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Abstract

This article presents the high-order algorithms that we have developed for large-eddy simulation of incompressib
and the results that have been obtained for the 3D turbulent wake of a cylinder at a Reynolds number ofRe= 3900.To cite this
article: R. Pasquetti, C. R. Mecanique 333 (2005).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Simulation des grandes échelles d’écoulements incompressibles turbulents par méthode d’ordre élevé. L’article pré-
sente les algorithmes d’ordre élevé que nous avons développés pour la simulation des grandes échelles d’écouleme
pressibles ainsi que les résultatsobtenus pour le sillage 3D turbulent d’un cylindre à un nombre de Reynolds deRe= 3900.
Pour citer cet article : R. Pasquetti, C. R. Mecanique 333 (2005).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

Despite the amazing increase of the computer capacities and the efforts made to elaborate a complete
turbulence, the direct numerical simulation (DNS) and the statistical approaches, based on the Reynolds
Navier–Stokes (RANS) equations, do not yet permit satisfactory computations of turbulent complex flows. B
DNS and RANS stands the large-eddy simulation (LES) approach, based on the idea of computing only t
eddies of the flow and to restrict the modeling to the smaller ones. This approach remains, and will probably
some time, adequate to compute turbulent flows. However, in order to clearly discern the numerical approximat
errors and the sub-grid-scale (SGS) modeling, using high-order methods is from our point of view a fund
requirement, especially to deal with some detailed studies of fluid dynamics.
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1631-0721/$ – see front matter 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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To compute 3D wakes in channel-like geometries with a homogeneous spanwise direction, we use
domain Chebyshev–Fourier spectral approximation in space and a second order semi-Lagrangian p
method in time. The SGS model makes use of the so-called approximate deconvolution method (ADM
which may be viewed as an extension of the scale similarity model [3]. In the framework of our numerical s
but in the same spirit, we introduced in [4] the Defiltering–Transport–Filtering (DTF) algorithms. SGS model
based on scale similarity are known to be better on a priori tests than those based on an eddy-viscosity,
the Smagorinsky model (see e.g. [5]), possibly associated with the dynamic modeling [6]. However, they
known to yield numerical instabilities, which may be overcome by combining in more or less empirical
the scale similarity and eddy-viscosity concepts [7]. The approach that we propose is to use the DTF m
combined with the spectral vanishing viscosity (SVV) method to stabilize the calculations. The SVV method, fir
developed to solve non-linear hyperbolic equations, typically the Bürgers equation, with the Fourier [8] or Lege
dre [9] spectral method, indeed shows the property to preserve the spectralaccuracy of the approximation. Thu
the convergence of the numerical approximation toward the exact solution remains exponential, even, of c
the convergence rate is worse with a SVV term than without. Note that the present approach should not be
with those making use of a spectral viscosity, on the grounds of homogeneous and isotropic turbulence the

After the description, in Section 2, of the high-order scheme and of the associated LES modeling of tu
inhomogeneous flows we present, in Section 3, the results that we have obtained for a classical bench
turbulent wake of a cylinder, Reynolds numberRe= 3900. We compare especially results obtained when u
DTF, for the SGS modeling, stabilized with SVV with the no-SGS model approach making only use of SV
discuss these results in Section 4 and finally conclude in Section 5.

2. The spectral LES model

Along the streamwise direction we use a domain decomposition technique to efficiently handle the elonga
geometries typically encounteredwhen studying wake type flows. In each subdomain we use spectrally ac
approximations, based on Chebyshev polynomials in thex-streamwise andy-cross-flow directions and on Fouri
series in thez-spanwise homogeneous direction. The time-schememakes use of 3 steps: a transport step to ha
the convective term, a diffusion term to handle the viscous term, and a projection step to finally obtain a dive
free velocity field. The LES modeling, i.e. the DTF algorithm, is implemented in the transport step and th
stabilization technique in the diffusion step.

To model the bluff body, inside the channel, we use a smoothed penalty technique. Essentially, the smooth
is realized through a filtering of its characteristic function, as in [11], but now we use for the filtering an imp
version of the ‘raised cosine filter’ in order to more precisely take into account the position of the bluff body. S
a modeling implies that spectral accuracy is lost, at least locally. Here we assume that the phenomenon rem
local and thus does not drastically affect the flow, especially the far wake.

The equations that we have to solve are then the filtered Navier–Stokes equations with a body force
model the bluff body. Denoting, as it is usual (see e.g. [5]), with an over bar the filtered quantities we assume
the large scales of the (incompressible) flow are governed by the dimensionless equations:

Dtu = −∇p̄ + 1

Re
∇2ū + f̄ (1)

∇ · ū = 0 (2)

with Dt the material derivative andt the time,u the velocity field,p the pressure,f a force term andRe the
Reynolds number.

Let us now describe briefly the different steps of the algorithm, together with the implementation of th
modeling (more details may be found in [12]). For the sake ofsimplicity in the notationsbut also to clearly outline
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that the diffusion and projection steps are similar to those of the DNS implementation, we omit the over
their descriptions.

2.1. Transport step and DTF algorithm

The approximation of the material derivative with a BEQ (backward Euler of orderQ) scheme yields, withαq ,
q = 0, . . . ,Q a set of given coefficients:

Dtu(tn+1) = 1

�t

(
α0u

n+1 +
q=Q∑
q=1

αq ũn+1−q

)
+ O

(
�tQ

)

with un+1 ≈ u(x, tn+1) andũn+1−q ≈ u(χ(x, tn+1; tn+1−q), tn+1−q), whereχ(x, tn+1; t) solves the characteris
tics equation stemming from(x, tn+1). To compute thẽun+1−q , the natural approach is then to determine for e
mesh-pointxk the value of the velocityu at the times{tn, tn−1, . . . , tn+1−Q} and at the pointsχ(xk, tn+1; tn+1−q),
q = 1, . . . ,Q. However, the ‘method of characteristics’ cannot be used in the framework of standard s
methods because high-order interpolations would be tooexpensive and, moreover, would yield numerical
stabilities. To overcome this difficulty we use an ‘Operator Integration Factor’ (OIF) semi-Lagrangian m
[13–15]. The basic idea is here to transport theun+1−q(χ(xk, tn+1; tn+1−q)) at the mesh points, so that inte
polations/extrapolations are only needed in time. This requires to solve, with in our case the RK4 (fourt
Runge–Kutta) scheme and possibly sub-time cycling, a set ofQ problems involving an advection equation.

Applying now the filtering operator we get:

Dtu ≈ 1

�t

(
α0ū

n+1 +
q=Q∑
q=1

αq
¯̃un+1−q

)

Then the closure problem consists in determining the¯̃un+1−q from theūn+1−q . To do that, we use an ADM typ
approach, i.e. we introduce an approximate inverse of the filtering operator. The algorithm proposed in [4
be written:

¯̃un+1−q = (
1+ G(T − 1)G+)

ūn+1−q

whereG denotes the filtering operator,G+ the approximate inverse ofG andT (u) the transport operator such th
ũn+1−q = T un+1−q . Let us remark that the straightforward approach,¯̃un+1−q = GT G+ūn+1−q , yields a non-
consistent algorithm. Indeed, in the limit�t = 0, for whichT = 1, we haveGG+ �= 1. The choice of the operato
G andG+ is, of course, crucial. In the framework of a Fourier–Chebyshev spectral method, it of interest to
the filtering operations in Fourier space, where the convolution products return to being simple products. In fa
we use forG andG+ quadratic approximations of the Gaussian filter and of its inverse, as shown in Fig.
in order to avoid the meaningless negative values of theG-spectrum, we cancel them in the higher wave-num
range (G′-spectrum).

2.2. Diffusion step and SVV stabilization

In the diffusion step one computes a provisional velocity such that:(
1

Re
∇2 + S − α0

�t

)
u∗ = sn+1 in Ω (3)

+B.C., e.g. u∗|Γ = un+1|Γ = uΓ (4)
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Fig. 1. Spectra of the Gaussian filter and of its approximationsG andG′. The (non-plotted) spectrum ofG+ is symmetric to that ofG.

whereS is the SVV stabilization operator and where:

sn+1 = 1

�t

q=Q∑
q=1

αq ũn+1−q + ∇p∗ − f n+1

with p∗ a provisional pressure. In the framework of a second order implementation:Q = 2 andp∗ = pn (the ‘Goda
scheme’ [16]).

Our definition of the SVV operatorS relies on that introduced in [9] for the resolution, in the interval(−1,1),
of 1D hyperbolic equations by using the spectral Legendre method. In this case, withN for the degree of the
polynomial approximation, we have:

Su := εN∂xQ(∂xu)

whereQ is the operator such that, withLk the Legendre polynomial of degreek:

Qφ ≡
N∑

k=0

Q̂kφ̂kLk, ∀φ, φ =
N∑

k=0

φ̂kLk

with εN = O(N−1), Q̂k = 0 if k � mN and 1� Q̂k > 0 if k > mN . Typical choices formN aremN = O(
√

N ) [9]
or mN = N/2 [17]. FormN < k � N the numerical experiments show that a smooth variation forQ̂k yields better
results. Thus, as in [9] we will use:

Q̂k = exp

(
−

(
N − k

mN − k

)2)
, k > mN

In our multidimensional framework, such a SVV term may be extended in:

Su∗
i := εN∇ · Q(∇u∗

i )

with u∗
i any component ofu∗ and whereQ applies independently to each component of∇u∗

i . Let us remark
that such an extension of the initial 1D definition may be discussed, especially when complex geome
considered [18]. Let us also mention that withL a characteristic dimensionless length of the computational do
(subdomain in our case) then, from scaling arguments,εN = O(L/(2N)).
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2.3. Projection step

To derive fromu∗ a divergence-free velocity fieldu, we solve theDarcy problem:

un+1 + ∇ϕ = u∗ in Ω

∇ · un+1 = 0 in Ω

un+1 · n|Γ = uΓ · n
and then update the pressure fieldpn+1 = pn + α0ϕ/�t .

Solving the above Darcy problem is not straightforward. Following [19,20] we use aunique gridPN − PN−2
strategy. Essentially, this means that the polynomial spaces of the pressure and of the velocity components
chosen different, so that no boundary conditions are required for the pressure which is completely defined
its values at the inner grid-points. Thus, in the monodomain case, the polynomial interpolant of the press
degrees less than for the velocity components in the non-homogeneousdirections. Some details on the multidomain
case are given in [12].

3. Turbulent wake of a cylinder (Re = 3900)

As e.g. in [21] we are interested in the computation of the turbulent wake of a cylinder at a Reynolds n
(based on the diameter and on the mean flow velocity) ofRe= 3900. Moreover, the Navier–Stokes equatio
are solved together with a transport–diffusion equation forthe temperature, without coupling, i.e. the tempera
essentially behaves as a passive scalar.

With x, y, z for the longitudinal, cross-flow and spanwise directions, respectively, the computational dom
Ω = (−6.5,17.5)× (−4,4) × (−2,2), and the cylinder is of unit diameter with axis atx = y = 0.

The initial and boundary conditions are,in dimensionless form: (i) att = 0, fluid at rest (u(t = 0) = 0) and
thermally stratified (T (t = 0) = y) and (ii) Dirichlet conditions at the inlet (u(x = −6.5) = 1, T (x = 0) = y),
free-slip conditions foru and adiabaticity conditions forT at the horizontal boundaries (y = ±4), soft outflow
boundary conditions (see [11]) at the outlet (x = 17.5).

The calculations have been carried out with the following spatial approximation: number of subdom
x-directionS = 5, Chebyshev polynomial degree inx and y, N1 = 60 andN2 = 120 respectively, number o
Fourier-grid points inz, NF = 60. We have used a time-step�t = 5 × 10−3 without sub-cycling in the transpo
step. For the SVV parameters we choseεN = 1/N andmN = √

N .
Visualizations at a given time of the 3D flow computed with the SVV method are shown in Fig. 2. At le

isothermsT = ±1.5 are visualized and at right it is theQ criterion (see e.g. [22]). The streamwise and spanw

Fig. 2. Isotherms (left) andQ criterion (right) with SVV.
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Fig. 3. Streamwise (left) and spanwise(right) components of the vorticity with SVV.

Fig. 4.T (t) for DTF and SVV;P = (12.54,3.34,1.66) (left), P = (16.46,3.34,1.66) (right).

components of the vorticity, as computed with the SVV method, are shown in Fig. 3. Quite similar results
tained when using the DTF algorithm associated to the SVV method for stabilization (see [12] for such qua
comparisons).

In Fig. 4 the time variations of the temperature at two ‘boundary points’ of the wake, as computed w
SVV and DTF algorithms, are presented. Large departure of the temperature may be observed, corresp
the crossing of some larger eddies at these specific points. Hereafter we present more quantitative resul
we examine mean velocity profiles and secondly the power spectra obtained from the evolution of the
components at some particular points of the flow. The results are given for computations made with th
stabilization technique, with the DTF-SVV algorithm and also with the SVV method when adding some n
the inlet (‘SVV + noise’). To this end, a white noise of amplitude 0.005 is added to they andz components of the
inflow velocity. Our goal is both to check the validity of our calculations and to provide detailed comparis
the SVV, DTF-SVV and SVV + noise results.

3.1. Mean profiles

The mean profiles have been computed from timet = 75, at which the turbulent flow may be considered
established, to timet = 150, i.e. on a time interval corresponding approximately to 15 shedding periods. Fig.
shows the variation of the velocity mean streamwise component along thex-axis. The right part of the figure give
a zoom of the recirculation zone. First it should be mentioned that this recirculation zone appears longer than
observed in the experiments, or in other computations [21,23]. From our point of view, this may directly resu
from the fact that the height of our computational domain only equals 8, which is not enough to make comp
with results obtained in an open (or quasi-open) domain. However, one remarks from [21,23] that higher or
methods seem to yield a longer recirculation zone. Secondly,one observes that the discrepancies between our
computations, SVV, DTF-SVV and SVV + noise are not important. Thus, the DTF result lies approxima
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Fig. 5.〈ūx 〉(x), alongy = z = 0 (DTF, SVV and SVV + n).

Fig. 6.〈ūx 〉(y) (top) and〈T 〉(y) (bottom) forx = 1 andx = 7.36 (z = 0) (DTF, SVV and SVV + n).

between those of SVV and SVV + noise. Mean streamwise velocity profiles are shown in Fig. 6. The left
located in the recirculation zone, and the right one downflow. Zooms of the corresponding temperature pro



46 R. Pasquetti / C. R. Mecanique 333 (2005) 39–49

close to
sult from

city
ity
sentative

w
VV and

ted and
edding
havior
e clearly
ltering
Fig. 7.ux(t) (left), uy(t) (right) and corresponding spectra for DTF and SVV;P = (12.54,0,0).

also shown in Fig. 6. Here again one observes that the three computations yield similar results, especially
the cylinder. Downflow, one may assume that the small discrepancies that can be observed essentially re
a not enough long averaging time, as pointed out by some lack of symmetry of the profiles.

3.2. Power spectra

In order to go into the details of the LES modeling, onehas to analyze the frequency content of the velo
field. For inhomogeneous flows, it is convenient to proceedas in experiments, from time evolutions of the veloc
components at different points. Through the Taylor hypothesis one can then produce power spectra repre
of the distribution of the turbulent kinetic energy in wavenumber space, and then compare it to the Kolmogorov la
describing the inertial range. This gives again a way to compare the results obtained with the SVV, DTF-S
SVV + noise computations. In Fig. 7 are compared the time variations at a given point of thex- andy-components
of the velocity, computed with SVV and DTF-SVV. The corresponding power spectra are also presen
compared with thek−5/3 slope of the Kolmogorov theory. Essentially one observes that the dimensionless sh
frequency (the Strouhal number) approximately equals 0.2 and that the power spectra show the expected be
in one part of the spectrum, before decreasing faster in a numerical dissipation frequency range. Also, on
observes that this dissipation range is slightly larger for the DTF-SVV than for the SVV computations. The fi
part of the DTF algorithm is certainly responsible for this behavior.
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Fig. 8. Top:ux (left) anduy (right) power spectra for SVV and SVV + noise;P = (12.54,0,0); Bottom:uz power spectra for SVV and DTF
(left) and for SVV and SVV + noise (right);P = (12.54,0,0).

Power spectra obtained for SVV and SVV + noise are plotted in Fig. 8. This figure also shows the power
obtained for thez-component of the velocity, using SVV, SVV-DTF and SVV + noise. One observes similar re
for this component of the velocity, except maybe that the inertial range appears to be slightly smaller.

4. Comments

The striking point of the present study is that the no-model approach, making use only of the stabi
technique, and the ADM type DTF modeling have yielded very similar results. This may be due to the
of the SVV tuning parameters,εN andmN . In particular, the SVV activation parametermN was chosen sma
(mN = √

N ). It remains that the no-model approach has yielded satisfactory results, especially when loo
the power-spectra. Moreover, in the high frequency range, the no-model approach appears better than the DTF

Nevertheless, it is expected that taking into account the sub-grid scale contributions to the flow, impro
LES modeling. In the framework of ADM approaches, the choice of the filtering and defiltering operator
be important. In particular, our conviction is that the ADM can only result in some non-controlled noise f
SGS model contribution if it is not associated with a two-level grid approach, (see e.g. [24]). Thus, for th
algorithm, one may think, if necessary, to represent the defiltered quantities on a finer grid than the filtere
In this spirit, using the filterG′ (see Fig. 1), whose spectrum vanishes beyond a critical wavenumber, saykc, is,
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from our point of view, fully justified. Using such a filter is clearly close to using a two-level grid technique,
the advantage of the higher flexibility offered by the factof working in spectral space than working in physic
space. Thus, for fully periodic problems, the filteredquantities would not show spatial frequencies beyondkc, and
it is only during the transport step, in which the non-linear convective term is taken into account, that the
frequency range would be used to handle the defiltered quantities. In the framework of a two-level grid ap
the high wave-number range should be disregarded, since we are only interested in the computation of th
quantities. As a result, the fact that with the DTF method the power spectra are slightly worse in the high fre
range than with the no-model approach should also be disregarded. However, it remains that our present
the filtering and defiltering operators can certainly be improved.

Our LES modeling is fully explicit, in the sense that the filtering (and defiltering) operation is explicitly ap
To this end, we work in spectral space, both for the Fourier and for the Chebyshev approximations. In case
the Chebyshev approximation this corresponds to apply a filter of constant width to the 2π -periodic function
u(−cos(z)), z ∈ R, i.e. to first map the Gauss–Lobatto–Chebyshev grid to a regular grid and then to ext
first by symmetry and then by periodicity. This procedure is close to that suggested in [25], where the fi
operation, in case of non-equidistant grid-points, is defined by a mapping from the computational domain to
real axis. Moreover, such a procedure may be extended to meshes different from the Chebyshev–Gaus
mesh, as soon as there exists a smooth, even and 2π -periodic mapping to similarly associate a Fourier type grid
the computational grid (1D case).

5. Conclusions

Two variants of a high-order LES model have been described and then compared, by computing the w
cylinder at Reynolds numberRe= 3900. The first makes only use of the SVVstabilization technique, which show
the essential property to preserve the exponential convergence of the spectral approximation. This approa
classified as a no-model approach, in the sense that modeling the SGS tensor is not attempted. On the o
the second combines an ADM type approach (the DTF algorithm in the frame of our semi-Lagrangian meth
the SVV stabilization technique. Both quantitatively and quantitatively, satisfactory and very similar resul
been obtained. The power spectra, especially, show a behavior in agreement with Kolmogov theory ove
wavenumber range.
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