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Abstract

The interaction of three-dimensional isotropic turbulence with a plane shock at Mach numbers ofM = 2.0 andM = 3.0 is
investigated via direct numerical simulation. The numerical scheme is based on a characteristic-type formulation of the Nav
Stokes equations and uses fifth-order upwind schemes in space, a fourth order Runge Kutta scheme in time and a shock-fi
as inlet condition. The isotropic turbulence was generated in a separate computation based on a prescribed energy
This turbulent flow is considered as frozen, and is convected through the shock with a prescribed average shock spee
interpolation is used to obtain the upstream values at the instantaneous shock location. Turbulence enhancement is obse
and the evolution of velocity fluctuations as well as turbulence microscales are in good agreement with the behaviour
using shock-capturing.To cite this article: J. Sesterhenn et al., C. R. Mecanique 333 (2005).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

The interaction of turbulence with a shock wave is of great practical importance in many fields of engin
The knowledge of the physics of this process is crucial for future development of hypersonic aircrafts, sup
combustion, prediction of sound emission and more. Velocity fluctuations and length scales of the turbul
are substantially changed due to the shock.

Kovasznay [1] showed that, to first order, acoustic-, vortical- and entropy-fluctuations are decoupled in tu
flows. One main feature of shock-turbulence interaction is the strong coupling of these modes.

Several approaches to compute the interaction of turbulence and shock waves exist. Besides linea
tion analysis [2] and rapid distortion theory [3], three different numerical approaches exist: (i) direct numerica
simulation (DNS) which implies integration of the Navier–Stokes equations through the shock without
assumptions; (ii) shock-fitting which essentially means neglecting the shock-thickness and applying the R

E-mail address:Joern.Sesterhenn@lrz.tum.de (J. Sesterhenn).
1631-0721/$ – see front matter 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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Hugoniot relations; and lastly (iii) filtering the equations. This can be achieved by use of a shock-capturing sche
or explicit filtering of the equations. From the viewpoint of the turbulent field, a DNS, a large eddy simu
(LES) or a Reynolds averaged (RANS) computation may be envisaged, all of which give different results [

In the present article a DNS of the turbulent flow field in conjunction with a shock-fitting method is emp
and compared with other approaches. It is planned to perform full DNS and LES computations as wel
future, to investigate the differences between these approaches.

2. Governing equations

The numerical code is based on a reformulation of the three-dimensional Navier–Stokes equations which
presses the inviscid part of the equations as a decomposition into acoustic and convective waves, aligned
numerical grid.
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A complete description of this method is given by Sesterhenn [5].(p,u, v,w, s) signify pressure, contravariant v
locities and entropy.X±, Y± andZ± represent acoustic waves travelling normally to constant coordinate su
ξ1, ξ2 andξ3, respectively.Xv , Xw, Yu, etc. describe the transport of vorticity along the appropriate direct
Xs , Y s , Zs model the convective transport of entropy waves. Thus, the decomposition may be viewed as a
wave decomposition in computational space. The derivatives are approximated using a compact upwind s
fifth order [6].
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To this Euler part of the Navier–Stokes equations the viscous and heat-conduction terms are added.	 is the
viscous dissipation rateτij

∂ui

∂xj
. Dissipative terms are discretized using a sixth order central scheme similar

glm is the metric tensor, defined byglm = ξ l
,i ξ

m
,i .

3. Boundary conditions

The computational domain consists in the subsonic flow downstream of the shock which coincides with t
boundary of the domain. The east boundary is prescribed as a nonreflecting outlet, north, south front and
treated periodically. The physical domain is time dependent and the grid distorts with the movement of th
boundary. In this work, we consider the case of a decaying isotropic turbulent flow, which is periodic in all thre
space directions as it moves through a shock. Since the flow is supersonic it is not aware of the shock an
computed in a separate DNS.

Thus, we have a supersonic inlet boundary condition beyond the shock boundary. This condition consists
imposing the values of the time derivatives of pressure, velocity components and entropy at the boundary accor
to the isotropic field. Together with one characteristic entering the shock from the high pressure side, thos
determine the time derivatives at the downstream side. They are calculated from the corresponding upstrea
using the Rankine–Hugoniot conditions [8]. With this method, the shock is considered as a discontinuity. This
acceptable as long as the length scales of the flowη ≈ (ν3/ε)1/4 up- and downstream of the shock are much big
than the shock thicknessδu. As long as this condition is satisfied, the resolution of the grid is determined b
smallest turbulent length scales of the flow only and not by the shock thickness.

Given an isotropic turbulent flow field, the turbulence will decay since a forcing is absent. On the other h
a statistically stationary turbulent flow behind a mesh is known to be approximately homogeneous in planes
pendicular to the flow direction. To avoid computing a spatially decaying, but locally stationary turbulent flow, w
compute an isotropic flow and consider an instantaneous field at a certain time and simulate the nonvanish
flow of our model by translating the field with a constant speeds.

In order to impose the supersonic inlet boundary condition on the moving shock, the upstream values of
time derivatives

d

dt
= ∂

∂t
+ Ui

∂

∂xi

of pressure, velocity and entropy at any grid point of the shock are needed.Ui = {us − s, vs,ws} are the Cartesia
components of the local shock velocity in a reference frame moving with the average shock-speed, identifies.

In this case, the values of the time derivatives of pressure, velocity and entropy just before the shock a
by convective terms only:

d

dt
= (us − s)

∂

∂x
+ vs

∂

∂y
+ ws

∂

∂z
(2)

The three-dimensional isotropic turbulent flow used to calculate the flow variables upstream of the sho
sists in a periodic arrangement of a ‘turbulent box’. Initially it has a kinetic energy spectrum of the form

E(k) ∝ u2
0/k0(k/k0)

4 exp(−2k2/k2
0)

wherek0 is the peak wavenumber andu0 the initial rms-value of the velocity fluctuation in any direction. The sa
spectrum was used in [9] and [10] by Lee et al. as well as in [11] and [12] by Hannappel and Friedrich
DNS of the interaction of isotropic turbulence with a shock. The choice of this spectrum is justified by its
representation of low-Reynolds-number turbulence.

Subsequently, the flow is allowed to evolve until the artificial initial field has relaxed to a physically reasonab
flow field. This is checked by the skewness beingS ≈ −0.4.
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Once we have the turbulent upstream flow at our disposal, the problem is that we only know the pre
velocities and entropies at a discrete set of points of the‘turbulent box’. As we convect this field through the sho
the points representing the shock surface are to be found between grid points. So we need interpolations
the physical values at the desired points, that is on those situated on the shock, on the upstream side o
we use an interpolation based on a Fourier transform and a phase shift corresponding to the local shock
of the physical values of the ‘turbulent box’. This is relatively cheap since the shock curvature remains sm
a one-dimensional interpolation in thex-direction suffices. At the same time the method is accurate. Howeve
would like to add that other interpolation methods would work as well and are in fact necessary if the inco
flow is not periodic.

A drawback of the present method is the fact that all quantities are convected with the shock speed
in reality different wave speeds are present on the upstream side. A simple, but costly remedy is to pe
simultaneous DNS for the upstream side. To prevent the decay of the turbulence a forcing might be added
planned for future investigations.

4. Results

For the two simulations presented in this article we have used the parameter values upstream of the sh
in Table 1.

The isotropic turbulence was generated, as described above with 963 grid points.M1 is the upstream value o
the Mach Number,Mt = uo/c the turbulent Mach Number,η1 the upstream value of the Kolmogorov length sc
andReλ = ρu0λ/µ a Reynolds number based on the Taylor microscale,λ, relative to a component of the veloci
fluctuation. The bar denotes an ensemble average. In order to be allowed to apply shock-fitting, we have t
that the shock-thickness (δu) is much smaller than the length scales of the flow upstream and downstream.
calculated the shock thicknesses in both cases and compared them to the corresponding Kolmogorov len
directly downstream of the shock,η2, which we obtained, a posteriori, from the DNS (Table 2).

To estimate the velocity-gradient thickness we may useδu ≈ ν
c

6.89
M−1 [13] which is valid for weak shocks. As w

can see in both cases,η2 is clearly greater (alas not much greater) than the shock thickness. Thus, shock-fi
applicable and in any case better than a shock capturing since the shock thickness would artificially increase in t
case.

The Kolmogorov length scale immediately downstream of the shock is the smallest of all turbulent length
of the problem, so that the shock thickness is much smaller than almost all turbulent length scales.

To arrive at an expression for the behaviour ofη/δu, we estimate further the Kolmogorov scale of the isotro
turbulence by usingε ≈ 15νu2

rms/λ
2[14]. Rearrangingη/δu we get

Table 1
Parameter values upstream of the shock

Case M1 Mt Reλ k0 η1

I 2.0 0.0352 3.39 45 000 1.0E–5
II 3.0 0.0352 3.39 45 000 1.0E–5

Table 2
Kolmogorov length scales downstream of the shock

Case δu η2 η2/δu

I 1E–6 5.11E–6 ≈5
II 7E–7 4.32E–6 ≈6



J. Sesterhenn et al. / C. R. Mecanique 333 (2005) 87–94 91

ing

to
rk, we

ber of

e

e entire

uc-
dly
e
by Ribner
an
s

η

δu

≈ (ν3/ε)1/4

(ν/c)(6.89/(M1 − 1))
≈ 1

8

M1 − 1

Mt

√
Reλ (3)

Thus for largerReλ the ratio gets more favourable, since the shock thickness reduces more rapidly when reduc
ν thanη does.

The downstream side of the shock was computed with 963 grid points as well, but the grid was stretched
cluster points in the vicinity of the shock. To compute the average values plotted in the figures of this wo
first calculated average values on planes parallel to the shock and situated at different distancesx away from the
shock. Those planes contained 962 points in each case. Then we averaged those values in time, the num
instantaneous values used for this purpose was 153 for case I, and 143 for case II.

4.1. Evolution of velocity fluctuations

Fig. 1 shows the evolution of the diagonal components of the Reynolds stress tensor,Rij = ũ′′
i u

′′
j , in both our

simulations.u′′
i is the fluctuation ofui with respect to its averagẽui = ρui/ρ, introduced by Favre in [15]. Not

that the graphs in this article show dimensionless quantities as they are scaled using the valuesu0 andk0 of the
simulation that is referred to. The off-diagonal components (not represented) stay closely to zero over th
flow since turbulence is isotropic upstream and then axisymmetric downstream of the shock.

As a consequence of axisymmetry, we found the profiles of both transverse velocity fluctuations,ũ′′2
2 /u2

0 and

ũ′′2
3 /u2

0, to coincide. Thus, we plotted only one of them in eachcase. Directly after the shock, the streamwise fl
tuation is reduced whereas the transverse fluctuations are amplified. Then the velocity fluctuations evolve rapi
just downstream of the shock, within a distance of the same order of magnitude ask−1

0 . This phenomenon is du
to the evanescent acoustic waves that are produced by the shock-turbulence interaction, as predicted
through linear analysis in [2].The rapid evolution consists in a decay of the transverse velocity fluctuations and
increase of the streamwise fluctuation. After that, all the velocity fluctuations decay monotonically due to viscou

Fig. 1. Evolution of the normal components of the Reynoldsstress: Curve 1 stands for the streamwise component (˜
u′′2

1 /u2
0) at M1 = 2.0,

Curve 2 for a transverse component (˜
u′′2

2 /u2
0) at M1 = 2.0, Curve 3 for ˜

u′′2
1 /u2

0 atM1 = 3.0, Curve 4 for ˜
u′′2

2 /u2
0 atM1 = 3.0.
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Fig. 2. Evolution of the vorticity fluctuations forM1 = 2.0 (Case I). Curve 1 stands for the streamwise fluctuation, Curves 2 and 3 f
transverse fluctuations. For a given simulation, the correspondingreference vorticityω0 is the upstream RMS-value of the vorticity fluctuatio
in any direction.

dissipation. This effect is dominant far from the shock, and the return to isotropy is negligible comparin
The same behaviour of the turbulent velocity components was observed by Lee et al. [10], using shock-ca
and the comparison of Fig. 1 with Fig. 3(a) of [10] confirms the good agreement of both DNS, even if the

performed with different values ofReλ. The quoted results as well as measurements show a high peak of̃u′′2
1 /u2

0
within the shock zone, which is not present in our computation. This peak is mainly due to the oscilla
the shock relative to a fixed point in space where the measurements are taken [9]. In our case the measurem
(numerical or experimental) are taken in a location which is fixed with respect to the shock and always loca
downstream of it.

4.2. Vorticity fluctuations

In quasi-incompressible fluctuating flows like those considered in this paper and in [10], vorticity fluctuatio
are clearly the main contributor to the dissipation rate of the turbulent kinetic energy. Fig. 2 shows the evol
the components of vorticity fluctuations. We can see that, directly downstream of the shock, transverse com
are amplified and the streamwise component is hardly affected. The amplification ratio of approximately 6
transverse components observed in Fig. 2 (as well as in Fig. 5(a) in [10]) agrees with the predictions of th
analysis forM1 = 2.0 (see Fig. 5(b) from [10] for the latter). Amplification ratios found for other values ofM1 in
this work, as well as in [10] were also consistent with linear analysis.

4.3. Microscales

Fig. 3 shows the evolution of the Taylor microscales,λi , and the transverse density microscaleλρ obtained in
the present DNS. These length scales are defined as

λi = (u′2
i )1/2

((∂u′
i/∂xi)2)1/2

(no summation convention is used fori) and λρ = (ρ′2)1/2

((∂ρ′/∂x2)2)1/2
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Fig. 3. Evolution of microscales by our DNS forM1 = 2.0 (Case I). Curve 0 stands forλρ , Curvesi = 1,2,3 for λi .

The evolution of those microscales obtained by the DNS of Lee et al. are shown in Fig. 9(a) of [10]. Bot
reveal a decrease of the four microscales considered here; moreover they both show the decrease of the stream
Taylor microscale to be greater than that of the transverse Taylor microscales. Those features are also explaine
a linear analysis performed in [10] by Lee et al.

5. Conclusions and recommendations

Shock-turbulence interaction was studied using a high-order upwind scheme together with a shoc
method. Agreement is observed between the results of the present DNS and those of other simulation
as the conclusions of linear analysis. Nevertheless, more simulations need to be performed to further va
results and to assess the use of these methods within the scope of shock-turbulence interaction. More
work considered the interaction of a shock with a ‘frozen’ periodic isotropic turbulence convected throu
shock. Thus, acoustical waves, moving with different speeds are not represented properly. To avoid thi
DNS should calculate both upstream and downstream flow simultaneously (but still on two different grids). Doin
so, the temporal evolution of the upstream turbulence would be taken into account, which is desirable for
ing acoustic fluctuations accurately. In order to keep the mean energy of the upstream flow constant, a forcing t
should be added to the Navier–Stokes equations. Shock-fitting bases on the hypothesis that the typical length scal
of the simulated flow have to be much greater than the shock thickness,δu. The present work shows thatη ≈ 5δu

seems to be sufficient for the successful use of shock-fitting by simulations of shock-turbulence interacti
effect of the ratio of turbulent length scales to shock thickness on the results of the DNS should be inve
more accurately to find where practical limits are situated. Lee et al. predict a saturation of the amplification rate o
turbulent kinetic energy forM1 beyond 3.0 (see [10]). As this prediction is only based on linear analysis, it s
be verified through DNS for several values ofM1 beyond 3.0. This should be easier to realize with shock-fit
than with shock-capturing. The reason for that is clear, shock-capturing needs a finer resolution as the sho
ness decreases with growing shock strength. On the contrary, shock-fitting considers the shock as a disc
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and is therefore particularly appropriate for DNS of strong shocks. This last point illustrates the biggest ad
of using shock-fitting while studying the interaction of turbulence with a shock.

Considering LES, the finest resolved scales are always (by construction) of the same size as the appar
thickness. What this means for the accuracy of the shock-turbulence interaction is not clear yet. The favourab
comparison of the present computations with a shock-capturing scheme indicates that the Reynolds-stre
be computed accurately away from the shock. The computation of noise emitted from the shock might be
more strongly by this coincidence of the lengthscales than the other methods.
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