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Abstract

A finite volume scheme, which is based on fourth order accurate central differences in spatial directions and on a hybrid
explicit/semi-implicit time stepping scheme, was developed to solve the incompressible Navier—Stokes and energy equations
on cylindrical staggered grids. This includes a new fourth order accurate discretization of the velocity and temperature fields
at the singularity of the cylindtal coordinate system andrew stability conditio [J. Appl. Numer. Anal. Comput. Math.

1 (2004) 315-326]. The method was applied in direct numerical simulations of turbulent Rayleigh-Bénard convection for
different Rayleigh numbeRa= 10",y =5, ..., 8, in wide cylinders with the aspect ratios= H/R = 0.2 anda = 0.4 (where

R denotes the radius and — the height of the cylinder)lo cite thisarticle: O. Shishkina, C. Wagner, C. R. Mecanique 333

(2005).
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1. Introduction

Rayleigh—Bénard convection develops in fluid layers confined by two horizontal plates if the temperature dif-
ference between the lower heated and the upper cooled plate is high enough. The relevant dimensionless number
Ra= ga H3AT /kv, whereg denotes the gravitational acceleratianthe thermal expansion coefficiemt,I’ the
temperature difference, the thermal diffusivity and the kinematic viscosity, is the Rayleigh number. Consider-
ing a specific fluid, the Rayleigh numbesn be increased if either the distarfédbetween the two plates or their
temperature differencaT is increased. Since Heslot [1], who perfardian experimentin a cylindrical cell of the
aspect ratias = H/R = 4, it is known that Rayleigh—Bénard convection develops into a fully developed turbulent
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state ifRaexceeds 10 In many experiments conducted to investigate turbulent Rayleigh-Bénard convection it
was found that the heat transport expressed by the dimensionless Nusselt hNundaer be predicted in terms

of the Rayleigh number by the scaling laMu = CR& [2,3]. However, in a review article, Chavanne et al. [4]
compared numerous experimental results and showed that the parathatets in the above scaling law depend

on the aspect ratio and the Prandtl numb&r = v/« of the fluid. Further, in [5], Grossmann and Lohse identified

four different regions, where the Nusselt numbiershows different scaling behavior with respect to Rayleigh and
Prandtl numbers. Our objective is to investigate turbulent Rayleigh—Bénard convection in cylinders with the aspect
ratioa < 1 by means of Direct Numerical Simulation (DNS).

While most experiments used a cyliinghl confinement because of praei reasons, the majority of the con-
ducted numerical simulations were done in planar configurations, as in Kimmel and Domaradzki [6], Grotzbach [7],
Kerr [8]. Recently Verzicco and Camussi [9] presentesiitis of marginally resolved DNS in a cylinder of the as-
pect ratioa = 4 for Rayleigh numbers up to 3busing a second order accurate central difference code. Since
Eggels et al. [10] and Unger [11], who investigated a turbulent pipe flow by means of DNS utilizing second order
accurate central differences in space, it is known that secatet differences provide reliable results (compared
with experimental data) if statistical moments of order up to two are considered. Choi [12] confirmed that second
order central schemes provide spectral-like accurateafisecond order statistical moments, but for accurate pre-
dictions of higher order moments higher order spatial @iszation schemes are needellerder of discretization
becomes more important if the Large Eddy Simulation (LES) technique is used. It was shown by Kravchenko and
Moin [13] that subgrid scale models are effective only if central discretization of order higher than two is employed.

Having this in mind, we developed a finite volume method for solving the Navier—Stokes equations in cylindrical
domains, which is based on fourth order accurate etdifferences in space. The method was applied in DNS of
turbulent Rayleigh—Bénard convection in wide cylinders with aspect ratios=00.2 anda = 0.4.

The structure of this article is the following. The governing differential equations and their discretized ana-
logue are discussed in Section 2. We use the volume balance procedure of Schumann [14,15] to construct a finite
volume form of the incompressible dimensionless Navier—Stokes equation in cylindrical coordinates on
a staggered grid and consider different time discretization methods to solve the transport equations, namely, the
explicit, semi-implicit and a hybrid exjgit/semi-implicit time integration schemes. The last scheme is explicit in
the bulk of the domain. Only in a thin subdomain around the cylinder axis those convection and viscous terms,
which contain derivatives in circumferentiagidirection, are treated semi-implicitly. This approach provides stable
calculations using time steps up toBL0? times larger than with fully explicit schemes. In Section 3 we construct
a fourth order accurate discretization scheme to computedioeity and temperature figs and their partial deriv-
atives on the surfaces of each finite volume. In Sectiam 4lgorithm developed to ensure fourth order accuracy
at the singularity of a cylindrical coordinate system is presented. The algorithm provides smooth behaviour of all
flow variables and their higher order statistical moments at the cylinder axis. Numerical experiments are discussed
in Section 5. Based on results of a computation of laminar flow in a cylindrical annulus the order of the method
is demonstrated. Further, presented DNS results of Rayleigh—Bénard convection include instantaneous flow char-
acteristics, mean flow fields for different Rayleigh numbers and aspect ratios and the dependence of the Nusselt
number on the Rayleigh number. Finally, a short analysie@&patial and the temporal resolution requirements is
given at the end of this section.

2. The governing eguationsand the numerical method

The governing equations for the Rayleighérard problem can be written as follows

V.-0=0, 0 +0-VO+p Vp=vV20+ag(T —To)z, To=(T1+12)/2 (1)
T,4+0-VT =«V2T



O. Shishkina, C. Wagner / C. R. Mecanique 333 (2005) 17-28 19

wherel is the velocity vector and; is its time derivative7 is the temperature fieldy andT> are the temperature
values at the bottom and at the top of the cylinder arid the density. In order to construct equations in dimen-
sionless variables we introduce the reference valyes R, t, = xp/up, up = Jagxp AT, pp = u,fp, T, = AT
and represent each variahleasy = ¥y, whereys, is the reference value and is the dimensionless variable.
Thus, from equations (1) the following system of dimensionless equations is obtained

V.u=0, U +U-Vu+Vp=Gr¥2v2u4rz (2)
T, +u.-VT =Gr 2pr=iv2r (3)

wherePr = 0.7 (for air) andGr = Ra/(a®Pr) is the Grashof number. On the cylinder walls the velocity field
vanishes. The dimensionless temperatlirearies from+0.5 at the bottom wall to-0.5 at the top wall of the
cylinder. Further, an adiabatic vertical wall is prescribed@ydr =0

In order to generate a finite volume analogue of Eqgs. (2) in cylindrical coordit@atesr) on a staggered grid
we use Schumann’s [14,15] volume balance procedure.ofitained finite volume equations are usually solved
with algorithms based on Chorin’s projection method (see [16] and [17]). This method includes three main steps.
First, some auxiliary velocity field is calculated from equations obtained from the momentum equations (2) by
neglecting the pressure term. Then, an elliptic Poisson equation is solved to satisfy the continuity equation. Finally,
the velocity and pressure fields are updated using th#iayxields and the solution of the elliptic equation.

We consider afinite volume& = V(z;, ¢;, rk) with the centexz;, ¢;, r), which is bounded by the cell surfaces
A =A;(z; = ,goj,rk) A =A (z,,(p]:I: Lore), A =A, (z,,goj,rk:I:Ark) whereAz;, Ag;, Ar, are
the sizes of the finite vqumU in dlrect|0n5z (p, r, respectlvely Here we assume that each finite volume and
its cell surfaces are associated with the coordinates of their own centers. The Q/akgeand u” denote the
velocity component:,, calculated for the time step numberand averaged over thég--surface and over the
finite volumeV, respectively. We use the notations/ = r AriAzi A, AA; =i ArAg;, AAy = ArgAz;,
AA, =1 Az; Ap; and At for the time step.

2.1. Explicit scheme

Integrating Eq. (2) over the finite volunié and using the explicit Leapfrog time integration scheme, we obtain
the following equations:

n+1 n—1
Uy —Ug , —1n-1
D Dl i e R B @
B=z.9.r
where o _
Ky" = V (AAJr Brum B* wy — AAg Pui P uy) denotes the convective term,
D" = «/_AV (AAJr g suy — AAZ P sp") the diffusive term,
Pl =%% L (AAF " P — AAZ @ p7) the pressure term,
C;=0,C,= A"X—@A“’(—wu_g Qun + v‘/’s” ), Cl = A“”AAV’ ((‘/’u”)2 +¢pt —v g”s” ) the curvature terms and
J  — 10 d 0o — 0 —
2_Zun @ m_|__<,0un _run+_run
10 o Z8 1 g&(p S ; Sar Z 8?[(';
— - _ _ o _
ﬁs;’ﬁ'" = —%—(p Pu + a—‘pu"; —<%—(p‘/’u” —|—“’um:2 —é— - un rg( u, r)+ ;@ru;”
_ _ S _
i R I w0 R 2--"uy

the deformation tensor.
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The solution of Eqg. (4) is obtained in three steps. First, an approximate velocityufietd (u?, uy, uy) is
computed from equations similar to and obtained from Eq. (4) by neglecting the pressure term

uf —u i
ot Y (K =Dt T = Cl =0, a=z.0.r (5)

On solid walls the approximate velocity field is set to zerp,= 0, « = z, ¢, r, according to the no-slip and
impermeability boundaryanditions. Then the Poisson equation

_ 1 — N
275 + -
Vi = > (aAgf Wy —AAG P uy)) (6)
B=z,0,r
is solved to calculate an auxiliary functigr, which satisfies the equality - V¢ = 0 on solid walls ( is the
normal vector). Finally, the velocity field and the pressure are updated as follows:

o
2At
The finite volume equation for the temperature (3) is derived analogously.

un+l = lF - Vﬁs ]7 =

(7)

2.2. Semi-implicit scheme

In cylindrical coordinates explicit treatment of the viscous te!)mjl*"—l and the convective teriki; ' leads to
an extremely small time step in a thin subdomain around the cylinder axis. Therefore, in this subdomain we apply
implicit time stepping inp-direction,

un+l

_unfl o
Har e (K - DM R K - DI R - =0, =z @)
B=z.r

The solution process for (8) is the same as for (4). First, an approximate velocityfietd(u?, uj;, ul) is
calculated solving

Tk
—u L
o o + Z (K;l’ﬁn _ Dgﬁ 1n l) + K;(,pn _ DZ;L* _ Cs — O, a=z,0,r
B=z.r

with any fast band matrices solver. Then, the Poisson Eq. (6) is solved and the velocity field (7) is updated, but now

the pressurg” = (5% + ull -

oul, 92 \ T . ;
bag T o — UW)QS", as discussed in [18].

2.3. Hybrid explicit/semi-implicit time stepping

For stable calculations the time stap must be smaller than the critical time step. The latter can be derived by
means of the von Neumann stability analysis. In [19] thdoal time step valid for the Leapfrog—Euler scheme
(5) together with spatial central differences of amgm order was derived. In particular, for the c&se< 1, an
equidistant mesh and fourth order accurate centra¢ifices (10), (11) the sufficiecondition for the stability
can be written as follows (see also [20]):

3 3 -1
i (3 U 16 1
A< A= (2N 2F )
= feeT | 2 ﬁzleﬁ+3«/GrPr oA
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where Axg = AB for g =r,z and Ax, = r Ap. The component of the velocity fieltls in the von Neumann
stability analysis is supposed to be constant. Since théeamann analysis is applicable only for linear problems,
we multiply the valueﬁtg{("g by the safety factor.8 to avoid nonlinear instabilities. Thus, for stable solutions of (5)
with fourth order accurate central differences in space the critical time step equals

3(u(zi +0.5Az;, 95, rk) | Uyp(zi, 9j +0.5A¢;, rk)  ur(zi, @), rk + 0.5Ary)
= + +
2 Az; rcAg; Ary

Eexp = max
ZirsPjTk

9)

n 16 < 1 n 1 n 1 )}
3VGIPr\Az?  (Agj)?  Ar?

The sumEexp can be estimated @8exp < Zexp= MaX, Y g o (S5 + S5), where

si= 20
P3JGIPr u (Az)?
. 16

Sp = max
Y 3JGrPr ¢ (reAgj)?
d__ 16 1
" 3JGrPr (Arg)?
SC = § maX|M_Z(Zl + O'SAZi, (pj’ "k)|

L2z Az
5= 3 maxlu_gﬂ(zh ®; +0.5A¢;, rp)l
2z.9j rkAg;
.3 u,(zi, @i, rr +05Ar
Sﬁ:—max' r(zi Dj,Tk 13l
Zi,9j Ary

The critical time step, which guarantees the stability of the semi-implicit schemalirection (8), can be calcu-
lated fromA#{t = 0.5/ Zimp, Zimp < Zimp =mav, > 5. {55 + Sg1.

In Fig. 1 Sg and 5;3‘ (B =z, ¢,r) are depicted as they were determined from an instantaneous velocity field
(u7, g, uy) Obtained for a certain time step in the DNS of Rayleigh—Bénard convectidRefer10° anda = 0.2.
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Fig. 1. Different items contributing t&exp. Fig. 2. FunctionsAt,; (r10, r) and At,; (20, 7).
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It can be observed that in the vicinity of the cylinder angndS; are the leading terms in the sulaxp. The large
values ofo/f andsS,, nearr = 0 force the critical time step in the explicit scheme to be very small. To overcome this,
we propose to use the explicit scheme (4) in the bulk of the cylindrical domain and the semi-implicit scheme (8)
close to the cylinder axis, i.e. in those finite volumes, for whicki r,,, 1 < y < N;,, whereN, denotes the number

of grid points inr-direction. Then, the critical timeep can be computed as follows:

AL,y = M Atei (. 78), - Atei (ry, 1) = 0.5(S¢ + 8¢+ S + S5 + (4 + SOE(y. )t

where&(y, k) =0, if rp, <ry; E(v, k) =1 if re >y .
In Fig. 2 the functionAr,; (r,, r) is depicted fory = 10 a_ndy = 20. For the DNS of Rayleigh—Bénard con-
vection Ra= 10°, a = 0.2) we used/ = 20 and obtainec " ~ 5 x 10~4. Note, that on the same grid the fully

explicit scheme (4) leads targh < 1076

3. Fourth order central discretization

In this section we construct a fourth order acte approximation scheme to compute the vdligg and its
partial derivativesai Pig, a =z,9,r, B =2z, ¢,r. These averaged values have to be determined in order to close
the system of equations. The accuracy of the here chggamméimation determines the spatial accuracy of the
solution and influences significantly the precision of high order statistical moments.

Let 8 be one of the coordinates, (¢ or r). For simplicity variation ing-direction only is considered in this
section, while the other two coordinates are assumee twohstant. Therefore, we omit everywhere the other two
coordinates and consider a certain number of finite voluvgh), i € N, bounded by the surfacess (8; — ATﬁ")
and Ag(B; + %), whereAgB; is the size of the finite volum& (8;) in the directiong. The valuesiy(8;) and
Pitg (Bi + %) denote thet,-component averaged ov&r(S;) andAg(B; + %), respectively.

An approximation scheme fofi,(8; + ATﬁ") and %ﬁu_a(ﬂi + ATﬁ") involves a certain number of values
e (Bi+k), k € N. In order to avoid an unpleasant property of non-central schemes, i.e. the dissipativity, we use
central differences everywhere except in the near wall region. Further, we assume that the compaversiged
over Az(B) equals some polynomial of the coordingtd.e. P ity (8) = Y7 _1 & 51, wheregy, k = 1,2, 3,4, are
some coefficients. From this one can compute the volume-averaged valy@sfollows

1 Bi+AB;/2 ri+Ar;j/2
IE(:B]): / ﬂ@(ﬁ)dﬁ, ﬁ:Z7¢7 @(rj): r~r@(r)dr, ,3:7', o0=z,¢0,r
AB; rj Arj
ﬂj—Aﬁj/Z rj—Arj/Z

Calculation of the value&, (8;) for j =i —1,i,i 41, i 4+2 leads to a system of linear equations for the coefficients
&, k =1,2,3,4. Solving this system one can approximate the valuedigig) and %ﬁ@(ﬁ) forany 8 €
[Bi—1, Bi+21, in particular, near solid walls. For example, for equidistant meshesAth= A in directionspg =

z, ¢ the approximation scheme can be written:

A
ﬂ@(ﬁi + E) = [—ita(Bi—1) + Tita (Bi) + Titg (Bi+1) — ita(Bi+2)]/12 (10)

0 A
% ﬂ@(ﬁi + E) = [itq(Bi—1) — 15iq (i) + 15iq (Bi+1) — ita(Bi+2)]/12A (11)
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4. Calculation of the velocity field at the cylinder axis

Determining the velocity field at the singularity of the cylindrical coordinate system is one of the cornerstones
of numerical simulations (see, for example, Mitchell et al. [21] and Mohseni, Colonius [22]). In this section we
derive an algorithm to compute the valués (z;, ¢;, 0) and”ig (z;, ¢}, ro), & = ¢, r, for ro — 0. As previously,
an equidistant mesh is considered in order to simplify the description. For non-equidistant grids the calculations
can be done analogously. Let= (i — 0.5 Azfori=1,...,N; andN;Az = H/xp = a; ¢; = (j — 0.5 Agp for
j=1....,NyandNyA¢ =2n;r, = (k—05Arfork=1,..., N, andN,Ar = R/x, = 1.

4.1. Calculation of the axial velocity component

From Eg. (10) we obtain
"u¥(zi + 0.5Az, ¢j,0) = [—itz(zi + 0.5Az, ¢j + 7, r2) + Titz(zi + 0.5Az, ¢ + 7, 71)
+ 7it;(zi + 0.5Az, ¢j, r1) — 7 (zi + 0.5Az, ¢j,r2)]/12, j=1,...,Ny/2

which represents the interpolation across the cylinder axis. In order to obtain the uniquayaltithe singularity
r = 0 we apply averaging ip-direction.

Stepl "u;(zi +0.5Az,¢;,0) = N Z [7itz(zi + 0.5Az, @y, r1) — iz (zi + 0.5Az, ¢, r2) ],
¢ =1

i=1...,N,
4.2. Calculation of the azimuthal velocity component

Sinceuy(zi, ¢; + 0.5A¢, ro) = —uy,(zi, ¢j + 0.5A¢ +m,rg) for o — 0, j =1,..., N,/2, interpolation ac-
cording to Eqg. (10) leads to

Step 2 r@(zi, ¢; +0.5A¢,rg) = [@(zi, ¢; +0.5A¢ +m,r2) — Ty (zi, ¢j + 0.5A¢ + 1, r1)
+ Titg(zi, ¢j + 0.5Ap, r1) — ity (zi. ¢j + 0.5A¢, r2)]/12,  j=1,...,Ny/2

4.3. Calculation of the radial velocity component

The continuity equation in cylindrical coordinates can be writteﬂ(z%‘; + 33“; )+ 33% +u, = 0. The functions

are bounded while — 0, hence, one can calculate an approximatioii@z;, ¢;, ro) with

uz  duy
az ' or

Step3 "uf(zi,9j.r0) = —("uj(zi. ¢j +0.5A¢, r0) = "ui(zi, 9j —0.5A¢,r0))/Ap, j=1,....N,

4.4. Calculation of the velocity components in Cartesian coordinates

Since the pairs i, (z;, ¢; + 0.5A¢, r0), ", (zi, ¢;, r0)} for any j must describe the same Cartesian vector
{U(zi), V(zi)}, we apply averaging in Cartesian coordinates in order to obtain the unigue solution
1 Y
Step4 U(z) = - Z{’u_j‘(zi, ;. r0)C0Sp; —"ui(zi, 9j +0.5A¢, ro) sin(p; + 0.5A¢)}
(ﬂ .
J
N<ﬂ

1 — : —
Vi) =+~ E {7y zi, @, r0) Sing; +"uf (zi, ¢ + 0.5A¢, ro) oS + 0.5A¢)}
(72—
j
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4.5. Update of the azimuthal and the radial velocity components

From the Cartesian vectt/(z;), V (z;)} we finally calculate the vectors in cylindrical coordinatesrp+> 0.

Step5 "ur(zi,¢j,r0) = {U(zi) cog¢; + 0.5A¢) + V(z;) sin(p; + O.SA(p)}/COS(pl
"itg(zi, ¢j + 0.5Ap, ro) = {—U (zi) sing; 4+ V(zi) cosp;}/cospr, j=1,..., Ny

With this algorithm the velocity field at the cylinder axis and in the bulk of cylinder can be computed with the
same order of accuracy.

5. Numerical experiments
5.1. Laminar flow in a cylindrical annulus

Numerical simulations of some simple test cases were carried out to validate the method. One of them, the
laminar flow in a cylindrical annulus of radius&s= 1 andR = 0.5, is governed by the equatidrmd;(r d(j‘;) =-8
with the general solution, = —2r2 + C1Inr + C». The constant§’; andC» can be derived using the conditions
Uzlr=1=0(C2=2) andu.|,—05 = 0 (C1 = 55). The resulting solution can be expressed:= 2(1—r?) + 3/
Considering rings bounded by circles of radius— %) and(r; + %), the ring averaged value af is given

by:

ri+Ar/2

1 1 3 (r2 r2
T (r:) — dr = 2 2_ 4 —lnr — —
tz(ri) ri Ar / o 2riAr( mr +In2(2 " 4))
ri—Ar/2

ri+Ar/2

(12)

rifAr/Z

The corresponding simulations were performed on meshesAith 4 and N, = 4 grid points inz- and¢-
directions, respectively, and, = 8, 16, 24, 32 grid points in--direction. The initial velocity field was put to zero.
16 400 time steps (faV, = 32) were computed with a time stéyr = 3.05 x 102 until the convergence criterion

|+ An — @ ()| @ (0] < 4x 20722

was reached. The resulting mean eros Zr,- litz.sim — Uz analri Ar, Whereir; sim is the value obtained in the
simulations andi;_analis the analytical solution (12), is presentedrig. 3. For this test case second order accurate
discretization provides no better than Q Ar)1-52%), while fourth order discritization leads to~ (Ar)386, Some
details of the fourth order simulationy( = 32,¢ = 3.79x 10~8) are given in Table 1, wher& = |it; sim — it;.anal
andé denotes the relative errér= A|uz,amﬂ||—1 -100%.

More results obtained in other test cases with the presented fourth order method can be found in [18].

5.2. Rayleigh—Bénard convection

DNS of turbulent Rayleigh—Bénard convection based on the proposed fourth order central differences (10), (11)
in combination with the time stepping (9), were conducted as well. A cylindrical mesh, consisting of 110 and
512 equidistantly distributed points in the streamwisand azimuthap-directions, respectively, and 96 points in
wall-normalr-direction, which were clustered in the vicinity of the wall, were used. The simulations were started
in the quiescent state with a randomly disturbed linearly distributed mean temperatuigfisidr) = 0.5—z/a.
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Table 1
Comparison of analytical and numerical solutions
(obtained with the fourth order code fok. = 32)

<
°

T itz sim itz anal A 8 (%)

0.508 0.178E-01 0.178E-01 2.777E-07 1.563E-03

0523 0511E-01 0511E-01 2.014E-07 3940E-04 ¢

0539 0.816E-01 0.816E-01 1.919E-07 2.353E-04

0.555 0.1098-00 0.109E-00 1.867E-07 1709E-04

0570 0.1348-00 0.134E-00 1.813E-07 1351E-04 o f E

0586 0.1578-00 0.157E-00 1.756E-07 1.122E-04 =

0.602 0.1768-00 0.176E-00 1.697E-07 9.623E-05

0617 0.1948-00 0.194E-00 1.636E-07 8.443E-05

0.633 0.2098-00 0.209E-00 1573E-07 7.535E-05

0.648 0.2228-00 0.222E-00 1510E-07 6.815E-05

0.664 0.2328-00 0.232E-00 1.446E-07 6.230E-05 @

0.680 0.2408-00 0.240E-00 1.381E-07 5.745E-05 ofF E

0.695 0.2478-00 0.247E-00 1.316E-07 5.337E-05

0.711 0.2518-00 0.251E-00 1.251E-07 4.991E-05

0.727 0.2538-00 0.253E-00 1.187E-07 4.694E-05

0.742 0.2538-00 0.253E-00 1.1236-07 4.437E-05

0.758 0.2518-00 0.251E-00 1.059E-07 4.215E-05

0.773 0.2478-00 0.247E-00 9.956E-08 4022805 | |

0.789 0.2428-00 0.242E-00 9.328E-08 3.855E-05 e

0.805 0.2358-00 0.235E-00 8.707E-08 3.711E-05

0.820 0.2258-00 0.225E-00 8.092E-08 3.580E-05

0.836 0.2158-00 0.215E-00 7.484E-08 3.489E-05

0.852 0.2028-00 0.202E-00 6.883E-08 3.410E-05

0.867 0.1888-00 0.188E-00 6.289E-08 3354E-05

0.883 0.1718-00 0.171E-00 5.702E-08 3326E-05
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Fig. 4. Snapshots of the axial velocity field in the cross-section=a/2. Dark:u; < 0, light: u; > 0.

5.2.1. Instantaneous flow fields

In Fig. 4 snapshots of the axial velocity component in the central cross-section of the cylinder are depicted for
different Rayleigh numbers and aspect ratios. Light tones correspond to positive values of the axial velocity com-
ponent (the flow goes up) and dark tones to negative values. For thRaas&(®®, a = 0.2, elongated structures
can be observed. If the Rayleigh number is increasé&bte: 107 fine flow structures evolve on top of these large
structures leading to a more corrugated largeesfiaiv. Further increasing the Rayleigh numbeR@= 10° in a
cylinder with the higher aspect ratio= 0.4, leads to a single large flow structure, in which warm fluid rises in the
bulk and cold fluid descends close to the cylinder sidewall.

In Fig. 5 side views of isothermal surfaces fBr= 0.2 and7 = 0.3 are presented as they were obtained for
Ra= 10° anda = 0.2. The isosurfaces are predominantly smooth, except in some narrow cracks. These regions
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T7=02 7=0.3

Fig. 5. Instantaneous isosurfaces of the temperature obtain®aferL0° anda = 0.2.

Ra=10% a=0.2 Ra=10", a=0.2 Ra=10%, a =04
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Fig. 6. Contours of the time averaged mean axial velocity comporigptsn the cross-section=a/2.

of comparably warm fluid can reach the tofsthe cylinder. The isotherms ofé¢megative temperature values are
similar in shape, i.e. they are almost flat, except in some cracks of cold flowQ) that can reach the vicinity of
the cylinder bottom.

5.2.2. Mean flow characteristics

In order to check, whether the observed instantanflousstructures are statistically relevant, we conducted
time averaging of the fully three-dimensional flow fields. In Fig. 6 the contours of the mean axial velocity com-
ponent in the central horizontal cross-section of the cylinder are presented for three different Rayleigh numbers
and two aspect ratios. The time averaging was performed over approximately 500 dimensionless time units until
no significant change of the mean velocity maximum was observed. From the comparison of mean flow struc-
tures obtained for differeflRanumbers it can be concluded that the size of these structures increases with the
Ranumber.

Averaging the axial velocity component in azimuthal direction leads to two-dimensional mean flow fields as pre-
sented in Fig. 7. Again results for different valuefafanda are shown. For all presented cases a mean flow, which
rises in the center of the cylinder, was obtained. The size of these flow structures increasesRathuhngber.

We also investigated how the Nusselt number= 7 ((u, T)ATu, — k252 - A1) = —q 20wl scales with
the Ranumber. Herg-) denotes the average over an arbitrary horizontal cross section, @While denotes the
average over the bottom or the top planes of the cylinder. Evaluatinidh@imber from DNS data obtained
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Fig. 7. Mean axial velocityu) averaged in time and in the-direction.

for the cylinder of aspect ratio = 0.2, the Nusselt numbensu = 4.29 (Ra= 10°), Nu= 8.81 (Ra = 10F),
Nu= 1813 (Ra= 10") were obtained. They fit the scaling lahwu = 0.117R&313,

5.2.3. Spatial and temporal resolutions of the solution

The mean mesh siZe must be of the same order as the Kolmogorov's sgateaPrl/2(Nu— 1)~1/4Ra1/4,
namelyh ~ 7 in order to resolve all relevant turbulent scales in a DNS.d~er0.2 andRa= 10° for example,
a mean mesh size= 2.19 x 102 is needed while: = 0.2 andRa= 10’ leads toh = 4.53 x 10~3. This must
be compared with the maximum mesh size of the mesh witk 966 x 128 grid points, i.ehpns = max (Az; -
rAg; - Ar)Y3 =6.49 x 1073, Sincehpns < h for Ra= 1P, it is concluded that a fine enough spatial resolution
was used to simulate the caRa= 10°, while the resolution is merely satisfactory ea= 10'.

For temporal resolution we have two principal requirements: (i) the time step must be smaller than the Batchelor
scale in order to resolve the smallest time scales; (fipg to be small enough to guarantee the numerical stability
of the chosen discretization scheme (the Leapfrog—Euler scheme in our case). The Batchelor scale is equal to
nr = a*?Pr¥2(Nu— 1)~%2. In the case: = 0.2 we getyr = 0.21 (Ra= 10°) andyr = 0.09 (Ra= 107). Since
we used the time stefir ~ 102 in our simulations due to stability reasons, we conclude that the time step is small
enough to resolve the Batchelor scale.
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