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Abstract

A finite volume scheme, which is based on fourth order accurate central differences in spatial directions and on
explicit/semi-implicit time stepping scheme, was developed to solve the incompressible Navier–Stokes and energy
on cylindrical staggered grids. This includes a new fourth order accurate discretization of the velocity and temperatu
at the singularity of the cylindrical coordinate system and anew stability condition [J. Appl. Numer. Anal. Comput. Math
1 (2004) 315–326]. The method was applied in direct numerical simulations of turbulent Rayleigh–Bénard convec
different Rayleigh numbersRa= 10γ , γ = 5, . . . ,8, in wide cylinders with the aspect ratiosa ≡ H/R = 0.2 anda = 0.4 (where
R denotes the radius andH – the height of the cylinder).To cite this article: O. Shishkina, C. Wagner, C. R. Mecanique 333
(2005).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

Rayleigh–Bénard convection develops in fluid layers confined by two horizontal plates if the temperat
ference between the lower heated and the upper cooled plate is high enough. The relevant dimensionles
Ra= gαH 3�T/κν, whereg denotes the gravitational acceleration,α the thermal expansion coefficient,�T the
temperature difference,κ the thermal diffusivity andν the kinematic viscosity, is the Rayleigh number. Consid
ing a specific fluid, the Rayleigh numbercan be increased if either the distanceH between the two plates or the
temperature difference�T is increased. Since Heslot [1], who performed an experiment in a cylindrical cell of th
aspect ratioa = H/R = 4, it is known that Rayleigh–Bénard convection develops into a fully developed turb
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1631-0721/$ – see front matter 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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state ifRa exceeds 107. In many experiments conducted to investigate turbulent Rayleigh–Bénard convec
was found that the heat transport expressed by the dimensionless Nusselt numberNu can be predicted in term
of the Rayleigh number by the scaling lawNu = CRaζ [2,3]. However, in a review article, Chavanne et al.
compared numerous experimental results and showed that the parametersC andζ in the above scaling law depen
on the aspect ratioa and the Prandtl numberPr = ν/κ of the fluid. Further, in [5], Grossmann and Lohse identifi
four different regions, where the Nusselt numberNushows different scaling behavior with respect to Rayleigh
Prandtl numbers. Our objective is to investigate turbulent Rayleigh–Bénard convection in cylinders with the
ratioa < 1 by means of Direct Numerical Simulation (DNS).

While most experiments used a cylindrical confinement because of practical reasons, the majority of the co
ducted numerical simulations were done in planar configurations, as in Kimmel and Domaradzki [6], Grötzb
Kerr [8]. Recently Verzicco and Camussi [9] presented results of marginally resolved DNS in a cylinder of the a
pect ratioa = 4 for Rayleigh numbers up to 1011 using a second order accurate central difference code. S
Eggels et al. [10] and Unger [11], who investigated a turbulent pipe flow by means of DNS utilizing secon
accurate central differences in space, it is known that second order differences provide reliable results (compa
with experimental data) if statistical moments of order up to two are considered. Choi [12] confirmed that
order central schemes provide spectral-like accurate firstand second order statistical moments, but for accurate
dictions of higher order moments higher order spatial discretization schemes are needed. The order of discretization
becomes more important if the Large Eddy Simulation (LES) technique is used. It was shown by Kravche
Moin [13] that subgrid scale models are effective only if central discretization of order higher than two is emp

Having this in mind, we developed a finite volume method for solving the Navier–Stokes equations in cyli
domains, which is based on fourth order accurate central differences in space. The method was applied in DN
turbulent Rayleigh–Bénard convection in wide cylinders with aspect ratios ofa = 0.2 anda = 0.4.

The structure of this article is the following. The governing differential equations and their discretize
logue are discussed in Section 2. We use the volume balance procedure of Schumann [14,15] to constru
volume form of the incompressible dimensionless Navier–Stokes equation in cylindrical coordinates(z,ϕ, r) on
a staggered grid and consider different time discretization methods to solve the transport equations, na
explicit, semi-implicit and a hybrid explicit/semi-implicit time integration schemes. The last scheme is explic
the bulk of the domain. Only in a thin subdomain around the cylinder axis those convection and viscous
which contain derivatives in circumferentialϕ-direction, are treated semi-implicitly. This approach provides st
calculations using time steps up to 5× 102 times larger than with fully explicit schemes. In Section 3 we const
a fourth order accurate discretization scheme to compute thevelocity and temperature fields and their partial deriv
atives on the surfaces of each finite volume. In Section 4an algorithm developed to ensure fourth order accur
at the singularity of a cylindrical coordinate system is presented. The algorithm provides smooth behavio
flow variables and their higher order statistical moments at the cylinder axis. Numerical experiments are d
in Section 5. Based on results of a computation of laminar flow in a cylindrical annulus the order of the m
is demonstrated. Further, presented DNS results of Rayleigh–Bénard convection include instantaneous fl
acteristics, mean flow fields for different Rayleigh numbers and aspect ratios and the dependence of the
number on the Rayleigh number. Finally, a short analysis of the spatial and the temporal resolution requiremen
given at the end of this section.

2. The governing equations and the numerical method

The governing equations for the Rayleigh–Bénard problem can be written as follows

∇ · û = 0, ût + û · ∇û + ρ−1∇p̂ = ν∇2û + αg(T̂ − T̂0)z, T̂0 = (T̂1 + T̂2)/2 (1)

T̂t + û · ∇T̂ = κ∇2T̂
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whereû is the velocity vector and̂ut is its time derivative,̂T is the temperature field,̂T1 andT̂2 are the temperatur
values at the bottom and at the top of the cylinder andρ is the density. In order to construct equations in dim
sionless variables we introduce the reference valuesxb = R, tb = xb/ub, ub = √

αgxb�T , pb = u2
bρ, Tb = �T

and represent each variableψ̂ asψ̂ = ψbψ , whereψb is the reference value andψ is the dimensionless variabl
Thus, from equations (1) the following system of dimensionless equations is obtained

∇ · u = 0, ut + u · ∇u + ∇p = Gr−1/2∇2u + T z (2)

Tt + u · ∇T = Gr−1/2Pr−1∇2T (3)

wherePr = 0.7 (for air) andGr = Ra/(a3Pr) is the Grashof number. On the cylinder walls the velocity fi
vanishes. The dimensionless temperatureT varies from+0.5 at the bottom wall to−0.5 at the top wall of the
cylinder. Further, an adiabatic vertical wall is prescribed by∂T /∂r = 0.

In order to generate a finite volume analogue of Eqs. (2) in cylindrical coordinates(z,ϕ, r) on a staggered gri
we use Schumann’s [14,15] volume balance procedure. The obtained finite volume equations are usually sol
with algorithms based on Chorin’s projection method (see [16] and [17]). This method includes three mai
First, some auxiliary velocity field is calculated from equations obtained from the momentum equations
neglecting the pressure term. Then, an elliptic Poisson equation is solved to satisfy the continuity equation
the velocity and pressure fields are updated using the auxiliary fields and the solution of the elliptic equation.

We consider a finite volumeV = V (zi , ϕj , rk) with the center(zi , ϕj , rk), which is bounded by the cell surfac

A±
z = Az(zi ± �zi

2 , ϕj , rk), A±
ϕ = Aϕ(zi , ϕj ± �ϕj

2 , rk), A±
r = Ar(zi , ϕj , rk ± �rk

2 ), where�zi , �ϕj , �rk are
the sizes of the finite volumeV in directionsz, ϕ, r, respectively. Here we assume that each finite volume
its cell surfaces are associated with the coordinates of their own centers. The valuesβ±

un
α and un

α denote the
velocity componentuα calculated for the time step numbern and averaged over theAβ±-surface and over th
finite volumeV , respectively. We use the notations�V = rk�rk�zi�ϕj , �Az = rk�rk�ϕj , �Aϕ = �rk�zi,

�Ar = rk�zi�ϕj and�t for the time step.

2.1. Explicit scheme

Integrating Eq. (2) over the finite volumeV and using the explicit Leapfrog time integration scheme, we ob
the following equations:

un+1
α − un−1

α

2�t
+

∑
β=z,ϕ,r

(
K

n,n
αβ − D

n−1,n−1
αβ

) + Pn
α − Cn

α = 0, α = z,ϕ, r (4)

where
K

n,m
αβ = 1

�V
(�A+

β
β+

un
α

β+
um

β − �A−
β

β−
un

α
β−

um
β ) denotes the convective term,

D
n,m
αβ = 1√

Gr�V
(�A+

β
β+

s
n,m
αβ − �A−

β
β−

s
n,m
αβ ) the diffusive term,

Pn
α = 1

�V
(�A+

α
α+

pn − �A−
α

α−
pn) the pressure term,

Cn
z = 0, Cn

ϕ = �ϕj �Aϕ

�V
(−ϕun

ϕ
ϕun

r + νϕsn
ϕr ), Cn

r = �ϕj �Aϕ

�V
((ϕun

ϕ)2 + ϕpn − ν ϕsn
ϕϕ) the curvature terms and

βs
n,m
αβ =


2

∂

∂z
zun

z

1

r

∂

∂ϕ
ϕum

z + ∂

∂z
ϕun

ϕ

∂

∂r
run

z + ∂

∂z
run

r

1

r

∂

∂ϕ
ϕum

z + ∂

∂z
ϕun

ϕ

1

r

( ∂

∂ϕ
ϕun

ϕ + ϕum
ϕ

)
+ 2

r
ϕun

r r
∂

∂r

(r
un

ϕ/r
) + 1

r

∂

∂ϕ
rum

r

∂

∂r
run

z + ∂

∂z
run

r r
∂

∂r

(r
un

ϕ/r
) + 1

r

∂

∂ϕ
rum

r 2
∂

∂r
run

r


the deformation tensor.
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The solution of Eq. (4) is obtained in three steps. First, an approximate velocity fieldu∗ = (u∗
z , u

∗
ϕ,u∗

r ) is
computed from equations similar to and obtained from Eq. (4) by neglecting the pressure term

u∗
α − un−1

α

2�t
+

∑
β=z,ϕ,r

(
K

n,n
αβ − D

n−1,n−1
αβ

) − Cn
α = 0, α = z,ϕ, r (5)

On solid walls the approximate velocity field is set to zero,u∗
α = 0, α = z,ϕ, r, according to the no-slip an

impermeability boundary conditions. Then the Poisson equation

∇2φn = 1

�V

∑
β=z,ϕ,r

(
�A+

β
β+

u∗
β+ − �A−

β
β−

u∗
β−

)
(6)

is solved to calculate an auxiliary functionφn, which satisfies the equalityn · ∇φn = 0 on solid walls (n is the
normal vector). Finally, the velocity field and the pressure are updated as follows:

un+1 = u∗ − ∇φn, pn = φn

2�t
(7)

The finite volume equation for the temperature (3) is derived analogously.

2.2. Semi-implicit scheme

In cylindrical coordinates explicit treatment of the viscous termDn−1,n−1
αϕ and the convective termKn,n

αϕ leads to
an extremely small time step in a thin subdomain around the cylinder axis. Therefore, in this subdomain w
implicit time stepping inϕ-direction,

un+1
α − un−1

α

2�t
+

∑
β=z,r

(
K

n,n
αβ − D

n−1,n−1
αβ

) + Kn+1,n
αϕ − Dn−1,n+1

αϕ + Pn
α − Cn

α = 0, α = z,ϕ, r (8)

The solution process for (8) is the same as for (4). First, an approximate velocity fieldu∗ = (u∗
z , u

∗
ϕ,u∗

r ) is
calculated solving

u∗
α − un−1

α

2�t
+

∑
β=z,r

(
K

n,n
αβ − D

n−1,n−1
αβ

) + K∗,n
αϕ − Dn−1,∗

αϕ − Cn
α = 0, α = z,ϕ, r

with any fast band matrices solver. Then, the Poisson Eq. (6) is solved and the velocity field (7) is updated,

the pressurepn = ( 1
2�t

+ un
ϕ

∂
∂ϕ

+ ∂un
ϕ

∂ϕ
− ν ∂2

∂ϕ2 )φn, as discussed in [18].

2.3. Hybrid explicit/semi-implicit time stepping

For stable calculations the time step�t must be smaller than the critical time step. The latter can be derive
means of the von Neumann stability analysis. In [19] the critical time step valid for the Leapfrog–Euler schem
(5) together with spatial central differences of any even order was derived. In particular, for the casePr < 1, an
equidistant mesh and fourth order accurate central differences (10), (11) the sufficient condition for the stability
can be written as follows (see also [20]):

�t < �tcrit
exp =

(
3

2

3∑
β=1

Uβ

�xβ

+ 16

3
√

Gr Pr

3∑
β=1

1

�x2
β

)−1
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(5)

-

field
where�xβ = �β for β = r, z and�xϕ = r�ϕ. The component of the velocity fieldUβ in the von Neumann
stability analysis is supposed to be constant. Since the vonNeumann analysis is applicable only for linear proble
we multiply the value�tcrit

exp by the safety factor 0.5 to avoid nonlinear instabilities. Thus, for stable solutions of
with fourth order accurate central differences in space the critical time step equals

�tcrit
exp = 0.5/Σ̂exp

Σ̂exp= max
zi ,ϕj ,rk

{
3

2

(
uz(zi + 0.5�zi,ϕj , rk)

�zi

+ uϕ(zi , ϕj + 0.5�ϕj, rk)

rk�ϕj

+ ur(zi, ϕj , rk + 0.5�rk)

�rk

)
(9)

+ 16

3
√

GrPr

(
1

�z2
i

+ 1

(rk�ϕj )2 + 1

�r2
k

)}
The sumΣ̂exp can be estimated aŝΣexp� Σexp= maxrk

∑
β=z,ϕ,r {Sd

β + Sc
β}, where

Sd
z = 16

3
√

GrPr
max

zi

1

(�zi)2

Sd
ϕ = 16

3
√

GrPr
max
ϕj

1

(rk�ϕj )2

Sd
r = 16

3
√

GrPr

1

(�rk)2

Sc
z = 3

2
max
zi ,ϕj

|uz(zi + 0.5�zi,ϕj , rk)|
�zi

Sc
ϕ = 3

2
max
zi ,ϕj

|uϕ(zi , ϕj + 0.5�ϕj, rk)|
rk�ϕj

Sc
r = 3

2
max
zi ,ϕj

|ur(zi, ϕj , rk + 0.5�rk)|
�rk

The critical time step, which guarantees the stability of the semi-implicit scheme inϕ-direction (8), can be calcu
lated from�tcrit

imp = 0.5/Σ̂imp, Σ̂imp � Σimp = maxrk
∑

β=z,r{Sd
β + Sc

β}.
In Fig. 1 Sd

β andSc
β (β = z,ϕ, r) are depicted as they were determined from an instantaneous velocity

(uz, uϕ,ur ) obtained for a certain time step in the DNS of Rayleigh–Bénard convection forRa= 105 anda = 0.2.

Fig. 1. Different items contributing toΣexp. Fig. 2. Functions�tei (r10, r) and�tei (r20, r).
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It can be observed that in the vicinity of the cylinder axisSd
ϕ andSc

ϕ are the leading terms in the sumΣexp. The large
values ofSd

ϕ andSc
ϕ nearr = 0 force the critical time step in the explicit scheme to be very small. To overcome

we propose to use the explicit scheme (4) in the bulk of the cylindrical domain and the semi-implicit sche
close to the cylinder axis, i.e. in those finite volumes, for whichrk � rγ , 1< γ < Nr , whereNr denotes the numbe
of grid points inr-direction. Then, the critical time step can be computed as follows:

�tcrit
ei (rγ ) = min

rk
�tei (rγ , rk), �tei (rγ , rk) = 0.5

(
Sd

z + Sc
z + Sd

r + Sc
r + (Sd

ϕ + Sc
ϕ)ξ(γ, k)

)−1

whereξ(γ, k) = 0, if rk � rγ ; ξ(γ, k) = 1, if rk > rγ .

In Fig. 2 the function�tei(rγ , rk) is depicted forγ = 10 andγ = 20. For the DNS of Rayleigh–Bénard co
vection (Ra= 105, a = 0.2) we usedγ = 20 and obtained�tcrit

ei ≈ 5× 10−4. Note, that on the same grid the ful
explicit scheme (4) leads to�tcrit

exp < 10−6.

3. Fourth order central discretization

In this section we construct a fourth order accurate approximation scheme to compute the valueβuα and its
partial derivatives∂

∂β
βuα , α = z,ϕ, r; β = z,ϕ, r. These averaged values have to be determined in order to

the system of equations. The accuracy of the here chosen approximation determines the spatial accuracy of
solution and influences significantly the precision of high order statistical moments.

Let β be one of the coordinates (z, ϕ or r). For simplicity variation inβ-direction only is considered in thi
section, while the other two coordinates are assumed to be constant. Therefore, we omit everywhere the other
coordinates and consider a certain number of finite volumesV (βi), i ∈ N , bounded by the surfacesAβ(βi − �βi

2 )

andAβ(βi + �βi

2 ), where�βi is the size of the finite volumeV (βi) in the directionβ . The valuesuα(βi) and
βuα(βi + �βi

2 ) denote theuα-component averaged overV (βi) andAβ(βi + �βi

2 ), respectively.

An approximation scheme forβuα(βi + �βi

2 ) and ∂
∂β

βuα(βi + �βi

2 ) involves a certain number of value
uα(βi±k), k ∈ N . In order to avoid an unpleasant property of non-central schemes, i.e. the dissipativity, w
central differences everywhere except in the near wall region. Further, we assume that the componentuα averaged
overAβ(β) equals some polynomial of the coordinateβ , i.e.βuα(β) = ∑4

k=1 ζkβ
k−1, whereζk, k = 1,2,3,4, are

some coefficients. From this one can compute the volume-averaged value ofuα as follows

uα(βj ) = 1

�βj

βj+�βj /2∫
βj−�βj /2

βuα(β)dβ, β = z,ϕ, uα(rj ) = 1

rj �rj

rj+�rj /2∫
rj−�rj /2

r · ruα(r)dr, β = r, α = z,ϕ, r

Calculation of the valuesuα(βj ) for j = i −1, i, i +1, i+2 leads to a system of linear equations for the coefficie
ζk , k = 1,2,3,4. Solving this system one can approximate the values ofβuα(β) and ∂

∂β
βuα(β) for any β ∈

[βi−1, βi+2], in particular, near solid walls. For example, for equidistant meshes with�βi = � in directionsβ =
z,ϕ the approximation scheme can be written:

βuα

(
βi + �

2

)
= [−uα(βi−1) + 7uα(βi) + 7uα(βi+1) − uα(βi+2)

]
/12 (10)

∂

∂β

βuα

(
βi + �

2

)
= [

uα(βi−1) − 15uα(βi) + 15uα(βi+1) − uα(βi+2)
]
/12� (11)
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4. Calculation of the velocity field at the cylinder axis

Determining the velocity field at the singularity of the cylindrical coordinate system is one of the corner
of numerical simulations (see, for example, Mitchell et al. [21] and Mohseni, Colonius [22]). In this secti
derive an algorithm to compute the valuesruz(zi, ϕj ,0) andruα(zi, ϕj , r0), α = ϕ, r, for r0 → 0. As previously,
an equidistant mesh is considered in order to simplify the description. For non-equidistant grids the calc
can be done analogously. Letzi = (i − 0.5)�z for i = 1, . . . ,Nz andNz�z = H/xb = a; ϕj = (j − 0.5)�ϕ for
j = 1, . . . . ,Nϕ andNϕ�ϕ = 2π ; rk = (k − 0.5)�r for k = 1, . . . ,Nr andNr�r = R/xb = 1.

4.1. Calculation of the axial velocity component

From Eq. (10) we obtain

ru∗
z(zi + 0.5�z,ϕj,0) = [−uz(zi + 0.5�z,ϕj + π, r2) + 7uz(zi + 0.5�z,ϕj + π, r1)

+ 7uz(zi + 0.5�z,ϕj, r1) − uz(zi + 0.5�z,ϕj , r2)
]
/12, j = 1, . . . ,Nϕ/2

which represents the interpolation across the cylinder axis. In order to obtain the unique valueruz at the singularity
r = 0 we apply averaging inϕ-direction.

Step 1: ruz(zi + 0.5�z,ϕj,0) = 1

3Nϕ

Nϕ/2∑
l=1

[
7uz(zi + 0.5�z,ϕl, r1) − uz(zi + 0.5�z,ϕl, r2)

]
,

j = 1, . . . ,Nϕ

4.2. Calculation of the azimuthal velocity component

Sinceuϕ(zi, ϕj + 0.5�ϕ, r0) = −uϕ(zi , ϕj + 0.5�ϕ + π, r0) for r0 → 0, j = 1, . . . ,Nϕ/2, interpolation ac-
cording to Eq. (10) leads to

Step 2: ru∗
ϕ(zi , ϕj + 0.5�ϕ, r0) = [

uϕ(zi, ϕj + 0.5�ϕ + π, r2) − 7uϕ(zi, ϕj + 0.5�ϕ + π, r1)

+ 7uϕ(zi , ϕj + 0.5�ϕ, r1) − uϕ(zi, ϕj + 0.5�ϕ, r2)
]
/12, j = 1, . . . ,Nϕ/2

4.3. Calculation of the radial velocity component

The continuity equation in cylindrical coordinates can be written asr(
∂uz

∂z
+ ∂ur

∂r
)+ ∂uϕ

∂ϕ
+ur = 0. The functions

∂uz

∂z
, ∂ur

∂r
are bounded whiler → 0, hence, one can calculate an approximation torur (zi, ϕj , r0) with

Step 3: ru∗
r (zi, ϕj , r0) = −(

ru∗
ϕ(zi, ϕj + 0.5�ϕ, r0) − ru∗

ϕ(zi , ϕj − 0.5�ϕ, r0)
)
/�ϕ, j = 1, . . . ,Nϕ

4.4. Calculation of the velocity components in Cartesian coordinates

Since the pairs {ruϕ(zi, ϕj + 0.5�ϕ, r0), rur(zi , ϕj , r0)} for any j must describe the same Cartesian vec
{U(zi),V (zi)}, we apply averaging in Cartesian coordinates in order to obtain the unique solution

Step 4: U(zi) = 1

Nϕ

Nϕ∑
j

{
ru∗

r (zi, ϕj , r0)cosϕj − ru∗
ϕ(zi , ϕj + 0.5�ϕ, r0)sin(ϕj + 0.5�ϕ)

}

V (zi) = 1

Nϕ

Nϕ∑
j

{
ru∗

r (zi, ϕj , r0)sinϕj + ru∗
ϕ(zi, ϕj + 0.5�ϕ, r0)cos(ϕj + 0.5�ϕ)

}
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4.5. Update of the azimuthal and the radial velocity components

From the Cartesian vector{U(zi),V (zi)} we finally calculate the vectors in cylindrical coordinates forr0 → 0.

Step 5: rur(zi , ϕj , r0) = {
U(zi)cos(ϕj + 0.5�ϕ) + V (zi)sin(ϕj + 0.5�ϕ)

}
/cosϕ1

ruϕ(zi , ϕj + 0.5�ϕ, r0) = {−U(zi)sinϕj + V (zi)cosϕj

}
/cosϕ1, j = 1, . . . ,Nϕ

With this algorithm the velocity field at the cylinder axis and in the bulk of cylinder can be computed wi
same order of accuracy.

5. Numerical experiments

5.1. Laminar flow in a cylindrical annulus

Numerical simulations of some simple test cases were carried out to validate the method. One of th
laminar flow in a cylindrical annulus of radiusesR = 1 andR = 0.5, is governed by the equation1

r
d
dr

(r
duz

dr
) = −8

with the general solutionuz = −2r2 + C1 ln r + C2. The constantsC1 andC2 can be derived using the conditio
uz|r=1 = 0 (C2 = 2) anduz|r=0.5 = 0 (C1 = 3

2 ln2). The resulting solution can be expressed:uz = 2(1− r2)+ 3 lnr
2 ln2.

Considering rings bounded by circles of radius(ri − �r
2 ) and(ri + �r

2 ), the ring averaged value ofuz is given
by:

uz(ri) = 1

ri �r

ri+�r/2∫
ri−�r/2

uzr dr = 1

2ri�r

(
2r2 − r4 + 3

ln2

(
r2

2
ln r − r2

4

))∣∣∣∣ri+�r/2

ri−�r/2
. (12)

The corresponding simulations were performed on meshes withNz = 4 andNϕ = 4 grid points inz- andϕ-
directions, respectively, andNr = 8,16,24,32 grid points inr-direction. The initial velocity field was put to zer
16 400 time steps (forNr = 32) were computed with a time step�t = 3.05× 10−3 until the convergence criterio∣∣uz(t + �t) − uz(t)

∣∣∣∣uz(t)
∣∣−1

< 4× 10−12

was reached. The resulting mean errorε = ∑
ri

|uz,sim − uz,anal|ri �r, whereuz,sim is the value obtained in th
simulations anduz,anal is the analytical solution (12), is presented inFig. 3. For this test case second order accu
discretization providesε no better than O((�r)1.527), while fourth order discritization leads toε ∼ (�r)3.866. Some
details of the fourth order simulation, (Nr = 32,ε = 3.79×10−8) are given in Table 1, where� = |uz,sim−uz,anal|
andδ denotes the relative errorδ = �|uz,anal|−1 · 100%.

More results obtained in other test cases with the presented fourth order method can be found in [18].

5.2. Rayleigh–Bénard convection

DNS of turbulent Rayleigh–Bénard convection based on the proposed fourth order central differences (1
in combination with the time stepping (9), were conducted as well. A cylindrical mesh, consisting of 11
512 equidistantly distributed points in the streamwisez- and azimuthalϕ-directions, respectively, and 96 points
wall-normalr-direction, which were clustered in the vicinity of the wall, were used. The simulations were s
in the quiescent state with a randomly disturbed linearly distributed mean temperature fieldT (z,ϕ, r) = 0.5− z/a.
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Table 1
Comparison of analytical and numerical solutions
(obtained with the fourth order code forNr = 32)

ri uz,sim uz,anal � δ (%)

0.508 0.178E−01 0.178E−01 2.777E−07 1.563E−03
0.523 0.511E−01 0.511E−01 2.014E−07 3.940E−04
0.539 0.816E−01 0.816E−01 1.919E−07 2.353E−04
0.555 0.109E+00 0.109E+00 1.867E−07 1.709E−04
0.570 0.134E+00 0.134E+00 1.813E−07 1.351E−04
0.586 0.157E+00 0.157E+00 1.756E−07 1.122E−04
0.602 0.176E+00 0.176E+00 1.697E−07 9.623E−05
0.617 0.194E+00 0.194E+00 1.636E−07 8.443E−05
0.633 0.209E+00 0.209E+00 1.573E−07 7.535E−05
0.648 0.222E+00 0.222E+00 1.510E−07 6.815E−05
0.664 0.232E+00 0.232E+00 1.446E−07 6.230E−05
0.680 0.240E+00 0.240E+00 1.381E−07 5.745E−05
0.695 0.247E+00 0.247E+00 1.316E−07 5.337E−05
0.711 0.251E+00 0.251E+00 1.251E−07 4.991E−05
0.727 0.253E+00 0.253E+00 1.187E−07 4.694E−05
0.742 0.253E+00 0.253E+00 1.123E−07 4.437E−05
0.758 0.251E+00 0.251E+00 1.059E−07 4.215E−05
0.773 0.247E+00 0.247E+00 9.956E−08 4.022E−05
0.789 0.242E+00 0.242E+00 9.328E−08 3.855E−05
0.805 0.235E+00 0.235E+00 8.707E−08 3.711E−05
0.820 0.225E+00 0.225E+00 8.092E−08 3.589E−05
0.836 0.215E+00 0.215E+00 7.484E−08 3.489E−05
0.852 0.202E+00 0.202E+00 6.883E−08 3.410E−05
0.867 0.188E+00 0.188E+00 6.289E−08 3.354E−05
0.883 0.171E+00 0.171E+00 5.702E−08 3.326E−05
0.898 0.154E+00 0.154E+00 5.123E−08 3.332E−05
0.914 0.134E+00 0.134E+00 4.550E−08 3.385E−05
0.930 0.113E+00 0.113E+00 3.985E−08 3.512E−05
0.945 0.910E−01 0.910E−01 3.428E−08 3.768E−05
0.961 0.669E−01 0.669E−01 2.880E−08 4.306E−05
0.977 0.412E−01 0.412E−01 2.374E−08 5.757E−05
0.992 0.141E−01 0.141E−01 2.361E−08 1.680E−04

Fig. 3. Errorε versus the mesh size of 2nd order and 4th order code.! 2th
order,Nz = 4, Nϕ = 4; 1 4th order,Nz = 4, Nϕ = 4.

Fig. 4. Snapshots of the axial velocity fielduz in the cross-sectionz = a/2. Dark:uz < 0, light: uz > 0.

5.2.1. Instantaneous flow fields
In Fig. 4 snapshots of the axial velocity component in the central cross-section of the cylinder are depi

different Rayleigh numbers and aspect ratios. Light tones correspond to positive values of the axial veloc
ponent (the flow goes up) and dark tones to negative values. For the caseRa= 105, a = 0.2, elongated structure
can be observed. If the Rayleigh number is increased toRa= 107 fine flow structures evolve on top of these lar
structures leading to a more corrugated large scale flow. Further increasing the Rayleigh number toRa= 108 in a
cylinder with the higher aspect ratioa = 0.4, leads to a single large flow structure, in which warm fluid rises in
bulk and cold fluid descends close to the cylinder sidewall.

In Fig. 5 side views of isothermal surfaces forT = 0.2 andT = 0.3 are presented as they were obtained
Ra= 105 anda = 0.2. The isosurfaces are predominantly smooth, except in some narrow cracks. These
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Fig. 5. Instantaneous isosurfaces of the temperature obtained forRa= 105 anda = 0.2.

Fig. 6. Contours of the time averaged mean axial velocity components〈uz〉 in the cross-sectionz = a/2.

of comparably warm fluid can reach the topof the cylinder. The isotherms of the negative temperature values a
similar in shape, i.e. they are almost flat, except in some cracks of cold flow (T < 0) that can reach the vicinity o
the cylinder bottom.

5.2.2. Mean flow characteristics
In order to check, whether the observed instantaneousflow structures are statistically relevant, we conduc

time averaging of the fully three-dimensional flow fields. In Fig. 6 the contours of the mean axial velocity
ponent in the central horizontal cross-section of the cylinder are presented for three different Rayleigh n
and two aspect ratios. The time averaging was performed over approximately 500 dimensionless time u
no significant change of the mean velocity maximum was observed. From the comparison of mean flo
tures obtained for differentRa-numbers it can be concluded that the size of these structures increases w
Ra-number.

Averaging the axial velocity component in azimuthal direction leads to two-dimensional mean flow fields
sented in Fig. 7. Again results for different values ofRaanda are shown. For all presented cases a mean flow, w
rises in the center of the cylinder, was obtained. The size of these flow structures increases with theRa-number.

We also investigated how the Nusselt numberNu= H
κ�T

(〈uzT 〉�T ub − κ
∂〈T 〉
∂z

· �T
xb

) = −a
∂〈T 〉wall

∂z
scales with

the Ra-number. Here〈·〉 denotes the average over an arbitrary horizontal cross section, while〈·〉wall denotes the
average over the bottom or the top planes of the cylinder. Evaluating theNu-number from DNS data obtaine
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Fig. 7. Mean axial velocity〈uz〉 averaged in time and in theϕ-direction.

for the cylinder of aspect ratioa = 0.2, the Nusselt numbersNu = 4.29 (Ra= 105), Nu = 8.81 (Ra = 106),
Nu= 18.13(Ra= 107) were obtained. They fit the scaling lawNu= 0.117Ra0.313.

5.2.3. Spatial and temporal resolutions of the solution
The mean mesh sizeh must be of the same order as the Kolmogorov’s scaleη = aPr1/2(Nu− 1)−1/4Ra−1/4,

namelyh ∼ πη in order to resolve all relevant turbulent scales in a DNS. Fora = 0.2 andRa= 105 for example,
a mean mesh sizeh = 2.19× 10−2 is needed whilea = 0.2 andRa= 107 leads toh = 4.53× 10−3. This must
be compared with the maximum mesh size of the mesh with 96× 256× 128 grid points, i.e.hDNS = maxi (�zi ·
r�ϕi · �ri)

1/3 = 6.49× 10−3. SincehDNS < h for Ra= 105, it is concluded that a fine enough spatial resolut
was used to simulate the caseRa= 105, while the resolution is merely satisfactory forRa= 107.

For temporal resolution we have two principal requirements: (i) the time step must be smaller than the B
scale in order to resolve the smallest time scales; (ii) ithas to be small enough to guarantee the numerical sta
of the chosen discretization scheme (the Leapfrog–Euler scheme in our case). The Batchelor scale is
ηT = a1/2Pr1/2(Nu− 1)−1/2. In the casea = 0.2 we getηT = 0.21 (Ra= 105) andηT = 0.09 (Ra= 107). Since
we used the time step�t ≈ 10−3 in our simulations due to stability reasons, we conclude that the time step is
enough to resolve the Batchelor scale.
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