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Abstract

A general smooth and convex yield function is proposed, able to model the particular behavior of geomaterials, particularly
rock materials that are characterized by a linear or parabolic Mohr's envelope, and a particular shape in the deviatoric plane.
These characteristics are defined by two functions: the equation of the criterion in the meridian plane and the extension ratio,
which are integrated in a general equation ensuring convexity and smoothness of the yield function, whatever the characteristic
functions. This expression is interesting, because it allows a straightforward development of a constitutive model based on
triaxial tests, in extension and compression. It also allows the development of smooth criteria corresponding to the Mohr—
Coulomb criterion and the Haek—Brown criterion, the latter typical of rock mecharogaste this article: S. Maiolino, C. R.

Mecanique 333 (2005).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Résumé

Proposition d’une fonction de charge générale en géomécanique. Un critere général lisse et convexe est proposé pour
modéliser le comportement particulier des géomatériaux, particulierement les roches qui possédent une enveloppe de Mohr
linéaire ou parabolique et une forme particuliere dans le plan déviatorique. Ces caractéristiques sont définies par deux fonctions :
I’équation du critére dans le plan méridien principal et le ratio d’extension. Ces deux fonctions sont intégrées dans une équation
garantissant le caractere régulier et convexe de la fonction de charge indépendamment des fonctions caractéristiques. Cette
expression est intéressante car elle permet ainsi la constitution directe d’'un modeéle a partir de tests triaxiaux, en extension et
compression. Elle permet également le développement des formes régularisées correspondant au critere de Mohr—Coulomb et au
critere de Hoek—Brown ce dernier étant propre a la mécanique des rBohesiter cet article: S. Maiolino, C. R. Mecanique
333 (2005).
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1. Introduction:?

Apart from their inability to stand tensile conditions, one of the particularities of geomaterials, from a mechan-
ical point of view, is the dependency of their strength on the confining pressure. The first criterion taking into
account this property is known as the Mohr—Coulomb criterion whose intrinsic curve is a straight line. However,
many rocks present a parabolic Mohr’s envelope. In order to take into account this characteristic many criteria have
be developed since the 1960s [1]; one of the best known is the Hoek—Brown criterion [2] (10), which has been
developed so it can be used for a wide range of rocks. Like Mohr Coulomb, it presents corners, making it difficult
to implement.

Another experimental characteristic of soils, rocks, mortar and concrete, is a particular shape in the deviatoric
plane: triangular with smoothly rounded corners. Circular criteria, such as Drucker Prager, do not take into account
this particular characteristic. Some smooth uncircular criteria, initially developed for cohesionless soils, can be
used in rock mechanics, such as the modified Lade model [3], and the Matsuoka—Nakai model; both are expressed
as functions of the polynomial invariants of the stress tensor.

The broad outline of this work is to realize a global smooth and convex yield function whose parameters can be
easily identified from experiments. Moreover, it should be of use on different type of rocks.

2. Polar decomposition of yield criterion

When the mean stress, is constant, a yield surface can be reduced to its representation in the deviatoric
plane: this shape generally reflects the smoothness of a criterion, sensitivity to extension, and convexity. Any
isotropic yield surface can be represented in a unique manner by the mean stress and the deviatoric stress invariants
(Jo= %tr(gz), J3= %tr(f)). It can be useful to replace the third invariant, by the Lode afigle

1 —-3v3 J
z <0 = - arcsi —f 3 < z 1)
6 3 2 /—123 6

The set(+/ J2, 0) can define polar coordinates in one sixth of the deviatoric plane, which is sufficient. It turns out
that a yield surface admits an equivalent polar expression [4]:

V=0%g,6) 2)

e The deviatoric radiuss *(o,,) = \/J—z/ez%, gives the yield function in the meridional plage,,, ~/J2), for
6 = %. This value of the Lode angle corresponds to the condition of a classical triaxial test, or compressive
triaxial test(o) = oy > oyy);

o the functiong, (9) is the shape function of the yield function in the deviatoric plane. We hay€z) = 1). It
gives directly the value of the extension ragip(—%) = Ls which is discussed in more details in Section 3.2.
This value is equal or lower to one for geomaterials.

The shape function of a smooth criterion must satisfy the following condition:
ag(m og( w
%(6)‘@(‘6)—0 ®)

1 stress sign conventiofiraction stresses are positive, and the principal stresses ordered as follows; > o) .
2 software usedviathematic® was used in Sections 4 and 5.
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In order to ensure the convexity of the criterion, some conditions must be verified. A simple graphic condition is
that L must be greater tha%m(for smooth criterions (3), we necessarily hatig: > %). Assuming that condition,
it should be verified that the shape function is convex:

d’e dg

dg _, odg

J(O) = d20d 8 do >0 (4)
ag
@ 8

Convexity of the deviatoric radius and of the shape function ensure convexity of the yield function [5].

3. Characteristic functions of the behavior of a rock material

These two functions are used to define important characteristics of rocks. They are supposed to be smooth and
convex.

3.1. Deviatoric radius

This function is easy to define, because it can be deduced from triaxial tests that are common in geotechnics.
Where the shape is straight or parabolic, the deviatoric radius function used can be the Mohr-Coulomb or Hoek—
Brown.

3.2. Definition of the extension ratio

Its value is directly linked to the deviatoric shape of a yield surface. However, this ratio has also a physical
meaning and can be determined from experiment: under a same average stress, the yield vahevodfld
be lower in extension than in compression. The condifiea —% corresponds indeed to extension triaxial tests
(o1 > oy = o)1) (compressive stresses are negative), which can be performed with the same triaxial device as the
compression triaxial test.

V@B =-7/6) (0 —oy) (extension
ST /RO =n/6) (01 —om) (compression

While this value can be independent from the mean stress (like in Mohr—Coulomb), some rocks offer a shape of
their yield surface changing from triangular to circular as the mean stress increases [§],inereases from 0.5
to 1. The ratio function must be chosen so thato,,) €]0.5, 1]. It is constant or an increasing function-eé, .

()

4. General yield function

The proposed yield function (6) was intended to be a smooth convex yield function, defined by the deviatoric

radius and an extension ratid s(o,,,) €10.5, 1]) (Fig. 1). Another requirement was to realize a simple yield func-

tion. So, it was decided not to define another shape function of the Lode angle, but to seek for a direct expression
of the mean stress and of the deviatoric stress invarigntgs. By the mean of the polar decomposition it gives

a third degree equation whose the shape function is solution. It was not necessary to give an explicit form of the
shape function, but to impose its valueZatand —%, and (3) and (4) lead to the value of the coefficient of this
equation. When the deviatoric radius and the extension ratio are known, the following equation defines a new yield
function, integrating the two characteristic functions:

flo)= gdé(l—LS)13+(L§+1—Ls)a+12—a+3L§ (6)
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Fig. 1. Influence of.g onthe  Fig. 2. Mohr-Coulomb criterion and smooth version
shape of the yield function. (¢ = 35°). (a) Stress space representation, (b) shape functions.

@) (b)

Fig. 3. Hoek—Brown criterion and smooth version. Pa)= 0.01, (b) stress space representation,Hcy %.

Considering the polar decomposition of the yield surface (2), we can say from (6) that the shape function is solution
of the following equation:

g3(0)sin@(—1+ L)+ (1— Ls + L3)g5(0) — L =0 (7
The particular valuesgp(%) =1gp —%) = Lg) of the shape functions are solutions of (7). Derivations of (7)
permit to verify smoothness (3) and convexity foy > 0.5 as (4) can be reduced@f) = (2—3Lg— 3L§ + 2L§).

5. Some particular forms of thecriterion

The smooth versions of two common geomechanical criteria, Mohr—Coulomb (Fig. 2) and Hoek—Brown (Fig. 3),
are proposed. As the principal stresses can be written as functigiizofindé, the polar decomposition of those
function can be made, after having replaced the principal stresses by their expression as fungtiafbf andd
[4], giving their deviatoric radius, and extension ratios.

5.1. Mohr—Coulomb

The deviatoric radius and extension ratio in this case are the foIIowing,Hviih%:

0+:2¢§sin¢(H—am) @®)

3—sing
_3—sing
5= 3 sing ©)

In this case, the yield function is equal to the one of Matsuoka—Nakai criterion. It is interesting, because when
using the notion of ‘spatially mobilized plane’ — which averages the friction angles, instead of the octahedral
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Fig. 4. LJB (dotted) and approchets.

plane, the Matsuoka—Nakai criterion corresponds to the Mohr—Coulomb criterion, just as the Von Mises criterion
corresponds to the Tresca criterion [7].

5.2. Hoeek—Brown

The Hoek—Brown criterion can be written as follows, wRh the uniaxial strength of the intact rock,, the
value the Hoek—Brown constant for intact rock (value between 4 and 333, @apdsitive parameter, equal to 1 for
intact rock, lower for fractured rock, which can be used as a softening variable.

f(g)=(0|—0m)—Rc,/S—Wlb% (10)

We consider the following functions to define the criterion, using the scaled internal pressuFe.{B}:/mi —
om/(mpR.) Whose value is strictly positive (for common stress states, it can be considered lower than one).

n mbRCZ—l-i- 1+ 36P;
o=
4«/§ 3

Ls=1-0.49¢e 125/ (12)

(11)

This extension ratio is a sufficiently close approximation (Fig. 4) of the one from the original cri(e[rgif’hz
2(=1+/1+9P;)/(—1+ /14 36P;)). This permits to realize a smooth Hoek—Brown criterion, preserving its
parabolic character, and its particular deviatoric stress (Fig. 3).

5.3. Comparison with explicit shape functions

The proposed yield function is a direct function of the third deviatoric invariant, and thus does not require the
calculation of the Lode angle, that explicit shape functions require. However, it is interesting here to compare it
with those forms.

The simplest explicit function [9] (13) is convex only férs € [%, 1], which corresponds when seeking corre-
spondence with a Mohr—Coulomb criterion, to values of the friction angle lower than 22 degrees.

2Lg

(1+Lg)—(1— Lg)sin® (13)

gp0) =
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The William—Warnke [10] shape function (14), used for concrete materials, is convex for any vdlyeyoater
than 0.5, but is more complex. It is not solution of (7), but is relatively near, as the values obtained are all lower
than 0.02.

2(1— 12)cos(6 + %) + (2Ls — 1),/4(1 — L3) co$(8 + %) + 5.3 — ALs
41— L%)coR @+ )+ (2xLg—1)2
Another explicit shape function has been proposed by Bigoni and Piccolroaz [5], which is not functign of
but of two parameterg andy:
co9Bn/6 — (arccos—y))/3)
cogBm/6 — (arccog—y sin))/3)

gp(0) = (14)

gp(0) =

(15)

This shape function is a numerical solution of (7), foe 0, y = cog3arccos V3

2 /1-Ls+12 )

6. Conclusion

The general form of the proposed yield function ensures its ability to model different behavior of geomaterials,
as has been shown for the correspondence with the criteria of Mohr—Coulomb or Heek—Brown allowing us in this
last case to produce a smooth criterion for rocks, with a parabolic intrinsic curve, and a complex extension ratio.
The characteristic functions: deviatoric radius and extension ratio, can be determined using a common triaxial
device. Its smoothness and convexity are also interesting, when using finite elements methods.
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