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Abstract

A pseudo-spectral solver with multigrid acceleration for the numerical prediction of incompressible non-isothermal flows
presented. The spatial discretization is based on a Chebyshev collocation method on Gauss–Lobatto points and for the
tion in time the second-order backward differencing scheme (BDF2) is employed. The multigrid method is invoked at the le
of algebraic system solving within a pressure-correction method. The approach combines the high accuracy of spectra
with efficient solver properties of multigrid methods. The capabilities of the proposed scheme are illustrated by a buoya
driven cavity flow as a standard benchmark case.To cite this article: K. Krastev, M. Schäfer, C. R. Mecanique 333 (2005).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

Despite the advances in computational fluid dynamics inrecent years, the reliablenumerical simulation o
complex transient three-dimensional flows must still be considered as a challenge with respect to comp
resources. Therefore, the further improvement of corresponding numerical techniques is an issue of high prac
interest.

With respect to discretization, theoutstanding properties of spectral methods with their high order of accurac
are well known. Having their roots in the fourth decade of the previous century, spectral methods have been in
sively developed and studied the last 30 years. Startingfrom the pioneering theoretical monograph of Gottlieb an
Orzag [1], there are a variety of other works documenting and analysing the directions and scientific achie
in the field (e.g. [2–5]).

Among the solution techniques for the algebraic systems resulting from a discretization scheme, multig
niques have proven to yield a significant improvement in computational performance. The basics of m
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methods are described, for instance, in [6] or [7]. Typically, multigrid techniques are applied in connection w
finite-volume or finite-element methods (e.g. [8,9]), i.e. in the context ofsparse algebraic system solving.

The present work tries to combine the advantages of spectral discretizations and multigrid solvers.
derlying spectral approach consists in the Chebyshev pseudo-spectral method presented in details in [10
involvement of a multigrid procedure aims to further increase the computational efficiency of this schem
multigrid method is used as a solver for the variousdense algebraic systems resulting from the spectral discret
tion in the course of a pressure-correction method. Tothe authors best knowledge the coupling of Chebys
pseudo-spectral and multigrid methods has not been reported so far in the literature.

For simplicity, we only consider here incompressible flows governed by the Boussinesq approximation
orthogonal mono-block domains. Possible extensions to more general situations with respect to physical
metrical complexity are discussed in [11].

2. Governing equations

We consider the non-isothermal flow of an incompressible Newtonian fluid. The corresponding balance eq
tions for mass, momentum, and energy can be written in the following non-conservative form:

∂uj

∂xj

= 0 (1)

ρ
∂ui

∂t
− µ

∂2ui

∂x2
j

+ ρuj

∂ui

∂xj

= − ∂p

∂xi

+ ρRβ(T − TR)gi (2)

ρcp

∂T

∂t
− λ

∂2T

∂x2
j

+ ρcpuj

∂T

∂xj

= ρf (3)

whereui represents the velocity component with respect to Cartesian coordinatesxi , t is the time,p is the pressure
ρ is the fluid density,µ is the dynamic viscosity,gi is the gravitational acceleration vector,T is the temperature
cp is the heat capacity coefficient at constant pressure,λ is the heat diffusion coefficient, andf are volume hea
sources. For taking into account the temperature influence on the density field the Boussinesq approxim
used, i.e. the density is assumed to be (linearly) dependent on the temperature only in the volume force te
of the momentum equations (2).ρR andTR are corresponding reference values for the density and temper
respectively, andβ denotes the volumetric expansion coefficient. All other material properties are assume
constant in space and time. The equation system (1)–(3) has to be completed by suitable boundary and in
conditions forui andT .

Following the similarities in the structures of Eqs. (2) and (3) we define the generalized scalar transport e

ρ̃
∂φ

∂t
− Γ

∂2φ

∂x2
j

+ Λj ∂φ

∂xj

= F (4)

for which, for ease of presentation, all following numerical techniques will be described. The quantitiesρ̃, Γ , Λj ,
andF represent the respective coefficients and source terms in Eqs. (2) and (3).

3. Discretization scheme

We assume orthogonal problem domainswhich can be mapped to the unit cube with a simple stretching in
of the spatial directions. Regarding the discretization procedure, we closely follow techniques described in
A brief summary is given in the following. Chebyshev-collocation method on the Gauss–Lobatto points.

The time derivative is approximated by the second order backward Euler scheme and of the non-linea
the momentum conservation equations (2) is evaluated by a second-order Adams–Bashfort extrapolation
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(5)

giving the scheme a semi-implicit character.
Due to the separation of the spatial variables, the discrete approximation of the derivatives in each direction

determined only with the help of the discrete function values on the grid line coinciding with the concrete
direction in a finite-difference-like manner [12].

Denoting byDk
ikα

the discrete differential operator in the spatial directionxk, the final discrete linear system fo
the general scalar transport equation for each time step can be written as:

3ρ̃

2	t
φn

i1i2i3
+

3∑
γ=1

[−Γi1i2i3(D
γ
iγ α)2 + Λ

γ
i1i2i3

D
γ
iγ α

][δαiγ φn
i1i2i3

] = F̃ n
i1i2i3

(6)

at all internal nodal points at time levelt = tn. F̃ n
i1i2i3

contains the discrete representation of the external sourc

well as the terms arising from the time discretization and the boundary conditions treatment whileΛj is determined
from (5). Remark that Einstein summing is performed over the silent indexα and the Kroneker symbol is used
determine the position of the running index inφi1i2i3 with respect to the spatial direction part of the discr
derivative operator.

4. Pressure-correction scheme

The coupling of the primitive variables is solved using a pressure-correction scheme similar to those p
by Gresho [13] and van Kan [14], which have been investigated in detail by Turek [15]. A detailed descrip
the scheme can be found in [11]. So, we just summarize the basic ideas here.

First, using the values of the pressure at the previous time steppn−1, a predicted velocity field̃un
i which is not

divergence free, is computed from the discrete momentum equations. To fulfil the discrete continuity eq
Poisson equation

∂2qn

∂x2
j

= ∂ũn
j

∂xj
(7)

with homogenous Neumann boundary conditions issolved for the pressure-correctionqn, which is than used to
correct the velocity and the pressure fields:

pn = pn−1 + αR

3ρ

2	t
qn − αDµ

∂ũn
j

∂xj

(8)

un
i = ũn

i − ∂qn

∂xi

(9)

The two parametersαR andαD can be used to control the convergence of the scheme (see [15]). In our num
example in Section 6 the valuesαR = 0.1 andαD = 1 are used. Finally, the time step is completed by solving
discrete energy equation to obtain the temperatureT n.

5. Multigrid solver

The above pressure-correction scheme requires the solution of various linear systems for the velocity comp
nents, the pressure correction, and the temperature within each time step. In [11] these linear systems are so
with restarted GMRES solver. Here, we propose the use of a multigrid technique, which proved to be very efficie
within the context of finite-volume or finite-element schemes (e.g. [8]).
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Fig. 1. Schematic view of multigrid V-cycle.

For the basic concepts of multigrid methods we refer to [6]. The key idea is to transfer the residual of the sys
to a coarser grid, where a faster reduction of the low frequency error modes is possible. For the movement thro
the grid levels we employ a classical V-cycle approach, which is illustrated schematically in Fig. 1. Here, th
system on grid leveli is denoted by

AiΦi = Fi (10)

ri is the corresponding residual, andIi
j are the transfer operators from grid leveli to j (restriction and prolonga

tion). The values of the two parametersν1 andν2 define the number of pre- and post-smoothing steps.
The linear systems on the different grid levels are obtained by applying the pseudo-spectral scheme as

above on the corresponding grids. The formation of the system matrices in (10) is made using the represen
together with the linearization technique (5) and a boundary conditions in the following way:

The discrete differential operators are determined oneach of the grid levels, as a preprocesing step. On the
level (finnest) grid the computed quantities have theirboundary conditions directly determined from the physica
problem and the applied numerical techniques. The boundary conditions on the lower grid levels transfered a
to the corresponding projections in homogeneous manner. The computed linearization ofΛj is transfered betwee
the grid levels using the restriction operatorsIi

j from the initially computed value on the finnest grid.
As smoothing iteration the restarted GMRES method with a one-dimensional Krylov subspace (e.g.

employed. On the coarsest grid, the smoother is used as asolver until a given convergence criterion is reached.
For the intergrid transfers of the residuals, the residual computed on the grid is interpolated on the othe

using a Chebyshev interpolation. Due to the fact that the coarser grid points are subsets of the finer grid p
restriction from a finer to a coarser grid can be simplified by using directly the values of the points that co
for the corresponding grids.

6. Numerical example

The implemented pseudo-spectral multigrid scheme is tested on the buoyancy driven flow in a square ca
which is a well known benchmark case (see e.g. [17]). The problem parameters are chosen to result in
number ofPr = 0.71 and a Rayleigh number ofRa = 105. The setup of the problem and the resulting tempera
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Fig. 2. Buoyancy-driven flow in a square cavity,Pr = 0.71,Ra = 105. Problem configuration (left) and isolines of the temperature field (right

Fig. 3. Comparison of CPU times for multigrid and single grid computations (Compaq AlphaServer ES40 677 MHz).

distribution are shown in Fig. 2. As criterion to measure the performance of the schemes the computing t
reaching a fixed error value of the Nusselt numberNu = 4.52163 are considered.

We consider four grid levels, starting from the coarsest grid with 11× 11 grid points to the finest grid wit
81× 81 grid points.

In Fig. 3 the absolute and relative CPU times for the multigrid scheme compared to the CPU times
corresponding single grid scheme are shown for two choices of the parametersν1 andν2. The acceleration achieve
with the multigrid scheme clearly shows. As is typical, the multigrid superiority increases with the grid siz
the number of grid levels within the V-cycle.

The presented Multigrid technique does not claim to be the most efficient approach for the considered
tational case. The diagonalization procedure proposed in [18] is the most efficient technique in the case o
convective terms; hence it is direct. The proposed semi-implicit discretization of the equations can be solv
efficiently by a preconditioned restarted GMRES iteration with a sensitively bigger dimension of the Krilo
space and a preconditioner based on mentioned above direct Helmholtz solver, as shown in [11]. The r
those two approaches and the presented one in sense of efficiency are not comparable. The paramet
smoother are chosen in a way that results in bigger iteration numbers and allows testing of the Multigrid s
However, the direction where the proposed technique could gain a real improvement of performance is in
Multi-domain problems, turbulence models and non-constant material properties equations, where the structure
the resulting from the pseudo-spectral discretization linear system becomes more complex and a direct procedu
could not be applied. A combination of those techniques with the present Multi-grid approach needs a very
planning of the code design. The concept of integration has to be specified at the beginning of the realiza
often the absence of a such a concept could be the major problem for the extension of the pseudo-spectra
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7. Conclusion

A pseudo-spectral multigrid method has been presented that attempts to combine the features of spectral
cretization accuracy and efficient algebraic system solution. It has been shown that the use of the implem
multigrid V-cycle scheme increases the computational performance of pseudo-spectral methods for non-isotherma
incompressible flows. The ratio between the CPU times for single grid and multigrid computations increas
the refinement of the grid and the number of the grid levels.

In summary, the results show that multigrid ideas can also help to improve computations based on spe
cretizations involving dense algebraic systems. Although, the multigrid acceleration is less than in the framew
of finite-volume or finite-element discretizations involving sparse algebraic systems, the improvements can
further enlarge the capabilities of spectral methods for complex flow problems.
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