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Abstract

A pseudo-spectral solver with multigrid accelgon for the numerical prediction oficompressible non-isothermal flows is
presented. The spatial discretization is based on a Chebyshev collocation method on Gauss—Lobatto points and for the discretiza-
tion in time the second-order backward differencing scheni#@ is employed. The multigrid method is invoked at the level
of algebraic system solving within a pressure-correction method. The approach combines the high accuracy of spectral methods
with efficient solver properties of multigrid methods. The a&hifities of he proposed scheme are illustrated by a buoyancy
driven cavity flow as a standard benchmark caseite thisarticle: K. Krastev, M. Schéfer, C. R. Mecanique 333 (2005).
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1. Introduction

Despite the advances in computational fluid dynamicsetent years, the reliableumerical simulation of
complex transient three-dimensional flows must still be considered as a challenge with respect to computational
resources. Therefore, the further improvement of apoading numerical techniques is an issue of high practical
interest.

With respect to discretization, tleutstanding properties of spectraéthods with their high order of accuracy
are well known. Having their roots in the fourth decad¢he previous century, spectral methods have been inten-
sively developed and studied the last 30 years. Staftarg the pioneering theotieal monograph of Gottlieb and
Orzag [1], there are a variety of other works documenting and analysing the directions and scientific achievements
in the field (e.qg. [2-5]).

Among the solution techniques for the algebraic systems resulting from a discretization scheme, multigrid tech-
nigues have proven to yield a significant improvement in computational performance. The basics of multigrid
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methods are described, for instance, in [6] or [7]. Bgtly, multigrid techniques are applied in connection with
finite-volume or finite-element methods (e.qg. [8,9]), i.e. in the contegpafse algebraic system solving.

The present work tries to combine the advantages of spectral discretizations and multigrid solvers. The un-
derlying spectral approach consists in the Chebyshev pseudo-spectral method presented in details in [10,11]. The
involvement of a multigrid procedure aims to further increase the computational efficiency of this scheme. The
multigrid method is used as a solver for the varidasse algebraic systems resulting from the spectral discretiza-
tion in the course of a pressure-correction methodthEo authors best knowledge the coupling of Chebyshev
pseudo-spectral and multigrmethods has not been reported so far in the literature.

For simplicity, we only consider here incompressible flows governed by the Boussinesq approximation within
orthogonal mono-block domains. Possible extensions to more general situations with respect to physical and geo-
metrical complexity are discussed in [11].

2. Governing equations

We consider the non-isothermal flow of an incomprelesNewtonian fluid. The corresponding balance equa-
tions for mass, momentum, and energy can be written in the following non-conservative form:
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whereu; represents the velocity component with respect to Cartesian coordinatésthe time,p is the pressure,
p is the fluid densityu is the dynamic viscosityg; is the gravitational acceleration vectar,is the temperature,
cp is the heat capacity coefficient at constant pressuigthe heat diffusion coefficient, anfl are volume heat
sources. For taking into account the temperature influence on the density field the Boussinesq approximation is
used, i.e. the density is assumed to be (linearly) ddpet on the temperature only in the volume force term
of the momentum equations (2)r and 7Tr are corresponding reference values for the density and temperature,
respectively, ang denotes the volumetric expansion coefficient. All other material properties are assumed to be
constant in space and time. The equation system L xds to be completed by suitable boundary and initial
conditions fory; andT.

Following the similarities in the structures of Egs. (2) and (3) we define the generalized scalar transport equation
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for which, for ease of presentation, all following numerical techniques will be described. The quantitiesi/,
and F represent the respective coefficients and source terms in Egs. (2) and (3).

3. Discretization scheme

We assume orthogonal problem domaiidsch can be mapped to the unit cube with a simple stretching in each
of the spatial directions. Regarding the discretizatioocpdure, we closely follow techniques described in [3].
A brief summary is given in the following. Chebyshev-collocation method on the Gauss—Lobatto points.

The time derivative is approximated by the second order backward Euler scheme and of the non-linear term in
the momentum conservation equations (2) is evaluated by a second-order Adams—Bashfort extrapolation
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A |t:t,, ~ 20 |t:t,,_1 - A |t:t,,_2 (5)
giving the scheme a semi-implicit character.
Due to the separation of the spatial variables, the dis@pproximation of the derivatives in each direction is
determined only with the help of the discrete function values on the grid line coinciding with the concrete spatial

direction in a finite-difference-like manner [12].
Denoting byDl’.‘k o the discrete differential operator in the spatial directipnthe final discrete linear system for

the general scalar transport equation for each time step can be written as:
35 3
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at all internal nodal points at time levek 1,. 131.';1.21.3 contains the discrete representation of the external sources as
well as the terms arising frorh¢ time discretization and the boundary conditions treatment wiHils determined

from (5). Remark that Einstein summing is performed over the silent indexd the Kroneker symbol is used to
determine the position of the running index ¢ ,i, with respect to the spatial direction part of the discrete

derivative operator.

4. Pressure-correction scheme

The coupling of the primitive variables is solved using a pressure-correction scheme similar to those proposed
by Gresho [13] and van Kan [14], which have been investigated in detail by Turek [15]. A detailed description of
the scheme can be found in [11]. So, we just summarize the basic ideas here.

First, using the values of the pressure at the previous timezgteh a predicted velocity field; which is not
divergence free, is computed from the discrete momentum equations. To fulfil the discrete continuity equation a
Poisson equation
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with homogenous Neumann boundary conditionsdlved for the pressure-correctigfi, which is than used to
correct the velocity and the pressure fields:
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The two parametergr andap can be used to control the convergence of the scheme (see [15]). In our numerical
example in Section 6 the valueg = 0.1 andap = 1 are used. Finally, the time step is completed by solving the
discrete energy equation to obtain the temperaiftire

5. Multigrid solver

The above pressure-correction scheme requires thé@oof various linear systems for the velocity compo-
nents, the pressure correction, and the temperaturéwatth time step. In [11] these linear systems are solved
with restarted GMRES solver. Here, we propose the fisenaultigrid technique, which proved to be very efficient
within the context of finite-volume or finite-element schemes (e.g. [8]).
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Fig. 1. Schematic view of multigrid V-cycle.

For the basic concepts of multigrid methods we refer toTBE key idea is to transfer the residual of the system
to a coarser grid, where a faster reduction of the lowdiency error modes is possible. For the movement through
the grid levels we employ a classical V-cycle approach, which is illustrated schematically in Fig. 1. Here, the linear
system on grid level is denoted by

Algpl =F (10)
ri is the corresponding residual, a@dare the transfer operators from grid leveb j (restriction and prolonga-
tion). The values of the two parametessandv, define the number of pre- and post-smoothing steps.

The linear systems on the different grid levels are obtained by applying the pseudo-spectral scheme as described
above on the corresponding grids. The formation of the system matrices in (10) is made using the representation (6)
together with the linearization techniqué ¢énd a boundary conditions in the following way:

The discrete differential operators are determine@ach of the grid levels, as a preprocesing step. On the top
level (finnest) grid the computed quantities have theundary conditions directly termined from the physical
problem and the applied numericathniques. The boundary conditions on the lower grid levels transfered as type
to the corresponding projections in homogenemanner. The computed linearizationfis transfered between
the grid levels using the restriction operattygrom the initially computed value on the finnest grid.

As smoothing iteration the restarted GMRES method with a one-dimensional Krylov subspace (e.g. [16]) is
employed. On the coarsest grid, the smoother is usedalver until a given convergence criterion is reached.

For the intergrid transfers of the residuals, the residual computed on the grid is interpolated on the other one by
using a Chebyshev interpolation. Due to the fact that the coarser grid points are subsets of the finer grid points the
restriction from a finer to a coarser grid can be simplified by using directly the values of the points that collocate
for the corresponding grids.

6. Numerical example
The implemented pseudo-spectral multigrid schemesget on the buoyancy driven flow in a square cavity

which is a well known benchmark case (see e.g. [17]). The problem parameters are chosen to result in a Prandtl
number ofPr = 0.71 and a Rayleigh number 8 = 10°. The setup of the problem and the resulting temperature
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Fig. 2. Buoyancy-driven flow in a square caviBy, = 0.71, Ra= 10°. Problem configuration (left) and ikees of the temperature field (right).
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Fig. 3. Comparison of CPU times for multigrid and single grid computations (Compaq AlphaServer ES40 677 MHz).

distribution are shown in Fig. 2. As criterion to measure the performance of the schemes the computing times for
reaching a fixed error value of the Nusselt numier= 4.52163 are considered.

We consider four grid levels, starting from the coarsest grid with 111 grid points to the finest grid with
81 x 81 grid points.

In Fig. 3 the absolute and relative CPU times for the multigrid scheme compared to the CPU times for the
corresponding single grid scheme are shown for two choices of the parametecdy;. The acceleration achieved
with the multigrid scheme clearly shows. As is typical, the multigrid superiority increases with the grid size and
the number of grid levels within the V-cycle.

The presented Multigrid technique does not claim to be the most efficient approach for the considered compu-
tational case. The diagonalization procedure proposed in [18] is the most efficient technique in the case of explicit
convective terms; hence it is direct. The proposed semi-implicit discretization of the equations can be solved very
efficiently by a preconditioned restarted GMRES iteration with a sensitively bigger dimension of the Krilov sub-
space and a preconditioner based on mentioned above direct Helmholtz solver, as shown in [11]. The results of
those two approaches and the presented one in sense of efficiency are not comparable. The parameters for the
smoother are chosen in a way that results in bigger iteration numbers and allows testing of the Multigrid scheme.
However, the direction where the proposed technique could gain a real improvement of performance is in cases of
Multi-domain problems, turbulence mddend non-constant material propies equations, where the structure of
the resulting from the pseudo-spectradatetization linear system becomesma complex and a direct procedure
could not be applied. A combinaticof those techniques with the present Multi-grid approach needs a very good
planning of the code design. The concept of integration has to be specified at the beginning of the realization and
often the absence of a such a concept could be the major problem for the extension of the pseudo-spectral methods.
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7. Conclusion

A pseudo-spectral multigrid method has been presentédtteanpts to combine the features of spectral dis-
cretization accuracy and efficient algraic system solution. It has been shown that the use of the implemented
multigrid V-cycle scheme increases the computationgbpmance of pseudo-spectraethods for non-isothermal
incompressible flows. The ratio between the CPU times for single grid and multigrid computations increases with
the refinement of the grid and the number of the grid levels.

In summary, the results show that multigrid ideas can also help to improve computations based on spectral dis-
cretizations involving dense algebraic systemsh@ligh, the multigrid acceleration is less than in the framework
of finite-volume or finite-element discretizations involving sparse algebraic systems, the improvements can help to
further enlarge the capdities of spectral methods faomplex flow problems.
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