

A0u0 := {
(w,−vb, z) ∈ H0 satisfying(

)

}
(24)
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As previously, it can be shown that the problem is formally equivalent to

du0

dt
+ A0u0 
 (f 


f /ρf ,0, fb/ρb), u0(0) = u0
0 (25)

and thatA0 is maximal-monotone, thus (25) admits a unique solution enjoying regularity properties analogous
those ofug in (20). Under the additional assumption ond :

∃C > 0; d(x, q) � C(1+ |q|)p, ∀q ∈ S3
dev, ∀x ∈ Ω (26)

we can precise the status of this simplified modelling with respect to the modelling of Section 2. Introducing
family of linear isometric operatorsPg :

H0 
 u0 = (vf , s, vb) �−→ Pgu0 = (vf ,0, s, vb) ∈ Hg (27)

we have the following approximation result:

Theorem 3.1.If limg→0 |Pgu0
0 − u0

g|g = 0, then, wheng goes to0, the unique solutionug of (20) converges to the
unique solutionu0 of (25), in the sense thatlimg→0 |Pgu0(t) − ug(t)|g = 0 uniformly on[0, T ].

From an easy non-linear extension of the Trotter theory [5] of approximation of semi-groups of operator
on variable Hilbert spaces, the proof of Theorem 3.1 reduces to the proof of

lim
g→0

∣∣Pg(I + λA0)
−1f − (I + λAg)

−1Pgf
∣∣
g

= 0, ∀(λ,f ) ∈ (0,∞) × H0

which is a straightforward consequence of the obviousΓ -convergence ofJg to J0 with respect to the sequenti
weak convergence onWp .

Of course, the gravity acceleration does not go to zero, but a preliminary non-dimensional setting of the proble
will involve a coefficient which increases from 0 withg. Thus, the practical interest of the previous theorem i
describe what is happening when this coefficient goes tozero: convergences in energy norms of the displacem
and of the velocities, convergence to zero of the gravity potential energy of the fluid.

It is interesting to note that the problem atg = 0 may also concern the small motions of a deformable comp
whose constituents, perfectly stuck together, are either linearly elastic or viscoplastic.

3.3. Taking into account fluctuations of atmospheric pressure and surface forces on the body

This realistic situation can be handled also by the tool of evolution equations governed by time-indep
maximal-monotone operators in the case of Newtonian fluids with, for instance, dissipation density functio
d(x, e) = µ(x)|e|2, whereµ is constant and positive in each fluid. More precisely, Eqs. (2) and (10) are rep
by:

σf n = −ρf gηn + γ onSF (2′)
σbν = δ onΓ1 (10′)

If we assume that(γ, δ) belongs toW2,∞(0, T ;L2(SF )3 × L2(Γ1)
3), then there exists a unique(ωf ,ωb) in

W2,∞(0, T ;V2) such that:∫
Ω

2µe(ωf ) · e(ϕ)dx +
∫
B

ae(ωb) · e(ψ)dx =
∫
SF

γ · ϕ ds +
∫
Γ1

δ · ψ ds ∀(ϕ,ψ) ∈ V2 (28)

In this way,ūg := ug − (ωf ,0,ωb,ωb) satisfies an evolution equation like (20), but with (f 

f /ρf −dωf /dt,ωf ·n,

ωb − dωb/dt, fb/ρb − dωb/dt) as second member andū0
g := u0

g − (ωf (0),0,ωb(0),ωb(0)) as initial data, so tha

the additional assumptions̄u0
g ∈ dom(Ag) and (ff , fb) ∈ W1,∞(0, T ;L2(Ω)3 × L2(B)3) imply existence and

uniqueness ofug in C1([0, T ];Hg) ∩ C0([0, T ];dom(Ag)).
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3.4. Superposed given rigid motion

We assume that the given motion of the frame attached to the body is such that the concept of mean r
configuration is meaningful. In that case, the smallmotions around this configuration may be described by:

dug

dt
+ Agug 
 (f 


f /ρf ,0,0, fb/ρb) + L(t)ug + c(t), ug(0) = u0
g (29)

where the elementc of Hg and the elementL of the spaceL(Hg) of bounded linear operators onHg account for
the additional acceleration terms in (1), (7). If we assume that the given motion of the frame is of classW2,∞(0, T )

then L ∈ W2,∞(0, T ;L(Hg)) and c ∈ W1,∞(0, T ;Hg), thus existence and uniqueness of a solution of (28
clear [3].
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