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Abstract

We propose, in this Note, a new procedure for data completion based on the minimization of an energy like error fu
The efficiency of the proposed method is illustrated by a thermostatic application.To cite this article: S. Andrieux et al., C. R.
Mecanique 333 (2005).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Complétion de données via une fonctionnelle d’erreur énergétique. Nous proposons, dans ce travail, une nouvelle
thode de reconstruction de données basée sur la minimisation d’une fonctionnelle type écart en énergie. L’éffica
méthode est illustrée par une application issue de la thermostatique.Pour citer cet article : S. Andrieux et al., C. R. Mecanique
333 (2005).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

We consider in this work the problem of recovering lacking data on some part of the boundary of a doma
overspecified boundary data on the remaining part of the boundary. This kind of problem may occur very
engineering sciences. The reconstruction of physical variables from lacking data is highly useful in many in
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processes. The more common problem, borrowed from thermostatics, consists in recovering the temper
given domain when the temperature distribution andthe heat flux along the accessible region of the boundary
known. For the reader’s convenience we shall be presenting the issue in the framework of the thermosta
which is similar to the electrostatic case encountered in electric impedance tomography. Note that this p
is obviously extendable to elastostatics.

Given a fluxΦ and the corresponding temperatureT on Γc, one wants to recover the corresponding flux a
temperature on the remaining part of the boundaryΓi , whereΓc andΓi constitute a partition of the whole boun
ary ∂Ω . The problem can therefore be set out as follows: find(ϕ, t) onΓi such that:


∇ · k∇u = 0 in Ω

k∇u · n = Φ onΓc

u = T onΓc

(1)

This problem has been known, since Hadamard [1], to be illposed in the sense that the dependence ofu on the data
(Φ,T ) is known to be not continuous. We propose, in this Note, to reconstruct the lacking data using the
error function introduced in [2] in the framework ofparameter identification (see also [6] and [8]).

2. Data completion

Observe that, when the complete data are available onΓ , we have an overspecified boundary value problem


∇ · k∇u = 0 in Ω

u = T , k∇u · n = φ onΓc

u = t, k∇u · n = ϕ onΓi

(2)

The approach in the error functional method is to consider, for a given pair(η, τ ), the following two mixed problem
whose solutions are denoted byu1 andu2:


∇ · k∇u1 = 0 in Ω

u1 = T onΓc

k∇u1 · n = η onΓi

(3)




∇ · k∇u2 = 0 in Ω

u2 = τ onΓi

k∇u2 · n = Φ onΓc

(4)

and to build an error functional on the pair(η, τ ) by using an energy norm for the comparison of the fieldsu1
andu2. These fields are obviously equal only when the pair(η, τ ) meets the real data(ϕ, t) on the boundaryΓi .
We propose then to solve the data completion problem via the following minimization:


(ϕ, t) = argminKV (η, τ ) ≡ argmin

∫
Ω(k∇u1 − k∇u2) · (∇u1 − ∇u2)

η ∈ H−1/2(Γi), τ ∈ H 1/2(Γi), u1 andu2 being the solution of (3) and (4)

(here and from now onH−1/2(Γi) denotes the topological dual ofH 1/2(Γi))

(5)

Using the properties of theui fields, it is straightforward to derive an alternative expression of theKV functional:

KV(η, τ ) =
∫
Γi

(η − k∇u2 · n)(u1 − τ ) +
∫
Γc

(k∇u1 · n − Φ)(T − u2) (6)

Furthermore, noticing that by the superposition principle theui fields are affine with respect to the pair(η, τ ), it is
easy to evaluate the gradient of the error functional:
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∂KV

∂η
(ψ) =

Γi

(
u1(η) − τ

)
ψ dΓi +

Γc

k
∂u1(ψ)

∂n

(
T − u2(τ )

)
dΓc

for all ψ in H−1/2(Γi)

(7)




∂KV

∂τ
(h) =

∫
Γi

[
k
∂u2

∂n
(τ) − η

]
h +

∫
Γc

[
Φ − k

∂u1

∂n
(η)

]
u∗

2(h)

for all h in H 1/2(Γi)

(8)

whereu∗
1 andu∗

2 are solutions to:


∇ · k∇u∗
1 = 0 in Ω

u∗
1 = 0 onΓc

k∇u∗
1 · n = ψ onΓi




∇ · k∇u∗
2 = 0 in Ω

u∗
2 = h onΓi

k∇u∗
2 · n = 0 onΓc

(9)

However, the components of the gradient can be computed in a more efficient way using the adjoint metho
allows one to evaluate the gradient in any direction using only the determination of two adjoint fieldsv1 andv2:



∂KV (η, τ )

∂η
(ψ) = −

∫
Γi

2v1ψ

∂KV (η, τ )

∂τ
(h) = −

∫
Γi

2(η − k∇u2 · n − k∇v2 · n)h

(10)

with: 


∇ · k∇v1 = 0 in Ω

v1 = 0 onΓc

k∇v1 · n = k∇u2 · n − η onΓi

(11)




∇ · k∇v2 = 0 in Ω

v2 = 0 onΓi

k∇v2 · n = k∇u1 · n − Φ onΓc

(12)

Remark 1.

(i) The energy-like error functional reaches its minimum atu1 = u2 + Cte = u, whereu is the unique solution to
our data recovering problem.

(ii) The energy-like error functional is convex, positive with a minimum equal to zero.
(iii) Observe that the components of the KV functional gradients involve integrals on the whole boundary of

domain. Furthermore the two fieldsu1 andu2 are truly coupled via the energy functional as illustrated by
and (8).

(iv) The alternative form of the error functional (6), makes possible the comparison of the proposed approa
more classical least square error methods: here both Neumann and Dirichlet errors are naturally mixe
dimensional factor is needed for that purpose. The Dirichlet error is weighted by the Neumann error.

(v) The method proposed in this work is related to the one introduced by Koslov et al. in [3] and widely n
cally tested (see [4] and references therein). In Koslov’s work the authors proposed a method for sol
problem under consideration based on an alternating iterative procedure. This procedure consists in o
successive solutions of wellposed mixed boundary value problems for the original equation. The met
been proved to be convergent. Notice that our approach generalizes that of Koslov in so far as the al
method can be viewed as the energy-like error functional minimization by a relaxation procedure in thϕ and
t directions.
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3. Numerical experiments

To explore the efficiency of the proposed data matching procedure, we start with the reconstruction o
perature field in a pipeline of infinite length. We assumethat the temperature does not depend on the longitud
coordinate. We deal, therefore with a bidimensional problem.

This application may arise in several industrial processes. We describe an example borrowed from fl
chanics consisting in the evaluation of the heat data at the internal wall of a pipeline. Such data may be n
for the simulation of the heat transfer taking place in a fluid flowing within the pipeline. The knowledge o
temperature is necessary for controlling the safety of the material: a stratified inner fluid may generate me
stresses, which may cause damage such as cracks. From the experimental viewpoint, thermocouples are
the external boundary of the pipe and the heat exchangeconditions with the environment are known. The mat
matical setting corresponds to a Cauchy problem with given data at the external wall. We consider four numer
trials corresponding to three analytical cases, an isotropic and two anisotropic materials; the fourth expe
devoted to a practical case corresponding to stratified inner fluid. The cross sectionΩ is an annular thick domai
with radii r1 = 1 andr2 = 0.5. The internal boundary is denotedΓi on which the data are lacking and the exter
oneΓc on which the data are overspecified. For the first analytical example the data are provided by the h
functionu = ex cos(y).

The minimization of the error functional is achieved by ensuring the optimality condition of first order. All the
calculations are run underMatlab Software environnement using the finite element formulation [5].

Fig. 1 shows the distribution of the reconstructed temperatureu1 onΩ as well as the absolute error(uexact−u1).
Fig. 2 plots the reconstructed temperaturesu1, u2 and the exact temperatureuexacton Γi , as well as the exact flu
and that reconstructed. Note that in the two cases the reconstructed fields are in close agreement with the exa
ones. The proposed approach also works for orthotropic materials, where the conductivityk is a tensor field no
longer proportional to the identity tensor of order two:

k =
[

1 0
0 ε

]
(13)

Figs. 3 and 4 show the reconstructed temperature and the heat flux forε = 0.1. Figs. 5 and 6 show the reconstruct
temperature and the heat flux forε = 0.01. Notice, here again, that the reconstruction remains very satisfactor
The data used in the fourth example are generated by the finite element computation of the above prob
Dirichlet data:T = 20◦C on Γc, T = 50◦C on the lower half circle ofΓi and T = 250◦C on the upper hal
one. Fig. 7 shows the reconstructed temperature and flux, and even in this case where the data is sing
are in good agreement with the actual ones. The data matching procedure consists in a minimization a

Fig. 1. Reconstructed temperatureu1 anduexact− u1 on Ω .
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Fig. 2. Reconstructed temperature and flux onΓi .

Fig. 3. Reconstructed temperatureu1 anduexact− u1 on Ω for ε = 0.1.

Fig. 4. Reconstructed temperature and flux onΓi for ε = 0.1.
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Fig. 5. Reconstructed temperatureu1 anduexact− u1 on Ω for ε = 0.01.

Fig. 6. Reconstructed temperature and flux onΓi for ε = 0.01.

Fig. 7. Reconstructed temperature and flux onΓi .
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(Conjugate Gradient Method) where the gradient is evaluated by the discrete adjoint state method. It requires
computations of a direct solution at each iteration. In the examples shown here, the number of iterations to ach
convergence ranges from 4 to 8, which correspond to 16 to 32 resolutions of the direct problem.

4. Comments

We have proposed in this Note a method for data matching based on the minimization of an ener
functional. This method is general, it has wide applications ranging from the bioelectrical field to mechani
engineering. We tested successfully the matching methodin the case of temperature and heat flux recovery. T
procedure compares here very favorably with iterative data matching existing method.

A numerical exploration of the method, together with applications to the non-destructive inspection of ma
seeking the quantitative determination of internal flaws (s.t. crack corrosion) is the aim of the forthcoming pa
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