

Available online at www.sciencedirect.com

C. R. Mecanique 333 (2005) 111-116

http://france.elsevier.com/direct/CRAS2B/

On the slow motion of a cluster of bubbles under the combined action of gravity and thermocapillarity

Antoine Sellier

LadHyX, École polytechnique, 91128 Palaiseau cedex, France Received 11 August 2004; accepted after revision 11 October 2004 Available online 21 November 2004 Presented by Sébastien Candel

Abstract

The slow migration of *N* spherical bubbles under combined buoyancy and thermocapillarity effects is investigated by appealing solely to 3N + 1 boundary-integral equations. In addition to the theory and the associated implementation strategy, preliminary numerical results are both presented and discussed for a few clusters involving 2, 3, 4 or 5 bubbles with a special attention paid to the case of rigid configurations. *To cite this article: A. Sellier, C. R. Mecanique 333 (2005).* © 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Sur la migration d'un ensemble de bulles sous l'action conjuguée de la pesanteur et d'effets thermocapillaires. On détermine la migration de N bulles sphériques sous l'action combinée de la pesanteur et d'effets thermocapillaires par la seule résolution de 3N + 1 équations de frontière. Outre la théorie et sa mise en oeuvre numérique on présente les premiers résultats obtenus pour quelques situations à 2, 3, 4 ou 5 bulles avec une attention particulière pour les configurations rigides. *Pour citer cet article : A. Sellier, C. R. Mecanique 333 (2005).*

© 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Keywords: Fluid mechanics; Buoyancy; Thermocapillarity; Boundary-integral equations

Mots-clés : Mécanique des fluides ; Sédimentation ; Thermocapillarité ; Équations de frontière

1. Introduction

At least for experimental applications [1] it is worth determining the migration of small spherical bubbles under the combined action of gravity and thermocapillarity. Unfortunately, the available studies [2,3] only address the

E-mail address: sellier@ladhyx.polytechnique.fr (A. Sellier).

^{1631-0721/\$ -} see front matter © 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved. doi:10.1016/j.crme.2004.10.004

Fig. 1. (a) A 2-bubble and (b) 3-bubble cluster immersed in a Newtonian liquid. Fig. 1. Cas de (a) deux ou (b) trois bulles plongées dans un liquide Newtonien.

case of two bubbles. This work thus presents a new procedure valid for arbitrary *N*-bubbles clusters and resorting to 3N + 1 boundary-integral equations. It achieves and tests the numerical implementation of a recent general (arbitrary non-necessarily rigid clusters) theory [4] and pays a special attention to a few rigid falling or ascending clusters of equal or inequal bubbles.

2. Assumptions and governing equations

We consider (see Fig. 1) $N \ge 1$ spherical bubble(s) $\mathcal{P}_{(n)}$ with radius $a_{(n)}$, center $O_{(n)}$ and surface $S_{(n)}$ immersed in a Newtonian liquid of uniform viscosity μ and density ρ .

The surface tension $\gamma_{(n)}$ on $S_{(n)}$, high enough to keep $\mathcal{P}_{(n)}$ spherical, depends on the temperature T with $\gamma'_{(n)} = d\gamma_{(n)}/dT < 0$ uniform. Cartesian coordinates (O, x_1, x_2, x_3) with $x_i = \mathbf{OM} \cdot \mathbf{e}_i$ are used and the bubbles subject to the uniform gravity field $\mathbf{g} = -g\mathbf{e}_3$ (with g > 0) and ambient temperature gradient ∇T_{∞} translate without rotating. Therefore, $\mathcal{P}_{(n)}$ experiences an unknown (translational) velocity $\mathbf{U}^{(n)}$ with scale $V_{(n)}$. Assuming [5,6] non-conducting surfaces $S_{(n)}$ and negligible inertial effects ($Re = \rho \operatorname{Max}(a_{(n)}V_{(n)})/\mu \ll 1$), the fluid has temperature $T_{\infty} + T'$, pressure $p + \rho gx_3$ and velocity \mathbf{u} such that

$$\nabla^2 T' = \nabla \cdot \mathbf{u} = 0 \quad \text{and} \quad \mu \nabla^2 \mathbf{u} = \nabla p \quad \text{in } \Omega; \quad (\nabla T', \mathbf{u}, p) \to (\mathbf{0}, \mathbf{0}, 0) \quad \text{as } r = |\mathbf{OM}| \to \infty$$
(1)

$$\nabla T' \cdot \mathbf{n} = -\nabla T_{\infty} \cdot \mathbf{n}, \quad \mathbf{u} \cdot \mathbf{n} = \mathbf{U}^{(n)} \cdot \mathbf{n}, \quad \boldsymbol{\sigma} \cdot \mathbf{n} - [\mathbf{n} \cdot \boldsymbol{\sigma} \cdot \mathbf{n}]\mathbf{n} = -\gamma'_{(n)} \nabla_{s} [T_{\infty} + T'] \quad \text{on } S_{(n)}$$
(2)

with Ω the unbounded liquid domain, **n** the unit outward normal on $S_{(n)}$, $\nabla_s[f] = \nabla f - (\nabla f \cdot \mathbf{n})\mathbf{n}$ and σ the stress tensor associated to (\mathbf{u}, p) . Neglecting inertial effects we determine $(\mathbf{U}^{(1)}, \dots, \mathbf{U}^{(N)})$ by supplementing (1) and (2) with the relations

$$\mathbf{F}^{(n)} = \int_{S_{(n)}} \boldsymbol{\sigma} \cdot \mathbf{n} \, \mathrm{d}S = 4\pi \, a_{(n)}^3 \rho \mathbf{g}/3 \quad \text{for } n = 1, \dots, N \tag{3}$$

For i = 1, 2, 3 and n = 1, ..., N let us introduce 3N Stokes flows $(\mathbf{u}_i^{(n)}, p_i^{(n)})$ with stress tensors $\boldsymbol{\sigma}_i^{(n)}$ obeying the same equations (1) as (\mathbf{u}, p) and the boundary conditions

$$\mathbf{u}_{i}^{(n)} \cdot \mathbf{n} = \delta_{nm} \mathbf{e}_{i} \cdot \mathbf{n} \quad \text{and} \quad \boldsymbol{\sigma}_{i}^{(n)} \cdot \mathbf{n} - [\mathbf{n} \cdot \boldsymbol{\sigma}_{i}^{(n)} \cdot \mathbf{n}] \mathbf{n} = \mathbf{0} \quad \text{on } S_{(m)} \text{ for } m = 1, \dots, N$$
(4)

with δ the Kronecker symbol. Using the usual tensor summation convention, the unknown quantities $U_j^{(m)} = \mathbf{U}^{(m)} \cdot \mathbf{e}_j$ are then governed [4] by the 3*N*-equation linear system

$$\sum_{m=1}^{N} \sum_{j=1}^{3} A_{ij}^{(n),(m)} U_{j}^{(m)} = \sum_{m=1}^{N} \int_{S_{(m)}} \gamma'_{(m)} (\delta_{nm} \mathbf{e}_{i} - \mathbf{u}_{i}^{(n)}) \cdot \nabla_{s} [T_{\infty} + T'] \, \mathrm{d}S - \frac{4}{3} \pi a_{(n)}^{3} \rho g \delta_{i3}$$
(5)

where the occurring coefficients $A_{ij}^{(n),(m)}$ are defined as follows

$$A_{ij}^{(n),(m)} = \int\limits_{S_{(m)}} (\mathbf{e}_j \cdot \mathbf{n}) (\mathbf{n} \cdot \boldsymbol{\sigma}_i^{(n)} \cdot \mathbf{n}) \,\mathrm{d}S \tag{6}$$

Since we know ∇T_{∞} and $\mathbf{u}_{i}^{(n)} \cdot \mathbf{n}$ on $S = \bigcup_{m=1}^{N} S_{(m)}$ the unique [4] solution ($\mathbf{U}^{(1)}, \ldots, \mathbf{U}^{(N)}$) to (5) and (6) is readily obtained by solely evaluating on S the vectors $\nabla_{s}T', \mathbf{a}_{i}^{(n)} = \mathbf{u}_{i}^{(n)} - (\mathbf{u}_{i}^{(n)} \cdot \mathbf{n})\mathbf{n}$ and the function $a_{i}^{(n)} = \mathbf{n} \cdot \boldsymbol{\sigma}_{i}^{(n)} \cdot \mathbf{n}/\mu$. Such a key task is detailed in Sections 3 and 4.

3. Relevant boundary-integral equations

The second Green's identity for the harmonic function T' such that $\nabla T' \cdot \mathbf{n} = -\nabla T_{\infty} \cdot \mathbf{n}$ on *S* easily yields the well-posed Fredholm boundary-integral equation of the second kind

$$-4\pi T'(\mathbf{x}) + \int_{S_{(m)}} \left[T'(\mathbf{y}) - T'(\mathbf{x}) \right] \frac{(\mathbf{x} - \mathbf{y}) \cdot \mathbf{n}(\mathbf{y})}{|\mathbf{x} - \mathbf{y}|^3} \, \mathrm{d}S(\mathbf{y}) + \int_{S \setminus S_{(m)}} T'(\mathbf{y}) \frac{(\mathbf{x} - \mathbf{y}) \cdot \mathbf{n}(\mathbf{y})}{|\mathbf{x} - \mathbf{y}|^3} \, \mathrm{d}S(\mathbf{y})$$
$$= -\int_{S} \frac{\left[\nabla T_{\infty} \cdot \mathbf{n} \right](\mathbf{y})}{|\mathbf{x} - \mathbf{y}|} \, \mathrm{d}S(\mathbf{y}) \quad \text{for } M \text{ on } S_{(m)}$$
(7)

Note that (7) provides on *S* not only *T'* but also the required vector $\nabla_s T'$ by tangential differentiation. When seeking the other desired surface quantities $a_i^{(n)}$ and $\mathbf{a}_i^{(n)}$ it is fruitful to introduce the Oseen–Burgers free-space Green's tensor $\mathbf{G}(\mathbf{y}, \mathbf{x}) = G_{jk}(\mathbf{y}, \mathbf{x})\mathbf{e}_j \otimes \mathbf{e}_k$ and its associated stress tensor $\mathbf{T}(\mathbf{y}, \mathbf{x}) = T_{kjl}(\mathbf{y}, \mathbf{x})\mathbf{e}_k \otimes \mathbf{e}_j \otimes \mathbf{e}_l$ such that

$$G_{jk}(\mathbf{y}, \mathbf{x}) = \frac{\delta_{jk}}{|\mathbf{x} - \mathbf{y}|} + \frac{(y_k - x_k)(y_j - x_j)}{|\mathbf{x} - \mathbf{y}|^3}, \qquad T_{kjl}(\mathbf{y}, \mathbf{x}) = -\frac{6(y_k - x_k)(y_j - x_j)(y_l - x_l)}{|\mathbf{x} - \mathbf{y}|^5}$$
(8)

Indeed, it can be established starting with the material in [7] that any Stokes flow (\mathbf{u}', p') with stress tensor $\boldsymbol{\sigma}'$ subject to (1) admits on *S* surface quantities d, $\mathbf{a} = a_k \mathbf{e}_k$, a and $\mathbf{d} = d_k \mathbf{e}_k$ defined as

$$d = \mathbf{u}' \cdot \mathbf{n}, \quad \mathbf{a} = \mathbf{u}' - (\mathbf{u}' \cdot \mathbf{n})\mathbf{n}, \quad a = \mathbf{n} \cdot \boldsymbol{\sigma}' \cdot \mathbf{n}/\mu, \quad \mathbf{d} = \left[\boldsymbol{\sigma}' \cdot \mathbf{n} - (\mathbf{n} \cdot \boldsymbol{\sigma}' \cdot \mathbf{n})\mathbf{n}\right]/\mu$$
(9)

that satisfy the following condition and coupled boundary-integral equations

$$\mathbf{a} \cdot \mathbf{n} = \mathbf{0}$$
 on S and $\mathbf{L}_m[a, \mathbf{a}](M) = \mathbf{D}_m[d, \mathbf{d}](M)$ for M on $S_{(m)}, m = 1, \dots, N$ (10)

with, for *M* on $S_{(m)}$ and $\mathbf{x} = \mathbf{OM} = x_k \mathbf{e}_k$, the following definitions

$$\mathbf{L}_{m}[a, \mathbf{a}](M) = \left\{ 8\pi a_{j}(\mathbf{x}) - \int_{S_{(m)}} \left[a_{k}(\mathbf{y}) - a_{k}(\mathbf{x}) \right] T_{kjl}(\mathbf{y}, \mathbf{x}) n_{l}(\mathbf{y}) \, \mathrm{d}S(\mathbf{y}) - \int_{S \setminus S_{(m)}} a_{k}(\mathbf{y}) T_{kjl}(\mathbf{y}, \mathbf{x}) n_{l}(\mathbf{y}) \, \mathrm{d}S(\mathbf{y}) + \int_{S} G_{jk}(\mathbf{y}, \mathbf{x}) n_{k}(\mathbf{y}) a(\mathbf{y}) \, \mathrm{d}S(\mathbf{y}) \right\} \mathbf{e}_{j}$$
(11)

$$\mathbf{D}_{m}[d, \mathbf{d}](M) = \left\{-8\pi [dn_{j}](\mathbf{x}) + \int_{S_{(m)}} \left\{ [dn_{k}](\mathbf{y}) - [dn_{k}](\mathbf{x}) \right\} T_{kjl}(\mathbf{y}, \mathbf{x}) n_{l}(\mathbf{y}) \, \mathrm{d}S(\mathbf{y}) \right. \\ \left. + \int_{S \setminus S_{(m)}} [dn_{k}](\mathbf{y}) T_{kjl}(\mathbf{y}, \mathbf{x}) n_{l}(\mathbf{y}) \, \mathrm{d}S(\mathbf{y}) - \int_{S} G_{jk}(\mathbf{y}, \mathbf{x}) d_{k}(\mathbf{y}) \, \mathrm{d}S(\mathbf{y}) \right\} \mathbf{e}_{j}$$
(12)

Hence, we obtain $a_i^{(n)}$ and $\mathbf{a}_i^{(n)}$ on *S* by solving (10)–(12) for $d = \delta_{nm} \mathbf{e}_i \cdot \mathbf{n}$ on $S_{(m)}$ and $\mathbf{d} = \mathbf{0}$ on *S*. In summary, the velocities $\mathbf{U}^{(n)}$ are gained by inverting only the 1 + 3*N* above-mentioned boundary-integral equations (7) and (10)–(12) on the cluster's surface *S*.

4. Numerical method and results

We define on each $S_{(m)}$ a $N_{(m)}$ -node mesh of 6-node isoparametric curvilinear triangular boundary elements [7,8] and a unit vector $\mathbf{c}_{(m)}$ such that the tangential vectors $\mathbf{t}_1 = \mathbf{n} \wedge \mathbf{c}_{(m)}$ and $\mathbf{t}_2 = \mathbf{n} \wedge \mathbf{t}_1$ are non-zero at any nodal point. Thus, *S* admits $N_t = \sum_{m=1}^{N} N_{(m)}$ nodes at which we set $\mathbf{a}_i^{(n)} = a_i^{(n),1} \mathbf{t}_1 + a_i^{(n),2} \mathbf{t}_2$ (therefore ensuring the condition $\mathbf{a}_i^{(n)} \cdot \mathbf{n} = 0$) with unknown functions $a_i^{(n),1}, a_i^{(n),2}$. Each discretized boundary-integral equation is a linear system, of dense and non-symmetric $N'_t \times N'_t$ influence matrix $(N'_t = N_t \text{ for } (7) \text{ and } N'_t = 3N_t \text{ for } ((10)-(12))$, which is solved by a LU factorization. The numerical implementation is tested both for a single bubble $\mathcal{P}_{(1)}$ ascending $(\nabla T_{\infty} = \mathbf{0})$ at the velocity $a_{(1)}^2 \rho g u_s / \mu \mathbf{e}_3$ with [9] $u_s = 1/3$ and two bubbles $\mathcal{P}_{(1)}$ and $\mathcal{P}_{(2)}$ translating for ∇T_{∞} parallel to \mathbf{e}_3 in absence of gravity at the velocities $\mathbf{U}^{(1)}$ and $\mathbf{U}^{(2)}$. If $\mathbf{O}_{(1)}\mathbf{O}_{(2)}$ is aligned with or normal to \mathbf{e}_3 there exist [5,6] four coefficients M_{11}, M_{12}, M_{21} and M_{22} depending on $\lambda = (a_1 + a_2)/O_1O_2$ such that

$$\mathbf{U}^{(1)} = -\frac{[a_{(1)}\gamma'_{(1)}M_{11} + a_{(2)}\gamma'_{(2)}M_{12}]\nabla T_{\infty}}{2\mu}, \qquad \mathbf{U}^{(2)} = -\frac{[a_{(1)}\gamma'_{(1)}M_{21} + a_{(2)}\gamma'_{(2)}M_{22}]\nabla T_{\infty}}{2\mu}$$
(13)

As shown by Tables 1 and 2 for $a_{(2)} = 2a_{(1)}$ and $\mathbf{O}_{(1)}\mathbf{O}_{(2)} \wedge \mathbf{e}_3 = \mathbf{0}$ (see Fig. 1(a)), the use of 242 collocation points on each bubble yields a quite sufficient precision of order of 0.1% both for distant ($\lambda = 3/23$) or close ($\lambda = 10/11$) bubbles.

Henceforth, $\nabla T_{\infty} = -\alpha \mathbf{e}_3$ with $\alpha > 0$, $\gamma'_{(n)} = \gamma' < 0$ and $N_{(n)} = 242$. First we consider equal bubbles $(a_{(n)} = a)$ located at the vertices of a regular horizontal polygon with $\mathbf{OO}_{(n)} = d(\cos \alpha_{(n)} \mathbf{e}_1 + \sin \alpha_{(n)} \mathbf{e}_2)$, $\alpha_{(n)} = 2\pi (n-1)/N$ and d large enough so that bubbles do not touch. For symmetry reasons $\mathbf{U}^{(n)} = a^2 \rho g u / (3\mu) \mathbf{e}_3$ with u the velocity normalized by the settling velocity of a single bubble.

As shown in Fig. 2(a), u is in absence of capillary effects ($\nabla T_{\infty} = 0$) positive and, due to bubble–bubble interactions, increases with N and a/d. For example, $u \sim 1.8$ for five very close bubbles (N = 5, d/a = 1.75). When $\nabla T_{\infty} = -\alpha \mathbf{e}_3$ is non-zero and strong enough a given cluster ((N, d) prescribed) fall. This occurs if the 'dynamic Bond number' $G_{(n)} = a_{(n)}\rho g/(3\gamma'\alpha)$ [3] is smaller than a critical value G_c plotted in Fig. 2(b) versus d/a for N = 2, ..., 5. The rigid cluster is at rest for $G_{(1)} = G_c$ and falls or ascends if $G_{(1)} < G_c$ or $G_{(1)} > G_c$,

Table 1									
Computed	d value of u_s for diff	ferent surface $N_{(1)}$ -no	ode meshing of a single	e settling bubble					
$\mathcal{P}_{(1)}$									
Tableau 1									
Estimations numériques de u_s pour différents nombres $N_{(1)}$ de points de collocation sur									
la surface	d'une bulle $\mathcal{P}_{(1)}$ so	oumise à la seule pesa	nteur						
$N_{(1)}$	74	242	1058	Analytical					
11 c	0 33183	0 33301	0 33331	0 33333					

114

Table 2

Effect of mesh refinement for the coefficients M_{11} , M_{12} , M_{21} and M_{22} if $a_{(2)} = 2a_{(1)}$. The results obtained in [5,6] are listed for comparisons

Tableau 2

Influence du choix du maillage sur l'évaluation numérique des coefficients M_{11}, M_{12}, M_{21} et M_{22} pour deux bulles différentes $(a_{(2)} = 2a_{(1)})$. Les résultats obtenus dans [5,6] sont fournis à titre de comparaison

$N_{(n)}$	λ	M_{11}	M_{12}	M_{21}	M ₂₂
74	3/23	0.97201	0.00116	0.00015	0.97203
242	3/23	0.99535	0.00074	0.00012	0.99592
1058	3/23	0.99903	0.00067	0.00008	0.99960
[5]	3/23	0.99934	0.00066	0.00008	0.99992
74	10/11	0.59198	0.15698	0.08536	0.95447
242	10/11	0.73274	0.25997	0.04577	0.95183
1058	10/11	0.73099	0.26856	0.04699	0.95266
[6]	10/11	0.73136	0.26864	0.04700	0.95300
[5]	10/11	0.73106	0.26894	0.04650	0.95350

Fig. 2. (a) Normalized velocity u for $\nabla T_{\infty} = \mathbf{0}$; and (b) critical parameter G_c versus d/a for N = 2 (•), N = 3 (\triangle), N = 4 (\blacksquare) and N = 5 (\diamondsuit). Fig. 2. (a) Vitesse adimensionnée u pour $\nabla T_{\infty} = \mathbf{0}$; et (b) paramètre critique G_c en fonction de d/a pour N = 24 (•), N = 3 (\triangle), N = 4 (\blacksquare) et N = 5 (\diamondsuit).

respectively. We recover [3] for N = 2 and, in full agreement with Fig. 2(a), G_c tends to 1/2 (case of a single bubble) for d/a large and decreases both with N and a/d.

Let us now consider (see Fig. 1(b)) a big bubble $\mathcal{P}_{(1)}$ located above two smaller bubbles $\mathcal{P}_{(2)}$ and $\mathcal{P}_{(3)}$ with $a_{(2)} = a_{(3)} = a_{(1)}/2$, $OO_{(1)} = he_3$ and $OO_{(3)} = -OO_{(2)} = de_1$. This time $U^{(n)} = a_{(2)}^2 \rho g u_{(n)}/(3\mu)e_3$ with $u_{(2)} = u_{(3)}$. As shown in Fig. 3(a) for $h/a_{(2)} = 5$, $u_{(1)}$ and $u_{(2)}$ deeply depend on $G_{(1)} = a_{(1)}\rho g/(3\gamma'\alpha)$ and $d/a_{(2)} : u_{(1)}$ and $u_{(2)}$ are different and positive (negative) if $d/a_{(2)} \leq 15$ for $G_{(1)} = 0.6$ ($G_{(1)} = 0.3$) but $u_{(1)} - u_{(2)}$ changes sign and vanishes at $d/a_{(2)} \sim 8.18$ if $G_{(1)} = 0.45$. Other critical settings (h, d) ensuring $u_{(1)} = u_{(2)}$ exist for $G_{(1)} \in [G_i, G_s]$. Requiring equal velocities for distant bubbles ($d \rightarrow \infty$) easily yields $G_i = 1/3$ for $a_{(1)}/a_{(2)} = 2$ and a Newton–Raphson procedure for close bubbles ($d/a_{(2)} = 1.1$) gives G_s and the critical triplets ($d/a_{(2)}$, d/h, G_c) for which $u_{(1)} = u_{(2)} = 0$. As depicted in Fig. 3(b), the obtained rigid configurations ($u_{(1)} = u_{(2)}$) are falling ($u_{(1)} = u_{(2)} < 0$) for $h/a_{(2)} \ge 8.20$ and either falling ($u_{(1)} = u_{(2)} < 0$ if $G_{(1)} \in [G_i, G_c]$, at rest ($u_{(1)} = u_{(2)} = 0$ if $G_{(1)} = G_c$) or ascending ($u_{(1)} = u_{(2)} > 0$ if $G_{(1)} \in [G_c, G_s]$) for $h/a_{(2)} \le 8.20$.

Fig. 3. (a) Normalized velocities $u_{(n)}$ for $h/a_{(2)} = 5$ and $G_{(1)} = 0.30$ $(u_{(1)} (\diamond)$ and $u_{(2)} (\blacklozenge)$), $G_{(1)} = 0.45$ $(u_{(1)} (\bullet)$ and $u_{(2)} (\diamond)$) and $G_{(1)} = 0.60$ $(u_{(1)} (\Box)$ and $u_{(2)} (\blacksquare)$); (b) Values of $G_i (\bullet)$, $G_s (\diamond)$ and G_c (dashed line). The solid line plots versus $h/a_{(2)}$ the critical ratio d/(2h) for which the cluster is rigid and motionless $(u_{(1)} = u_{(2)} = 0)$ when $G_{(1)} = G_c$.

Fig. 3. (a) Vitesses adimensionnées u_n pour $h/a_{(2)} = 5$ et $G_{(1)} = 0$, 30 $(u_{(1)} (\diamond)$ et $u_{(2)} (\diamond)$), $G_{(1)} = 0.45 (u_{(1)} (\bullet)$ et $u_{(2)} (\circ)$) et $G_{(1)} = 0.60 (u_{(1)} (\Box)$ et $u_{(2)} (\blacksquare)$); (b) Paramètres $G_i (\bullet)$, $G_s (\circ)$ et G_c (pointillés). La courbe en trait plein trace en fonction de $h/a_{(2)}$ le rapport critique d/(2h) pour lequel le nuage de bulles est indéformable et au repos $(u_{(1)} = u_{(2)} = 0)$ lorsque $G_{(1)} = G_c$.

5. Concluding remarks

For arbitrary clusters, the velocity $\mathbf{U}^{(n)}$ of $\mathcal{P}_{(n)}$ is, in general, not necessarily parallel to the gravity direction \mathbf{g} when $\nabla T_{\infty} \wedge \mathbf{g} = \mathbf{0}$. Such challenging cases, occurring for instance as time evolves for the addressed 3-bubble cluster when $u_{(1)} \neq u_{(2)}$, are currently investigated by exploiting the advocated method. For example, steady 3-bubble configurations translating like a rigid-body at a velocity non-aligned with \mathbf{g} are expected to be found when allowing for this time bubbles of non-equal coefficients $\gamma'_{(n)}$.

References

- [1] N.O. Young, J.S. Goldstein, M.J. Block, The motion of bubbles in a vertical temperature gradient, J. Fluid Mech. 197 (1959) 350-356.
- R.M. Merritt, D.S. Morton, R.S. Subramanian, Flow structure in bubble migration under the combined action of buoyancy and thermocapillarity, J. Colloid Interf. Sci. 155 (1993) 200–209.
- [3] H. Wei, R.S. Subramanian, Migration of a pair of bubbles under the combined action of gravity and thermocapillarity, J. Colloid Interf. Sci. 172 (1995) 395–406.
- [4] A. Sellier, On the capillary motion of arbitrary clusters of spherical bubbles. Part 1. General theory, J. Fluid Mech. 197 (2004) 391-401.
- [5] M. Meyyappan, W. Wilcox, R.S. Subramanian, The slow axisymmetric motion of two bubbles in a thermal gradient, J. Colloid Interf. Sci. 94 (1983) 243–257.
- [6] V.S. Satrape, Interactions and collisions of bubbles in thermocapillary motion, Phys. Fluids A 4 (1992) 1883–1900.
- [7] C. Pozrikidis, Boundary Integral and Singularity Methods for Linearized Viscous Flow, Cambridge University Press, 1992.
- [8] M. Bonnet, Boundary Integral Equation Methods for Solids and Fluids, Wiley, 1999.
- [9] D.D. Joseph, Y.Y. Renardy, Fundamentals of Two-Fluid Dynamics. Part I: Mathematical Theory and Applications, Springer-Verlag, 1991.