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Abstract

The interaction of three-dimensional isotropic turbulence with a plane shock at Mach numBérs @0 andM = 3.0 is
investigated via direct numerical simulation. The numerical sehis based on a characteristic-type formulation of the Navier—
Stokes equations and uses fifth-order upwind schemesairesp fourth order Runge Kutta scheme in time and a shock-fitting
as inlet condition. The isotropic turbulence was generated in a separate computation based on a prescribed energy spectrum.
This turbulent flow is considered as frozen, and is convected through the shock with a prescribed average shock speed. An FFT
interpolation is used to obtain the upstream values at the iastaotis shock location. Turbulence enhancement is observed,
and the evolution of velocity fluctuations as well as turbulence microscales are in good agreement with the behaviour observed
using shock-capturinglo cite thisarticle: J. Sesterhenn et al., C. R. Mecanique 333 (2005).
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1. Introduction

The interaction of turbulence with a shock wave is of great practical importance in many fields of engineering.
The knowledge of the physics of this process is crucial for future development of hypersonic aircrafts, supersonic
combustion, prediction of sound emission and more. Velocity fluctuations and length scales of the turbulent flow
are substantially changed due to the shock.

Kovasznay [1] showed that, to first order, acoustic-, vortical- and entropy-fluctuations are decoupled in turbulent
flows. One main feature of shock-turbulence interaction is the strong coupling of these modes.

Several approaches to compute the interaction of turbulence and shock waves exist. Besides linear interac-
tion analysis [2] and rapid distortion theory [3], thredfelient numerical approaels exist: (i) direct numerical
simulation (DNS) which implies integration of the Navier—Stokes equations through the shock without model
assumptions; (ii) shock-fitting which essentially means neglecting the shock-thickness and applying the Rankine—
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Hugoniot relations; and lastly (iii)lfering the equations. This can be aatdd by use of a shock-capturing scheme
or explicit filtering of the equations. From the viewpoint of the turbulent field, a DNS, a large eddy simulation
(LES) or a Reynolds averaged (RANS) computation may be envisaged, all of which give different results [4].

In the present article a DNS of the turbulent flow field in conjunction with a shock-fitting method is employed
and compared with other approaches. It is planned to perform full DNS and LES computations as well, in the
future, to investigate the diffences between these approaches.

2. Governing equations
The numerical code is based on a reformulation of thedafdimensional Navier—Stokes equations which ex-

presses the inviscid part of the equations as a decomposition into acoustic and convective waves, aligned with the
numerical grid.
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A complete description of this method is given by Sesterhenr([B}, v, w, s) signify pressure, contravariant ve-
locities and entropyX*, Y* andZ* represent acoustic waves travelling normally to constant coordinate surfaces
g1, £2 andé&3, respectivelyX?, X%, Y*, etc. describe the transport of vorticity along the appropriate directions.

X*, Y*, Z° model the convective transport of entropy waves. Thus, the decomposition may be viewed as a normal
wave decomposition in computational space. The derivatives are approximated using a compact upwind scheme of
fifth order [6].
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To this Euler part of the Navier—Stokes equations the viscous and heat-conduction terms areaddee.
viscous dissipation ratg; g’% Dissipative terms are discretized using a sixth order central scheme similar to [7].
J

gim IS the metric tensor, defined ky;, = gfgf?.

3. Boundary conditions

The computational domain consists in the subsonic flow downstream of the shock which coincides with the west
boundary of the domain. The east boundary is prescribed as a nonreflecting outlet, north, south front and back are
treated periodically. The physical domain is time dependent and the grid distorts with the movement of the shock
boundary. In this work, we consider the case of a decayirtgopi turbulent flow, which is periodic in all three
space directions as it moves through a shock. Since the flow is supersonic it is not aware of the shock and may be
computed in a separate DNS.

Thus, we have a supersonic inlet boundary conditieyond the shock boundary. This condition consists in
imposing the values of the time derivatives of pressueéocity components and entropy at the boundary according
to the isotropic field. Together with one characteristic entering the shock from the high pressure side, those values
determine the time derivatives at the downstream side. They are calculated from the corresponding upstream values,
using the Rankine—Hugoniobnditions [8]. With this method, the shock isrtsidered as a discontinuity. This is
acceptable as long as the length scales of thesflew(v3/¢)1/4 up- and downstream of the shock are much bigger
than the shock thicknesg. As long as this condition is satisfied, the resolution of the grid is determined by the
smallest turbulent length scales of the flow only and not by the shock thickness.

Given an isotropic turbulent flow field, the turbulenwill decay since a forcing is absent. On the other hand
a statistically stationary turbulent flow behind a imés known to be approximately homogeneous in planes per-
pendicular to the flow direction. To avoid computing a sgBtidecaying, but locally stationary turbulent flow, we
compute an isotropic flow and consider an instantaneous field at a certain time and simulate the nonvanishing mean
flow of our model by translating the field with a constant speed

In order to impose the supersonic inlet boundary conditia the moving shock, the upstream values of the
time derivatives

d d d
dr ~ or + i dx;

of pressure, velocity and entropy at any grid point of the shock are ne&ded{u; — s, vy, wy} are the Cartesian
components of the local shock velocity in a reference frame moving with the average shock-speed, identified with
In this case, the values of the time derivatives of pressure, velocity and entropy just before the shock are given
by convective terms only:
ad d d
= (U — §)— - — 2
g = s S)aervsaerwsaZ 2)
The three-dimensional isotropic turbulent flow used to calculate the flow variables upstream of the shock con-
sists in a periodic arrangement oftarbulent box'. Initially it has a kietic energy spectrum of the form

E(k) ocu3/ko(k/ ko)* exp(—2k?/ kZ)

wherekg is the peak wavenumber and the initial rms-value of the velocity fluctuation in any direction. The same
spectrum was used in [9] and [10] by Lee et al. as well as in [11] and [12] by Hannappel and Friedrich in their
DNS of the interaction of isotropic turbulence with a shock. The choice of this spectrum is justified by its good
representation of low-Reynolds-number turbulence.

Subsequently, the flow is allowed to evolve until thefeial initial field has relaxed to a physically reasonable
flow field. This is checked by the skewness befiwy —0.4.
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Once we have the turbulent upstream flow at our disposal, the problem is that we only know the pressures,
velocities and entropies at a discrete set of points oftthibulent box’. As we convect this field through the shock,
the points representing the shock surface are to be found between grid points. So we need interpolations to obtain
the physical values at the desired points, that is on those situated on the shock, on the upstream side of it. Thus,
we use an interpolation based on a Fourier transform and a phase shift corresponding to the local shock velocity
of the physical values of the ‘turbulent box’. This is relatively cheap since the shock curvature remains small and
a one-dimensional interpolation in tledirection suffices. At the same time the method is accurate. However, we
would like to add that other interpation methods would work as well and are in fact necessary if the incoming
flow is not periodic.

A drawback of the present method is the fact that all quantities are convected with the shock speed whereas
in reality different wave speeds are present on the upstream side. A simple, but costly remedy is to perform a
simultaneous DNS for the upstream side. To prevent the decay of the turbulence a forcing might be added. This is
planned for future investigations.

4. Results

For the two simulations presented in this article we have used the parameter values upstream of the shock given
in Table 1.

The isotropic turbulence was generated, as described above Witri@igooints.M; is the upstream value of
the Mach NumberM, = u, /c the turbulent Mach Numben; the upstream value of the Kolmogorov length scale
andRe, = puoir/ a Reynolds number based on the Taylor microscaleglative to a component of the velocity
fluctuation. The bar denotes an ensemble average. In order to be allowed to apply shock-fitting, we have to be sure
that the shock-thickness,() is much smaller than the length scales of the flow upstream and downstream. So we
calculated the shock thicknesses in both cases and compared them to the corresponding Kolmogorov length scales
directly downstream of the shockg, which we obtained, a posteriori, from the DNS (Table 2).

To estimate the velocity-gradient thickness we mayd)se %% [13] which is valid for weak shocks. As we
can see in both casesg; is clearly greater (alas not much greater) than the shock thickness. Thus, shock-fitting is
applicable and in any case better than a shock capturing siecshock thickness would artificially increase in that
case.

The Kolmogorov length scale immediately downstream of the shock is the smallest of all turbulent length scales
of the problem, so that the shock thickness is much smaller than almost all turbulent length scales.

To arrive at an expression for the behaviour @8, , we estimate further the Kolmogorov scale of the isotropic
turbulence by using ~ 15vu?,/A%[14]. Rearranging; /s, we get

Table 1

Parameter values upstream of the shock

Case Mq M; Re, ko N1

I 2.0 0.0352 3.39 45000 1.0E-5
1] 3.0 0.0352 3.39 45000 1.0E-5
Table 2

Kolmogorov length scales downstream of the shock

Case Su n2 12/8u

| 1E-6 5.11E-6 ~5

I TE-7 4.32E-6 ~6
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Thus for largeiRe, the ratio gets more favourable, since the shdigkness reduces more rapidly when reducing
v thanp does.

The downstream side of the shock was computed withd@&l points as well, but the grid was stretched to
cluster points in the vicinity of the shock. To compute the average values plotted in the figures of this work, we
first calculated average values on planes paraléhé shock and situated at different distancesvay from the
shock. Those planes contained?3ints in each case. Then we averaged those values in time, the number of
instantaneous values used for this purpose was 153 for case |, and 143 for case Il.

4.1. Evolution of velocity fluctuations

—_—

Fig. 1 shows the evolution of the diagonal components of the Reynolds stress fegaselug’u’jf, in both our
simulations is the fluctuation of,; with respect to its averagg = pu;/p, introduced by Favre in [15]. Note
that the graphs in this article show dimensionless quantities as they are scaled using thegvahab of the
simulation that is referred to. The off-diagonal components (not represented) stay closely to zero over the entire

flow since turbulence is isotropic upstream and then axisymmetric downstream of the shock.

As a consequence of axisymmetry, we found the profiles of both transverse velocity quctud}ﬁym%, and

u’éz/u%, to coincide. Thus, we plotted only one of them in eaake. Directly after the shock, the streamwise fluc-
tuation is reduced whereas the transverse fluctuati@naraplified. Then the velocity fluctuations evolve rapidly

just downstream of the shock, within a distance of the same order of magnihkg’é.@is phenomenon is due

to the evanescent acoustic waves that are produced by the shock-turbulence interaction, as predicted by Ribner
through linear analysis in [2]'he rapid evolution consists in a decay oé thhansverse velocity fluctuations and an
increase of the streamwise fluctuation. After that, fadl velocity fluctuationsecay monotonically due to viscous
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Fig. 1. Evolution of the normal components of the Reyndittess: Curve 1 stands for the streamwise componél?ﬂ/@%) at M1 = 2.0,
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Curve 2 for a transverse componen £/u2) at M1 = 2.0, Curve 3 forj2/u3 at My = 3.0, Curve 4 fony?/uf at M1 = 3.0.
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Fig. 2. Evolution of the vorticity fluctuations fab/; = 2.0 (Case 1). Curve 1 stands for the streamwise fluctuation, Curves 2 and 3 for the
transverse fluctuations. For a given sintiga, the correspondingeference vorticitywg is the upstream RMS-value of the vorticity fluctuation
in any direction.

dissipation. This effect is dominant far from the shock, and the return to isotropy is negligible comparing to it.
The same behaviour of the turbulent velocity components was observed by Lee et al. [10], using shock-capturing,
and the comparison of Fig. 1 with Fig. 3(a) of [10] confirms the good agreement of both DNS, even if they were

performed with different values &e,. The quoted results as well as measurements show a high pafiil'%/@%

within the shock zone, which is not present in our computation. This peak is mainly due to the oscillation of
the shock relative to a fixed point in space where the mremsents are taken [9]. In our case the measurements
(numerical or experimental) are taken in a locatiomiah is fixed with respect to the shock and always located
downstream of it.

4.2. Vorticity fluctuations

In quasi-incompressible fluctuating flows like those édersed in this paper and in [10], vorticity fluctuations
are clearly the main contributor to the dissipation rate of the turbulent kinetic energy. Fig. 2 shows the evolution of
the components of vorticity fluctuations. We can see that, directly downstream of the shock, transverse components
are amplified and the streamwise component is hardly affected. The amplification ratio of approximately 6 for the
transverse components observed in Fig. 2 (as well as in Fig. 5(a) in [10]) agrees with the predictions of the linear
analysis forM; = 2.0 (see Fig. 5(b) from [10] for the latter). Amplification ratios found for other value® pin
this work, as well as in [10] were also consistent with linear analysis.

4.3. Microscales

Fig. 3 shows the evolution of the Taylor microscales,and the transverse density microscajeobtained in
the present DNS. These length scales are defined as
(P12

(p/2)1/2
(no summation convention is used #r and 1, =

N=—t _—
((9u]/9x;)2) /2 ((8p'/0x2)2)1/?
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Fig. 3. Evolution of microscales by our DNS faf; = 2.0 (Case I). Curve 0 stands fap,, Curvesi =1, 2, 3 for 1;.

The evolution of those microscales obtained by the DNS of Lee et al. are shown in Fig. 9(a) of [10]. Both DNS
reveal a decrease of the four microscales consideredmereover they both show the decrease of the streamwise
Taylor microscale to be greater than that of the trang/€aglor microscales. Those features are also explained by
a linear analysis performed in [10] by Lee et al.

5. Conclusions and recommendations

Shock-turbulence interaction was studied using a high-order upwind scheme together with a shock fitting
method. Agreement is observed between the results of the present DNS and those of other simulations as well
as the conclusions of linear analysis. Nevertheless, more simulations need to be performed to further validate the
results and to assess the use of these methods within the scope of shock-turbulence interaction. Moreover, this
work considered the interaction of a shock with a ‘frozen’ periodic isotropic turbulence convected through the
shock. Thus, acoustical waves, moving with different speeds are not represented properly. To avoid this, future
DNS should calculate both upstream and downstream flowlsmeously (but still on two different grids). Doing
so, the temporal evolution of the upstream turbulence would be taken into account, which is desirable for comput-
ing acoustic fluctuations accurately. In order to keep teamenergy of the upstream flow constant, a forcing term
should be added to the Navier—Stokgsations. Shock-fitting bases on the hypedis that the typical length scales
of the simulated flow have to be much greater than the shock thickiyeShe present work shows that 55,
seems to be sufficient for the successful use of shock-fitting by simulations of shock-turbulence interaction. The
effect of the ratio of turbulent length scales to shock thickness on the results of the DNS should be investigated
more accurately to find where practical ltmare situated. Lee et al. predict awgation of the amplification rate of
turbulent kinetic energy fod1 beyond 3.0 (see [10]). As this prediction is only based on linear analysis, it should
be verified through DNS for several valuesMf beyond 3.0. This should be easier to realize with shock-fitting
than with shock-capturing. The reason for that is clear, shock-capturing needs a finer resolution as the shock thick-
ness decreases with growing shock strength. On the contrary, shock-fitting considers the shock as a discontinuity
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and is therefore particularly appropriate for DNS of strong shocks. This last point illustrates the biggest advantage
of using shock-fitting while studying the interaction of turbulence with a shock.

Considering LES, the finest resolved scales are always (by construction) of the same size as the apparent shock
thickness. What this means for the aay of the shock-turbulence intation is not clear yet. The favourable
comparison of the present computations with a shock-capturing scheme indicates that the Reynolds-stresses will
be computed accurately away from the shock. The computation of noise emitted from the shock might be affected
more strongly by this coincidence of the lengthscales than the other methods.
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