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Abstract

This article deals with a numerical method for solving the unsteady, incompressible Navier—Stokes equations in domains
with arbitrarily-shaped boundaries, where the boundary is represented using the Cartesian grid approach. We introduce a novel
cut-cell discretization which preserves thgectral properties of convection and diffusion. Here, convection is discretized by
a skew-symmetric operator and diffusion is approximated by a symmetric, positive-definite coefficient matrix. Such a symmetry-
preserving discretization conserves the kinetic energy (if the dissipation is turned off) and is stable on any grid. The method is
successfully tested for an incompressible, unsteady flow around a circular cylifie£dt00. To citethisarticle: R. Verstap-
pen, M. Droge, C. R. Mecanique 333 (2005).
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Résumé

Une méthode de grille cartésienne préservant la symétrie pour le calcul d’'un écoulement visqueux autour d’'un cy-
lindre circulaire. Cet article décrit une méthode numérique de résolution des équations de Navier—Stokes incompressibles
instationnaires dans des domaines de géoeséarbitraires. Nous partons d'une gridlartésienne, modifiée pres de la frontiere
par une nouvelle méthode de décogpale maille, compatible avec les propriétpectrales des opérateurs de convection et
de diffusion. Ainsi, les termes de convection sont discrétisés avec un opérateur discret anti-symétrique (skew-symmetric) et
les termes de diffusion sont approchés par un opérateur discret symétrique défini positif. Une telle discrétisation préservant la
symétrie permet de conserver I'énergie cinétique (quand la viscosité est negligée) et elle est stable sur n'importe quelle grille.
La méthode a été testée avec succes dans le cas de écoulement incompressible instationnaire autour d'un cylindre de section
circulaire pour une valeur du nombre de Reyndds= 100.Pour citer cet article: R. Verstappen, M. Drége, C. R. Mecanique
333 (2005).
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1. Introduction

This article deals with a numerical method for solving the unsteady, incompressible Navier—Stokes equations in
domains with arbitrarily-shaped boundaries, where the boundary is represented using the Cartesian grid approach
cf. [1-4]. The discretization of the convective and wigs fluxes through the faces of the irregular-shaped cells
created by the intersection of the boundary with the Cartesian grid forms the primary difficulty in a Cartesian grid
method. Away from the boundary, the simple structure of the Cartesian grid allows to retain much of the numer-
ical techniques that have proven to be successful for flows in simple, grid-aligned domains. For such flows, we
have proposed to compute numerical solutions of the Navier—Stokes equations in such a manner that the difference
operators do have the same symmetry properties as thespording differential operators [5]. Applied to the in-
compressible Navier—Stokes equations, the symmetry-preserving discretization method yields a dynamical system
of the form

d
ﬂ%+€(uh)uh+Duh—M*ph=O, Mu, =0 (1)

whereu;, denotes the semi-discrete velocity vecigy,stands for the discrete pressuf2,is a (positive-definite)
diagonal matrix representing the sizes of the control volumes\risl the coefficient matrix of the discretization
of the integral form of the law of conservation of mass. Here, the convective coefficient r6&urjy is skew
symmetric like the underlying differential operatar- V), i.e.

C(up)+ C(up)*=0 (2

and the discrete diffusive operatr is symmetric, positive definite like-V2. Mimicking crucial properties of
differential operators forms in itself a motivation for discretizing them in a certain manner. We give it a concrete
form by noting that the energjuy, |2 = uy 2u;, of any solution of (1) evolves according to

E(uh.fluh) = —uj(Cup) + Cup)*)up — uy (D + DHuy, = —uj (D + D*)uy,
where the right-hand side is negative formjl # 0 since D is a symmetric, positive-definite matrix. This implies
that the semi-discrete system (1) is stable. Therefore a solution of (1) can be obtained on any grid. Note that the dis-
crete pressure does not contribute to thalation of the discrete energy becausd* p,)*u;) = (p; Mu;) = 0.

In this article, the symmetry-preserving discretization method is generalized to a Cartesian grid method. To that
end, the convective flux through irregularly shaped boundary cells is discretized such that the associated coefficient
matrix C (uy,) is skew symmetric and the diffusive matrix is symmetric, positive definite. The method is tested for
an incompressible, unsteady flow around a circular cylindBeat 100.

2. Symmetry-preserving discretization

On nonuniform Cartesian grids various ways exist to discretize convective and diffusive operators. In this sec-
tion, we will discuss a finite-volume discretization of these operators that preserves the symmetry.

2.1. Choice of the control volumes

To start, we will explain our choice of the control volumes (in two spatial dimensions for simplicity). We assume
that the geometry is so well resolved on the grid that the boundary of the geometry can be approximated linearly
in any cut grid cell. The part of the grid celt;_1, x;] x [y;—1, y;1 that is open to fluid flow is denoted ky; ;.

The discrete velocityy; ;, v; ;) is staggered. The control volume fay ; takes up the right half of2; ; and the
left half of £2;1, ;. Here, we cut the open part of the grid c&l] ; into two equal halves, by viewing; ; as if it
is built out of (an infinite number of) horizontal line-segments that run fkpm to x; if the line-segment is uncut
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Fig. 1. Three control volumes far; ;. The parts that are not open to flow are colored black.

by a boundary, and from the boundary to eitker; or x; (depending on which end lies in the fluid) if it is cut.
Each line-segment is bisected ahe thalf nearest to the grid line= x; is taken. This definition is illustrated in
Fig. 1 by means of three examples. The control volume{gris defined in the same manner: its definition can be
obtained from that ofi; ; by exchanging: andy. For uncut cells, the control volumes are identical to those that
were chosen in [6].

2.2. Conservation of mass

For an incompressible fluid, the integral of the normal component of the velocity over the surface of any grid
cellis zero:

i+ —ii—1j — Vi j—1=0 (3
where the mass fluxes through the faces are defined by
Yj Xi
iy = [ uGoy0stdy and = [ G060y d (4)
Yj-1 Xi—1

Here, the fluid domain is indicated by a functié&x, y), which equals one inside the fluid and zero outside. Note,
the combination (3), (4) does not yet contain a discretization error, since the integrals in (4) are exact.

2.3. Skew-symmetric discretization of convection

As mass and momentum are transported at equal velocity, we will use (4) to discretize the velocity at which
momentum is transported. Thus, the momentum flux through a susfecapproximated by

/uu-ndS%uS/u-ndS

N N

whereu s denotes a characteristic valuewét the surface. At this stage, the integral in the right-hand side (that
is the mass flux through) is not approximated. The transport of mentum through the faces of a control volume
for u; ; becomes approximately

du,')j _ _ _ _
g T M1, j0nis1/2,) Ui y20i1/2,) T Uis1/2,jlni=1/2.] ~ Ui j-1/20i+1/2,j-1 ()
where|$2;11/2 ;| denotes the size of the control volume fgr;. The non-integer indices in (5) refer to the faces
of the control cell fory; ;. For exampley; 11,2, ; stands for a characteristicvelocity at the interface between the
control volumes foe; ; andu; 11 ;, andv;11/2 ; denotes the (exact) mass flux through the common boundary of
the control volumes for; ; andu; j;1, etc. Note that the mass flux through a part of the interface between the
control volumes fow; ; andu;41,; need not be aligned with. Therefore, it is denoted by, and not byu; see

also Fig. 2.

[£2i 4172,
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Fig. 2. Mass flux through the boundary of the control volumefoy.

The velocity at a control face is approximated by the average of the velocity at both sides of it:

1 1
Uitl1/2,j = E(ui+l,j +ui ;) and u;ji12= E(ui,j+1 +u; ) (6)

In addition to the set of equations for thecomponent of the velocity = (u, v), there is an analogous set for the
v-component. We conceive Eq. (5) togethath the interpolation rule (6) as axjgression for the velocities, where
the mass fluxes form the coefficients. Thus, we can write the discretization (5)+(6), together with an analogous set
for the v-component, in matrix-vector notation as
o duy, _
? + C(u)uy,

where the coefficient matri€ (i) depends on the mass fluxes through the control faces. Note that we make liberal
use of its name€ was viewed as a function of the discrete veloaityin the introductory section, whereésis a
function of exact mass fluxes here.

In the introductory section, we saw that (fbr= 0) the spatial discretization (1) conserves the eneigfu;,
if and only if the convective coefficient matri(u) is skew symmetric. Hence, the spatial discretization is stable
whenC (u) is skew symmetric. The matrik (u) — diag(C (u)) is skew symmetric if and only if the weights in the
interpolation ofu (andv) to the control faces are constant, as in Eq. (6). Therefore we use (6) also on nhonuniform
grids. To makeC (u) skew symmetric, the interpolation rule f@randv is determined by the requirement that the
diagonal ofC (i) has to be zero. By substituting the interpolatiorer{@) into (5) we obtaintte diagonal coefficient

1 ) ) )
SUniv12.j + Vit1/2.j — ni-1/2.j = Vi+1/2,j-1)

This expression is zero if the mass is conserved in the grid cells and the mass fluxes in (5) are interpolated to the
control faces with weights one half:

~ 1._ _ _ 1_ _
Upitl/2,j = E(uH»l,j +iu; ;) and V12 = E(UiJrl,j + i) (7)

The interpolation ofi,; 1,2, ; is illustrated in Fig. 3(left). The mass flux, ;11,2 ; through the right-hand face of
the control volume fou; ; is written as the average of the mass flux at both sidgs:1/2 ; = %(ﬁleft + itright),
where we take the flux through the face- x; for the left-hand side, that ifeft = i; ;. The right-hand contribution
is approximated by the sum of the mass flux throughiyotenuse of the triangle that is not open to the flow and
the mass flux through the open part of the face x; 11, i.€. uright = 0+ it;4+1, ;. The fluxv;y1/2 ; is also seen as
the sum of a left- and right-hand contributiai,1/2, ; = dleft -+ Uright, With Dieft = 30;,j andright = 30;+1,j, SE€
Fig. 3(right).

Obviously, the mass fluit need be expressed in terms of the discrete velocity vegtto close the discretiza-
tion. The coefficient matrixC (z) becomes a function of the discrete veloaity then: C (u;,) = C (i (uy)). The
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Fig. 3. lllustration of the interpolation of the mass flix; 11,2, ; (left-hand) andy; 1,2, ; (right-hand). Here, the black triangle is not open to
flow. The dashed line represents the cell face.

matrix C (uy,) is skew symmetric for any relation betwegrandu;,. We relate the mass fluxasto the discrete
velocity u;, by means of:

Vi X
IZ,’)]‘ZM,')]‘ / S(x,-,y)dy and ﬁi,jzv,-,j / 8(x,yj)dx. (8)
yj-1 Xi-1

Substituting these approximations into Eq. (3) gives the discrete continuity constraint, which confines the discrete
velocity to Muy;, = 0.

2.4. Discretization of diffusion

In the continuous case diffusion corresponds to a symmetric, positive definite operator. We want this property
to hold also for the discrete operatbrin Eq. (1). To that end, the diffusive flux through the interfécbetween
the control volumes of;_1 ; andu; ; may be approximated in a common way:

Ui— Ui-1,j —Uij Ui, j
— |V ds ~ S 9
/ uemds~ = — 15| 9)

where the length of the vectag is approximated in terms of the size of the faécand sizes of the control volumes
for u;—1,; andu; ;. The diffusive flux through the other faces of the control celldgy is discretized similarly.
The resulting coefficient matrik is symmetric and positive definite.

3. Flow over acircular cylinder

The Cartesian grid method (outéid in Section 2) is applied to compute the unsteady flow around a circular
cylinder atRe = 100, where the Reynolds numbRe is based upon the diameter of the cylinder and the free
stream velocity. This flow has served as a test case/ddous numerical approaches. In this section, we will
compare our results with those in [7] and [8]. Kravchenko et al. [7] considered the flow past a circular cylinder to
evaluate their Galerkin B-spline method. Persillon andzr[8] studied the test case by means of a second-order,
curvilinear, finite-volume methodExperimental data can be found in [9] and the references therein.

To confine the flow domain, fictitious bouniss are necessary (sufficiently) far away from the cylinder. We take
the inflow boundary at four diameters upstreitom the cylinder. The inflow condition reads= 1, v = 0. The
lateral boundaries are taken 8 diameters apart. At these boundaries the normal derivatives of the components of the
velocity are set equal to zero. The outflow is located alid@heters past the cylinder. Also at the outflow, Neumann
conditions are applied. Computations have been performed on four grids consisting »f 1200 150x 180,
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Table 1
Comparison with other simulations and experiments. When given, the drag coefficient is written as the sum
of the pressure drag and the viscous drag. The experangsita is taken from [9] and the references therein

S Cp,p Cp,r Cp maxcCyp, Osep
Present a65 Q93 031 124 030 117
[7] 0.164 Q97 034 131 0.314 1174
[8] 0.165 1253 Q38 1135
Exp. [10] 10 0.3 13
Experiment 0164-0165 124-126[11] 122 [12]

* Note: [7] gives the magp. In our case, magp is 0.02 higher than meafip.
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Fig. 4. (Left) A comparison between experimeamid simulation: the pressure distribution at $heface of the cylinder, as function of the angle.
(Right) The separation anglgepand pressure dragp, as function of the square of the mean mesh size.

200x 240 and 40t 480 points (in lateral and streamwise direction) respectively. The time-integration is performed
asin [5].

Table 1 shows a comparison of bulk quantities as obtained from our fine-grid simulation with those of the ref-
erences mentioned above. The good agreement with the other numerical simulation techniques as well as with
the physical experiments confirms the correct behavior of the present approach and shows that the symmetry-
preserving Cartesian grid method forms a good alternative for boundary-fitted structured and boundary-fitted
unstructured methods. Fig. 4(left) displays the pressure distribution at the surface of the cylinder as obtained with
the symmetry-preserving Cartesian grid method. At all four grids the numerical result is in good agreement with
an experimentally determined pressure distribution. To study the convergence of the symmetry-preserving scheme
upon grid refinement, the pressure digg , and the separation angleepare shown as function of the square of
the mean mesh size in Fig. 4(right). The figure shows that, andésep are (approximately) linear functions of
the square of the mean mesh size. Hence, we may conclude that the scheme is second-order.
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