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Abstract

We investigate three-dimensional cylinder wakes of incompressible fully developed flRes-z800, resulting from control
induced by tangential motions of the cylinder surface. The motion of the cylinder surface, in two dimensions, is optimized using
evolution strategies, resulting in significant drag reduction and drastic modification of the wake as compared to the uncontrolled
flow. The quasi-optimal velocity profile obtained in 2D is modified by spanwise harmonics and applied to 3D flows. The results
indicate important differences in the flow physics induced by two and three dimensional control strategitesthis article:
P. Poncet et al., C. R. Mecanique 333 (2005).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Stratégies évolutionnaires pour le contrdle des sillages tridimensionnel€@n s’intéresse aux sillages de cylindres in-
compressibles dont la tridimewsinalité est totalement développédRa= 300, obtenus suite & un contrdle exercé par des
mouvements tangentiels a la surface du corps. Les mouvements de surface sont optimisées par des stratégies évolutionnaires, et
ont pour conséquence une réduction subtantielle du coefficierdit€éret une modification portante du sillage par rapport
a I'écoulement non contrdlé. Le profil de vitesse quasi-optimal obtenu en 2D est modifié par des harmoniques dans la direction
axiale, et appliqué a un écoulement 3D. Les résultats indiquent d'importantes différences dans la physique de I'écoulement
selon la nature 2D ou 3D du controRour citer cet article: P. Poncet et al., C. R. Mecanique 333 (2005).
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Version francaise abrégée

Cette Note présente une approche numérique de quelques méthodes de contréle du coefficient de trainée d'un
sillage créé derriére un cylindre circulaire, en agissant sur la vitesse tangentielle a la surface du cylindre.

On consideére les équations de Navier—Stokes 2D ep@I un fluide incompressible s’écoulant autour d’'un
cylindre circulaire de longueur infinie de diamée

au A%
—+(u.V)u—vAu=——p
at P

en formulation vitesse—pression, et
®
at

en formulation vitesse-tourbillon, sur un domaiecylindrique externe. La vitesse vérifie- u = 0 (incompressi-

bilité), et sa conition a I'infini est U,,&,. On recherche des solutidnpériodiques (ol = 27 D en pratique) afin

de prendre en compte la longueur infinie du cylindre. betdle s’opére par I'intermédiaire de la fonctidy,

dans la condition aux limites en vitesséx, 1) = Vgjip(x, 1) €, qui représente un champ de vitesses tangentielles.

La fonction Vi, sera appeléprofil de vitessel'énergie cinétique moyenne adimensionnée mise en jeu par un tel

contrdle est alors
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ou o (0£2) la mesure du cylindrerD en 2D etr LD en 3D).
Le critére a optimiser est le coefficient de trainée (voir [3]) défini par
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Des calculs préliminaires montrent (voir [2]) que pour un profil particulier (invariant dans la direction axiale du
cylindre), le carré de la diminution du coefficient de trainée est propotionnel a I'énergie mise en jeu par le contrdle.
Par conséquent, un critére perspicace pour neesefficacité d'un profil est par exemple

% —cCp
Ef =2 ——

E*

c

+U-Vio—(w-VI)U—VvA® =0

ou C,OJ est le coefficient de trainée du sillage sans coa(#éalant 1.382 en 2D pour un nombre de Reynolds de 300).
Dans un premier temps, on considére les cylindres &tiom oscillante dans le cas 2D, pour plusieurs nombres
de Reynolds entre 200 et 1000 (cf. [3,11,10]). L'algorithme numérique est une méthode de type Vortex-in-Cell
hybride intégrant les équations de Navier—Stokes en formulation vitesse-vorticité (voir [4,3]). Il apparait que de
telles stratégies sont trés coliteuses en énergie et difficiles & mettre en pratique, I'efficacité maximale &ant de 0
(atteinte pouRe= 1000).
Dans un second temps, toujours pour des simulations bidimensionnelles, on cherche un profil de vitesse optimal
sur le bord du cylindre. On considére a présent uniquement des profils stationnaires. Cela revient a minimiser la
fonctionnelle

J(©) =

Nl

T
/(C% (c,t)+(Yc,c)) dr
0

ou T est I'horizon en temps de contrdle (le systéme est quasiment périodiqad etcteur des parametres de
contréle, ici dan®R1®, représentant les vitesses tangentielles sur 16 arcs de cercles de méme longueur décrivant le
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cylindre (la matrice de régularisation/pénalisatiblest nulle dans toute la présente note). La formulation vitesse-
pression est utilisé dans ce cas, en wtilisle schéma numérique de [1,12] p&Re= 500. La minimisation est
obtenue par I'algorithme gétigue défini dans [1]. On obtient ainsi un fifefficace et trés peu colteux en énergie.

Le profil est néanmoins peu régulier ce qui rend délicates les simulations tri-dimensionnelles (a cause de la faible
longueur caractéristique des fakilitéshydrodynamiques 3D).

On est donc amené dans un troisieme temps a régulariser le profil obtenu ci-dessus en interpolant la fonction de
contrble (vitesses constantes par morceaux) par une fonéguliere et symétrique. On obtient ainsi une méthode
Iégerement moins colteuse en énergie et plus robuste.

Enfin, ce profil est rendu tridimensionnel en superposant des fonctions sinusoidales calées sur trois harmoniques
des instabilités tri-dimensionnelles dala direction axiale. Le profil totaleamt 3D est ainsi défini par un jeu de 4
paramétre€. On peut alors étudier I'impact da tridimensionnalité du contréle sla réduction de coefficient de
trainée et sur le critere d'efficacité.

Deux phénoménes sont mis en évidemXene part, I'ajout de tridimensinnalité dans le contrble permet d’ob-
tenir un coefficient de trainée plus faible pour la mémentjtéad’énergie impliquée dans le contréle. Il semble par
ailleurs que la tridimensionnalité esadtant plus efficace que la longueur d’onde est petite (pour les paramétres de
la présente note). D’autre part, il si@ une énergie critique au dessous de laquelle la tridimensionnalité n’apporte
pas de gain. Lidentification d’'une telle énergie est un défi pour ce qui concerne les futurs développements de ces
méthodes d’optimisation. Elle carécise une transition dans la physique du probléme qui devra étre élucidée.

1. Introduction

The efficient control of wakes is of paramount importance in the aircraft and automobile industry. Depending
on the particular application, wake control can have various goals and can be achieved either by passive or active
strategies. Passive control is mostly achieved by shape optimisation and often results in the addition of appendices
like foilers or riblets to the surface of the obstacle. Active control involves imparting energy to the flow by means
of actuators (e.g. mass transpiration) on the surface of the obstacle.

While passive control strategies have led to important improvements in the design of automobiles and aircraft
in the last decades, nowadays this agmh shows its limits, mostly due to design considerations. Active control
strategies are becoming ever more important as they can circumvent some of these difficulties and in addition they
provide additional flexibility to tackle new stringent regulations on pollutant emissions. These control strategies,
beside the technology issues that they raise, are very demanding in terms of simulation and optimisation tools as
they often involve unsteady simulations. Three-dimensional wakes are still a very challenging field for simulation
methods, because of the complex unsteady features of the flows.

To illustrate active control of wakes in this article we implement a high order vortex-in-cell scheme and we
apply it to the control of three-dimensional wakes betan8D circular cylinder using open-loop strategies. We
first describe a two-dimensional optimisation using surface ‘belt-like’ actuators obtained with the clustering genetic
algorithm developed in [1]. The optimised two-dimensional velocity profile of the actuators is then smoothed and
used as a 2D control profile on the three dimensional surface to control three-dimensional wakes. The full 3D
control is finally introduced using stationary three-dimensional tangential velocity distributions and resulting in
significant drag reduction.

2. Governing equations and diagnostics

The wake of a viscous flow around a cylinder can be computed by solving numerically the full three-dimensional
Navier—Stokes equations in an external cylindrical donsaiof radiusR in its velocity-vorticity formulation for
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Sections 3, 5 and 6:

d
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and in its velocity—pressure for Section 4:
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where the velocity fieldi satisfies
V.u=0 3)

for both the formulations. Here, for all three-dimensional computations, solutions are spdnpésedic. The
no-slip boundary condition on the cylindeall requires that the fluid and solid velocities are equal on the body
surface:

u(x, 1) = Vsiip(x, )& (4)

for x € 952 (i.e.r = R), whereVyj, may be non-constant in time and space.
Two important non-dimensional parameters of the flow ardRgnoldsaandStrouhalnumbers, defined respec-

tively by
UscD D

X~ and S = /D

% Uso
where U is the far field velocity,D the cylinder diameterK = D/2 will denote the radius)y the kinematic
viscosity andf the natural flow frequency. The non-dimensional time is defined as:

Re=

t* =Usot/R

The flow becomes fully three-dimensional whiee> 190 as manifested by vorticity isosurfaces (along with
drag/lift curves) in Fig. 1. The drag coefficie@t, and the lift coefficientC, of the flow are given as sums of
friction and pressure coefficients:

Cp=Cpr+Cpp and Cp=Cg+Crp (5)
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Fig. 1. Effect of three-dimensionality on drag and lift coefficientsRet= 300 (left picture) and vorticity isovalues of post-transient
three-dimensional flow (right picture, from [4]).
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where the friction coefficients are defined by:

v . d 1% d
CDF = —m w7 sin@ S, CLF = m w7 cosd ds
Y] FYe;
and the pressure coefficients by:
v 0 . v 0
Cop=—75 /rﬂsmeds, CLpzz—/rﬂcoseds
UZRL ar UZRL ar
a0 a0

The present work on wake optimisation aims at minimizing the drag coefficient without affecting the average lift
of the flow. Note that in two dimensions, one has to rembwand integrate with respect ®d6.

The mean energy involved in the control, i.e. reqdite provide the tangential boundary conditions, can be
related to a kinetic energy quantity:

T
1
Eczﬁ// VS”p(t)zdet (6)

0982

but this quantity is physically massic (i.e. per unit ofsapand is defined over a surface. A more pertinent quantity,
which will be called non-dimensional enerffgm now on, is its non-dimensional formulation

T
1
Ej:m / / Vaiip(£)% ds dr 7
o
0082

whereo (02) is a measure of the body(0§2) = Lz D is the body surface in 3D, whilke(d£2) = 7 D in 2D.

Preliminary computations using a 2D profile, for a Reynolds nurfeet 300, show that for sufficiently large
values of Vg, (see Section 4) the mean-drag reduction is basically proportiorjgfggll. Since energy is pro-
portional to|| Vs|ip||2, mean-drag reduction behaves as a square root regression of energy: this property is shown in
[2] for a 2D profile, and work is underway to investigate further this observation for 3D profiles. This seems thus
interesting to define thstrategy efficienchy the ratio between drag reduction and the square root of energy, that
is to say:

Egt = (C% — Cp)/JE! (8)

WhereCIOJ the uncontrolled drag coefficient.@82 atRe= 300). This quantity consequently represents the most
objective way to study the dependency of drag reduction with respect to the shape of tangential velocity field.

3. Body rotation

For the rotating body simulations, as well as for Sections 5 and 6, we consider a hybrid Vortex-In-Cell method,
in the spirit of [3]. This numerical scheme is based on a Lagrangian particle approximation of the vorticity field
w(t). A particle carries elements of kicity, volumes and location&w,, v,, X;,), and these quantities satisfy the
following system of differential equations:

p

dx do
= =), d—t”z(w.Vu)(x,,)Jrqu(xp) 9)

while volumes remain constant due to theampressibility. The no-slip conditian(z) = Vejip(1)&, is satisfied by
means of a flux of vorticity [4].

Derivatives are calculated using a 4th-order scheme (usually centered, and biased close to walls), time integra-
tion is performed with a fourth-order Runge—Kutta step, interpolation and periodic remeshing are third-order, diffu-
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sion is 2nd order. This convection/diffusion step is faleml by a flux of vorticity from the cylinder surface, thus en-
forcing the no-slip condition (using the integral technique presented in [4,14]). The whole fractional step algorithm
solving Eq. (1) is globally second order. This numericedthod is taking implicitly into account transport terms
and it has no stability condition for the convective tinbeps Thus, with the present numerical method, one can use
long time steps providing an efficient tool to compute the large time scales behaviour of three-dimensional flows.

This technique has been successfully used on various two-dimensional domains and simple three-dimensional
geometries [5,6], and more recently otiogrical geometry [7,4,3,8]. This feme is extended to arbitrary domains
using immersed boundary techniques with interesting preliminary results [4].

The oscillatory rotation of the body as a drag reduttiwechanism was first shown in experiments by Toku-
maru and Dimotakis in the early 90s, Be= 1.5 x 10* (cf. [9]). It has been recently followed by accurate
two-dimensional numerical simulation [10,11] for Reynolds numbers up to 1000. The three-dimensional aspects
of the wake behind a cylinder in oscillatory rotation have been since studied in [3].

The cylinder rotations considered herein, consist of following a point on the cylinder at@ngkatisfying

0(t) = —Aco92rf 1) (10)
where f. is the control frequency and the rotation amplitude. A usual nonrdénsional frequency is the forced
Strouhal numbes§r (often chosen among multiples) defined as§r = f.D/U. One obtains

0(t)=—AcoSnSpUxt/R) = —Acogn Spt™)
and consequently the tangential velocity on the body (i.ex forR) is given by

. do
Vslip(t )= RE

and its mean non-dimensional valueVigi,(t*)/ U, = Am Sr/2. The non-dimensional mean kinetic energy in-
volved in such a control is then

= A7 SpUso SIN(TT SFt™) (11)

T
1
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whereT is the rotation period and (d$2) = 27 R the circle measure. The present computations are run with an
amplitudeA = /2, which meang = 7452 /8.

Fig. 2 shows the drag reduction with respectEp for three Reynolds numberRe= 200 from [11],Re=
500 from [3] andRe= 1000 from [11]. From these results we can observe that using cylinder rotation as drag
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Fig. 2. Drag reduction-ACp due to cylinder rotation versus non-dimensional enefjy at various Reynolds numbers (left picture,
Re= 200,500 and 1000 from bottom to top, 2D simulations= 7/2), and typical stream contours abted for this flow (right picture,
from [3]).
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coefficient control is expensive in energy, and furthermore is difficult to bring to realistic engineering, especially
for aeronautics concerns. The efficiency coefficiBptis at most 03 for all the simulations plotted on Fig. 2.

4. A Clustering Genetic Algorithm for flow optimization

The Clustering Genetic Algorithm (CGA) was introduced in [1] for the control of the two-dimensional flow past
a circular cylinder aRe= 500. The cylinder surface is subdivided in 16 equally sized segments (see Fig. 3) and
each segment is allowed to move tangentially to the cylinddase, with all the segments moving with different
but steady velocities.

The present CGA has not been implemented on a vortex method. The Navier—Stokes equations are discretized
on an O-grid using a staggered, second-order centr@rdifce method in generalized coordinates (stretched as
cosh in radius, see [12]). The radius/angle resolution used was up<13D for 30 cylinder radius and the time
step was 3« 1073,

An optimal regulation problem (2) can be set up by considering the functional

T

J(©) = % / (C%(c.t)+(Yc,c))dr (13)
0

wherec is the input vector if—1, 1118, which represents the velocities on the 16 panElss the time horizon
considered, which in the present case was four times the Strouhal p&gipdf R) of the uncontrolled flow, and
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Fig. 3. Belt configuration (top left picture), seltant drag coefficient for the best population nbem(top right picture, — : all the actuators,
- - : only the four most influential) and pogtion histogram (bottom), from [1].
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is the penalty input weighting matri¥(= 0 in all the present article). The functionhilsubjected to the constraints
(2)—(4) must be minimized with respectdan order to minimize the drag.

The parameters of the optimisation involve the amplitude of the velocities on the cylinder surface and they are
optimised using a CGA proposed in [1]. The CGA operates on a parameter population in which an input vector
consists of one population member. Three opesaoe defined to modify the population members:

e Recombination/crossover, which generates new trial solution points (offsprings), using some elements drawn
from the population;

e Mutation, which randomly changes some of the offsprings’ components;

e Selection, which chooses the population elements that will be used by the crossover.

For each population element a fitness function is defimeshsuring how close a given solution is to the de-
sired goal. Based on their fitness, the old population benare compared with the newly generated ones, and
the solutions with the better fitnegonstitute the new population members. In this way, iterating the selection—
crossover—mutation process, the population evolves toward the desired optimal solution. The CGA is a real coded
GA that is particularly suitable for finding clusters of good solutions [1], a desirable scheme when smooth, non-
single point minima are sought. A variable mutation operator, depending on the local fithess value and on the global
success history of the population, allows the poputat@davoid local minima. For more details, see [1].

The population histogram of velocities, obtained bystaigorithm, is plotted on Fig. 3. The best population,
defined by highest frequencies, lead to a drag reduction/dfl) and satisfies

16
> cfsli=1 (14)
i=1

wherec; andél; are velocity and length of panél The non-dimensional energy is théff = 0.08 and the effi-

ciency defined in Eq. (8) is thenACD/\/E? = 2.62. It can be observed that most parameters are not clustered,
an indication of the fact that they have little influence on the fitness function. The most evident clustering can be
observed for the velocities assigned to actuators 3d418r14, which contain the saadion point of the uncon-
trolled cylinder.

It turns out these four actuators can be used alone ane wra& expect a significant drop of drag coefficient.
Indeed, in this case the drag coefficient decreases dowrY ¥ Owhich is 46% higher than previously when all
actuators are used, but the energy involved is or38; thus population clustering leads to a much more efficient
control. This clustering témique leads to a substantial gaif efficiency, which reaches4%.

This result will be used as a starting point for control of three-dimensional flows in next section.

5. Two-dimensional control for 3D flows

In the following implementations of control strategy, it was important to avoid discontinuities of velocity that
would interact with natural three-dimensional instabilities of the flow. This led us to use a smooth function able to
fit in a reasonable way the values obtained on actuators 3—4 and 13-14 (see Fig. 4 for instance). One then obtains
the following function:

[ 3.208
f6)= —sm<m> (15)

defined ovef—m, r]. Its extrema are-0.723 and its Euclidean norm is numerically:

/ £(6)%do ~0.49435 (16)
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Fig. 4. Velocities related to the best population obtained by theuSiAg all belt actuators (left picture), and shape of functfgrsmooth
approximation of these velocities (right picture), with its extremza@723.
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Fig. 5. Effect of 2D control ¢ = 1) on drag coefficient (on the left). Snapshots of theflei (on the right), contour of isovorticity (positive,
negative and transverse vorticity). Dotted lines mean: : 2D without contrel,— : 3D wihout control, - - - - - : 2D with control,
--------- : 3D with control.

This profile is very comparable in terms of energy to the profile defined by the best clustered population mentioned
above, and is smooth, symmetric, and is by far cheaper in energy than the profile obtained with the non-clustered
populations.

If velocity on the body isVsip (9) = CUx f (), then the non-dimensional energy involved in this control is

L & C2 T

* i 2 - 2

E= I RLUE //vshp(e) Rd9d1_4ﬂ /f(e) do (17)
0—m -

The coefficientC adjusts the velocity field, and the caSe= 1 can be considered as a smooth approximation of
the velocity profile obtained by the clustering genetic algorithm, and is aBB63imes as expensive as the best
clustered population. The drag coefficients obtained for such a profile are plotted on Fig. 5, for 2D and 3D flows.
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As mentioned in Section 2, one can definedhategy efficiencin 3D by
Ef = (Cg —Cp)/VE!

whereC% is the two-dimensional uncontrolled drag coefficien882 atRe= 300), because three-dimensionality
tends to disappear when high-energy control is performed (see [13] and Fig. 5). Indeed, preliminary computations at
Re= 300 show that the mean-drag reduction is basically proportiorn@) emd since energy is proportionalds,
mean-drag reduction behaves as a square root regression of energy (see [2]). It thus expdtteditbands only
on the shape of velocity distribution and not on the global amplitadeor ||C||2 in a more general way (at least
for large values ot”).

This efficiency criteria shows us that fér= 1, one gets a drag reduction of7f@7 and an efficiency of.37.
The genetic algorithm using all liedctuators has an efficiency of6é2 with a drag reduction of.@41, while the
clustered population leads to an efficiency o4& with a drag reduction of.668. On the one hand, the smooth
profile provides a comparable drag retian, and uses less energy because funcfidras less significant values
than the best population of the Genetic Algorithm (the viscosity used is also larger). One the other hand, when
compared to the clustered population, the smooth profile leads to a slightly better drag reduction with a similar
energy, thus a slightly better but similar efficiency. Nevertheless, one may notice that these comparisons have been
made between 2D flows &e= 500 (for the GA and CGA) anBe= 300 for 3D flows.

Furthermore, the three-dimensionality of the flow has no effect on the efficiency because one can observe (see
[13]) that the three-dimensionality is suppressed by thid kf control (see Fig. 5), and the same drag coefficient
is achieved, whether the initial flow is 2D or 3D.

6. Three-dimensional control using mode combination

To account for spanwise variations, in a general formulation, one can consider the following vectonof dize

Co

c= Cf (18)

Cll
The azimuthal tangential velocity profile on the body is then given by

1
2sin(2wz/L7)
Vaip(0.2) = f(0)UsC - | 28IN272/L2) (19)

ZSiI"(ZJITZ/Ln)

whereL1, Lo, ..., L, aren wavelengths, usually sub-harmonics of the spanwise lehgithe spanwise invariant
coefficient is associated by = oo and is often callednode0.
The non-dimensional energy involved in the control is then

1

Ln T

1 1 .27

Ef=—F p(0,2)?Rd9d =—C2/ 0)2do = Z||C|15 52 20

= RLTE [ [ vanto.2ras = i [ r@2e =5 1c137 (20)
0—7 -

whatever the wavelength valués.
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Fig. 6. Left picture: Drag reduction with spect to non-dimensional energy involvedthe control. Right picture: Efficiencgs given by
formula (8). Numbers mean: 1: Best populatiobtained by the Genetic Algorithm, applieal @ 2D flow. 2: Best clustered population ob-
tained by the Genetic Algorithm, applied to a 2D flow. 3: 2D profile= 1, applied to a 3D flow. 4: Combination between 2D and mode A,
C=1(2,1,0,0)/+/5, applied to a 3D flow. 5: Combination between 2D dnd= 7 D/2,C = (2,0, 1,0)/+/5, applied to a 3D flow.

The present computations use four control parameters, that is to say:

Co
C1
C2
C3

(21)

In the present case, cylinder spanwise length is 27 D, and control wavelengths afg = L/2'. We will base
our control strategies on the natural three-dimensional instabilities, i.e. mode A and B instabilities, that naturally
appear in cylinder wakes (see [3,8] and the referenca®it). The closest possible wavelength to mode Ajis
while L3 = 7 D/4 excites mode B, the dominant instabilityRe= 300. Eq. (19) can then be written:

1
25sin2z/D)
25sin(4z/D)
25sin8z/D)

Vslip(es 7)= f(e)UooC . (22)

and the energy used is given by Eq. (20).

A few computations in the cagC||2 = 1 have been performed in [13], and concluded two main results. On the
one hand, there is no drag reduction when mode 0 is not present, that is to sagyhdh On the other hand,
drag reduction is larger when three-dimensionality is slightly present in the control (i.e.Gyhéa and/orC3 are
non zero and small enough) than when it is not (i.e. when they are all zero, see points 1/2/3 and 4/5 on left part of
Fig. 6 for instance).

This implies that there is an optimal combination of modes for the drag reduction. In the near future, full 3D
Optimisation Algorithms will be implemented to identify this optimal combination.

Moreover, the right part of Fig. 6 compares the efficiency for pure 2D control and mixed 2D-3D control, for
the same energy involved €| 2 = 1). It is shown that combination between mode 0 and one 3D mode, here
C=(2,1,0,0)/+/5 andC = (2,0, 1,0)/+/5, is always more efficient than the pure 2D contfok (1,0, 0, 0).
Indeed, this last 3D case leads to an efficiency.4f14
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Fig. 7. Final Drag coefficient with respectdg/1 + 2, for = 0.25 (0) andg = 1 (A). Right picture is a zoom of fepicture, showing only
low-energy strategyA = 0.25).

We remark also that the physics of the flows are different for small and large valugsSihce among the
computations above, the mbination between 2D anfl; = 7 D/2 defined byC = (2,0, 1,0)/+/5 is the most
efficient, one can consider the following weighted strategy:

(17 07 a7 O)
23
V1+a? (23)

With such a notation, the control amplitudg|iS |2 = 8. The strategy is two-dimensional (case ‘2’ on Fig. 6) when
a =0, and the cas€ = (2,0, 1, 0)/+/5 (case ‘4’ on Fig. 6) correspondsdo=1/2 andg = 1.

One has already shown that 6= ||C||2 = 1, there exists an optimal strate@y Moreover, wherg = ||C|j2 =
1/4, the final drag coefficient has been computed for

a =1{0, 1/10, 3/10, 1/2, 1}

c=p

It appears that, in this range and for this energy, adding three-dimensionality to the control does not reduce the drag
coefficient. These two cas@s= 1/4 andg = 1 are plotted on Fig. 7, which exhibits the final drag with respect to
a/+/1+ a2, representative of the proportion of ge-dimensionality in the control profile.

This first result shows that the physics resulting from lavesgy control and high-energpntrol are of different
nature, whether the forcing in the neighbourhood of the body is sufficiently strong to drive the whole flow or not. In
other words, there is a critical energy to involve in the control in order to reduce the drag when three-dimensionality
is added to the control profile.

7. Conclusion

A Clustering Genetic Algorithm has provided a quasi-optimal distribution of tangential velocities for a two-
dimensional flow past a cylinder. This profile has then been used as a two-dimensional control for a three-
dimensional flow. The next step has then been to intredutamily of perturbations of this profile in order to
consider three-dimensional profiles that té® account specificities of three-dimensionality.

This work has revealed two important facts. The first is that three-dimensional flow manipulations, based on
the natural wake instabilities do provide additional efficiency over purely two-dimensional control strategies. This
point opens the way to further work that will identify the optimal combination of three-dimensional and two-
dimensional boundary conditis. The second point is that a minimal energy in these manipulations is necessary
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to trigger three-dimensionality. Further work will also becessary to analyze this bifurcation and determine the
critical necessary energy.
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