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Abstract

The ‘second-order’ nonlinear homogenization method (P @gstafieda, J. Mech. Phys. Solids 50 (2002) 737-757) is used
to generate estimates of the Hashin—Shtrikman-type for the effective behavior of viscoplastic materials with isotropically dis-
tributed spherical pores or rigid particles. In the limiting case of an ideally plastic matrix with a dilute concentration of pores,
the resulting estimates were found to exhibit a linear deperdenthe porosity when the material is subjected to axisymmetric
shear, but this dependence becomes singular for simple shear. In the process of this work, an alternative prescription for certain
reference tensors used in the method is proposed, and shown to lead to more consistent estimates for the effective behavior than
the earlier prescriptionlo citethisarticle: M. Idiart, P. Ponte Castafieda, C. R. Mecanique 333 (2005).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Résumé

Estimations du comportement effectif des composites isotropes non linéaires contenant des pores et des particules
rigides sphériques. On utilise la méode d’homogénéisation non linéaire propegpar Ponte Castafieda (J. Mech. Phys.
Solids 50 (2002) 737-757), dite du second ordre, pour générer des estimations du type Hashin—Shtrikman pour le comportement
effectif des matériaux viscoplastiques contenant des pores et des particules rigides sphériques. Dans le cas limite d’'une matrice
parfaitement plastique a faible concentration de pores, tesatons trouvées présentent une dépendance linéaire de la porosité
sous un chargement de difement axisymmétrique ; cepenulacette dépendance devient singuliere sous cisaillement simple.
Lors de ce travail, certaines limites de formulation de la méthode initialement proposée dans la référence ci-dessus ont
été identifiées. En conséquence, des alternatives ont été téxidesiter cet article: M. Idiart, P. Ponte Castafieda, C. R.
Mecanique 333 (2005).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

Much effort is still being devoted to developing methadpable of accurately estimatgithe effective behavior
of nonlinear heterogeneous media [1]. A fairly gethdr@amogenization method has been introduced by Ponte
Castafieda [2], which delivers estimates that are exact to second-order in the heterogeneity contrast and that do
not violate rigorous bounds. This ‘second-order’ methodeblaon a variational principle, reduces to finding a
set of constants that renders a certain functional stationary. To simplify the calculations, it was proposed, as an
approximationin [2], to replace some of these (full) statiitgaonditions by a set of partial stationarity conditions.
In this Note, the method is used to generate estimates for the effective behavior of nonlinear composites with
spherical pores or rigid particles. In the process of this work, some limitations of the approximation mentioned
above were identified, and some alternatives were evaluated.

We consider composite materials madevodlifferent homogeneous constituentspbases, which are assumed
to berandomly distributed in a specimen occupying a volusaeat a length scale that is much smaller than the size
of £2 and the scale of variation of the loading conditions. The constitutive behavior of each phase is characterized
by aconvex potential function:” (r =1, ..., N), such that the stressand straire tensors are related by

ou®

& =
0o

(0) ()

This constitutive relation can be used within the context of the deformation theory of plasticity, wieteée
represent the infinitesimal stress and strain, respectively. Relation (1) applies equally well to viscoplastic materials,
in which caser ande represent the Cauchy stress anddfiain strain rate, respectively.

We are concerned with the problem of finding the effective behavior of the composite, which is defined as the
relation between the average stréss (o) and the average straén= (¢), and can also be characterized [1] by an
effective potentiaﬁ , such that

N

e=—(), U@ = min O ()" 2
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Here, (-) and(-)") denote the volume averages over the compositeand over phase (£2), respectivelyg"

is the volume fraction of phase and/XC(¢) = {0, dive =0in £, () =&} is the set of statically admissible
stresses. Thus, the problem of estimating the effective behavior of the composite is equivalent to that of estimating
the functiond .

2. Second-order homogenization estimates

The second-order method [2] delivers the following estimate for the effective potential of a g&nphalse
composite:

N
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where the stabnary operation consists in setting the partial derivative of the argument with respect to the variable
equal to zero. In this expressiotiy is the effective potential of Enear comparison composite (LCC) with the
same microstructure as the nonlinear composite, and phase potegifizgj'wen by

. u™ 1
u(Tr)(a; 6'(r), M(() )) _ u(r)(&(r)) + g_a(a.(r)) (o — 6(r)) + E(G _ &(r)) . Mg)(a _ (vr(r)) (4)
where thes ") are uniform reference stresses, améf), symmetric, constant, fourth-order tensors (of compli-

ances). The ‘error function® ) are defined as
V(r)(d’.(f)’ Mg)) — Stai{u(;)(&(r); &(r)’ Mg)) _ M(r)(a.(f))} (5)
&(r)

where thes ) are uniform (stress) tensors in each phase, whietdatermined by the stationary condition in (5):
u™ u™
0 ) T e

Note that the compliance tensdv%’) correspond to ‘generalized secanppaoximations to the nonlinear stress-

strain relations.
In turn, the stationary operation in (&ads to additional conditions in each phasgiven by

&(r)) _ (&(r)) — Mg) (&(r) _ 6(”) (6)

(6—(”)_6—(”))@(6—(”)_6—(”)): =((0’—6'(r))®(0'—6'(r))>(r) (7)

which relate the variablez” to the variables "’ andM{” through the (intraphase) field fluctuations (about the
references ") in the LCC.

Then, using the fact that (3) and (5) are stationary with respect to the temgérand&(’), respectively, we can
rewrite the estimate (3) as:

- N Q)
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whereg ) = (¢)") is the average of the stress over phase the LCC. Egs. (6) and (7) determine the variables
¢ andM{” for any choice of the reference tenséé’, which remain to be specified.

Completely analogous expressions may be developed [2] starting from the dual formulation for the strain poten-
tials w™, which are the Legendre transformsudf (so thate = dw) /e (¢)). This formulation involves a LCC

with phase potentialw(Tr), given by second-order Taylor approximationsity of the same form as (4), in terms

of reference straing"” and tensors of moduug), and generates the following estimate for the effective strain
potential

N

~ o dw® () =

W(e) = E c(’)[w(r)(e( ) — e @)@ - €(r))} 9)
r=1

wherez”) = (e)” in the LCC, and the tensoé$” andL )’ depend on the reference tensf8 and the second
moments of the strain fluctuations (in the LCC) through equations analogous to (6) and (7).

Choiceof referencetensors.  Ideally, the estimates (8) and (9) forandW should be Legendre duals of each other
(i.e., noduality gap). These estimates would indeed satisfy this requirement if they were stationary with respect
to the reference tensodés” and&"”, respectively (see Section 6 in [2] for details). In addition, this prescription
for the references would lead to potentia$) and w(Tr) that would also be Legendre duals of each other, and
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the effective stress-strain relation of this LCC would coincide with that obtained by differentiation of (8) and (9).
Unfortunately, it has not yet been possible to find a satisfactory solution to the resulting system of equations.

For this reason, it was suggested, as an approximation in [2], the use of the phase averages in the LCC as
references, that is

¢ =" and " =&" (10)

This choice is physically appealing, for the right-hand side in (7) becomes the covariance tensor of the field fluc-
tuations in phase. Besides, this choice can be shown to rendgrand W, stationary, thupartially satisfying
the stationarity condition with respect to the references (see expression (3)). However, this approximation leads to
estimates fol/ andW that arenot Legendre duals of each other, i.e., there ésiality gap. But it should be noted
that the phase potentialé,’) and w;’) of the LCC's are still Legendre duals of each other [2], provideid (8)
ande in (9) are taken to be related by the effective stress-strain relation of the LCC. As will be seen in the next
section, the choice (10) can lead to inconsistencies in certain cases, and therefore, other prescriptions need to be
considered.

A simple alternative consists in the choices

ou™

7 =g and &= @) (11)
o

whereg is the overall stress in the LCC. Note that the requirement(iiplies that thez” are not equal te,
but it does imply thau(T’) andw(r) remain Legendre duals of each other (in the sense mentioned above).

For a given choice of reference tensors, the estimates (8) and (9) require the computation of the effective po-
tentialsUzy and Wy, which can be obtained using atigear homogenization method appropriate for composites
with local potentralsu(’) andw(r) and the same microstructure as the nonlinear composite. It can be verified that
expressions (8) and (9), together with (10), as well as (iifl), are exact to second order in the heterogeneity con-
trast, and therefore in agreement with the small-cabapansion of Suquet and Ponte Castafieda [3]. It should
be mentioned that Lahellec and Suquet [4] have provatedlternative formulation of the second-order method,
which has some advantages relative to the original formulation [6], but still does not resolve the duality problem.

Choice of compliancetensors. The left-hand side of relation (7) is a rank-one tensor, whereas the right-hand side
is, in general, of full rank. Therefore, equality cannot béoered for all components of the tensorial relation, and
only certain traces of it can be used. Consequently, the numhbiededendent components of the tensomg)
can be at most equal to the number of componenédf Thus, the estimates (8) cannot be fully stationary with
respect to the variabIeM(()’).

For isotropic, incompressible phases with potentials degirg only on the von Mises equivalent stress it
was proposed in Ref. [2] the useafisotropic, incompressible tensors of the form

M = @) TED + @2udH) 7" (12)

where E™ and F") are projection tensors with principal axes aligned with the reference stré§3e§hen,
expression (7) reduces to

) . 3 . L () . 3
H“): e(r)i\/Q((“—“(r))'E(”(G—U(”))()7 6 == E“”Fwa)@ (13)

wherecru(’) =36 .EM¢M)2ands " = (36 .F" )12 are the ‘parallel and ‘perpendicular components

of the traceless tensods’”, respectively. The sign of the square roots in (13) should be positﬁéé)ifg c‘re(r), and
negative otherwise, for consistency of (8) with the case of uniform fields (e.g., laminate, homogeneous limit). These
same observations apply to the tendoffd andé” in the dual version.
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3. Power-law composites

In this section we consider composite materials with phases characterized by isotropic, incompressible power-
law potentials

(r) 1+n
£00, 1
1+n Gé’) m

whereaé’) is the flow stress of phase m is such that 6< m < 1, ¢p is a reference strain, ang is the von

Mises equivalent stress. Note that= 1 andm = 0 correspond to linear and rigid-ideally plastic behaviors, re-
spectively. For simplicity, we consider statistically isotropic microstructures, and phase potentials (14) with the
same exponeni. It then follows that the effective potential can be written as

~ — \ 14n
~ _ €000 [ Oe
U(o) = = 15

©) 1+n<50> (15)

whereay is the effective flow stress, completalyaracterizing the effective behaw In two-dimensional problems,
such as transverse shear of a matrix with aligned filigr$és a function ofm, a(’), and the volume fractions of
the phases. In three dimensiohsg,also depends on the plastic phase amglehich in turn is related to the two
invariants of the deviatoric streég through cog30) = 4deta ) /c‘rf.

The extreme cases of infinite contrast are of particular interest. The results given in the following subsections
correspond to a matrix (phase 1) with flow streg@ = oo, with randomly distributed spherical pores or rigid
particles (phase 2) at volume fractief? = c. Only the case of axisymmetric shear=£ 0) is considered in
some detail. The Hashin—Shtrikman (HS) estimates of Willis [5] are used to estimate the effective behavior of the
associated LCC. These estimates are known to beopgpte for (linear) particulate media at low to moderate
concentrations, and are exact to second-ondeéhé heterogeneity contrast. Both, the strdg} énd the strain
(W) versions of the second-order (SO) estimates of the previous section are provided for two different choices
of reference tensors. We denote by | the estimates adedcivith (10), whereas those associated with (11) are
denoted by Il. These estimates are compared with the ‘original’ HS second-order (OSO) estimates of Ref. [6],
which do not make use of the field fluctuations in the linearization, as well as the corresponding ‘variational’ HS
estimates of Ref. [7]. The latter are actually rigorous upper bounds for all other nonlinear HS estimates, and, in
particular, for the second-order estimates. They all coincide, of course, o, where they reduce to the linear
HS estimates. Also included for comparison purposes are the classical upper and lower bounds of Voigt and Reuss.

3.1. Porous materials

Fig. 1 provides upper bounds and estimates for the effective flow stpefes the porous case. We begin by
noting that, unlike the OSO estimates (dashed lines), the SO-I estimates satisfy the HS variational bound (long-
dashed lines) for all values of the nonlinearity exponer(see Fig. 1(a)). Furthermore, the duality gap is found
to vanish form = 0, and it is negligible for most values of, except in a small interval around* ~ 0.15. At
this value of the nonlinearity exponent, thié-version presents a kink. This is related to the fact that, as will be
explained shortly, the choice (103annot be enforced fer < m™ in this particular case. In contrast, both versions
of the SO-Il estimates are found to be smooth functions of the nonlinearity exponent, since choice (11) is consistent
for all values ofm. These estimates lie closer to the variatidsalind than the SO-I, still satisfying it for a#l, and
present a duality gap which is negligible for alland even vanishes in the ideally-plastic limit £ 0). It should
be noted that the differences between the SO-I and SGithates are not as significant as the enlarged scale in
this figure might suggest. A fairer comparison is pd=d in Fig. 1(b), where estimates for the limiting case- 0
are shown as a function of the concentration of perdhe SO-Il estimates are found to lie between the SO-1 and
the variational bound for all, the differences being small. In fact, the SO-I and Il estimates can be shown to agree
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Fig. 1. Upper bounds and estimates of the Hashirdi@®han (HS) type for the effective flow streég of a power-law porous material subject
to axisymmetric sheat(= 0): (a) as a function of the nonlinearity exponentvith a given concentration of pores£ 0.25); (b) as a function
of the pore concentrationwith a rigid-ideally plastic matrix/ = 0).
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Fig. 2. (a) Anisotropy ratid = 1g/1tg of the matrix in the LCC; and (b) equivalent average stﬁé?ﬁ (continuous lines) and referenéél)
(dashed lines) in the matrix of the LCC, normalized by the equivalent applied strars a function of the nonlinearity exponent for a
power-law porous material with awgn concentration of pores & 0.25), subject to axisymmetric shear£ 0).

in the dilute limit, for anym, with the OSOW) estimates, as given by the first-order expansion of expression (5.4)
of [6] with 6 = 0, for small concentrations of pores.

Fig. 2(a) shows the ‘anisotropy’ ratio= Ao/ 1 Of elastic moduli (see expression (12)) in the matrix of the LCCs
associated with the second-order estimates of Fig. 1(a). The OSO estimates make use of a tangent compliance
tensor, which for potentials (14) takes the form (12) wite- m, whereas the anisotropy of the more general
compliance tensors used by the SO estimates depends not anlpoialso orc. In the linear casen{ = 1), these
tensors are isotropic, so thiat= 1, and as the nonlinearity increases thegdime progressively more anisotropic.

The main observation in the context of this figure is that when prescription (10) is used, the assotiatrihes

at a finite valuen* (already introduced in the context of Fig. 1(a)). In fact,#iok m™*, insisting on the prescription

(10) for the references would lead to negative valuels, efhich is unacceptable sintlis implies a matrix with

a negative definite compliance tensor in the LCC. The SO-I estimates provided in this Note were obtained by
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Fig. 3. Bounds and estimates of the Hashin—&htan (HS) type for the effective flow streég of a rigidly-reinforced power-law material
subject to axisymmetric sheat £ 0): (a) as a function of the nonlinearity exponentith a given concentration of particles £ 0.25); (b)
as a function of the particle concentratioffor the case of a rigid-ideally plastic matris (= 0).

initially assuming an arbitrary ‘V, with the corresponding reference strain givensh) = 9u® /3o ("), and
then taking the limiz Y — . As can be seen in Fig. 2(b), the resultid -1 andz'-I coincide form > m*,
in accordance with (18) but form < m* we have thak = 0 and the relation betweeit® andsY’ mentioned
above no longer implies (18)On the other hand, the alternative choice (11) leads to a well-belaN¢oat tends
to some finite value, dependent onin the ideally-plastic limit. Moreoveg -1l is different from D11 for all
values ofm, and exhibits a smooth behavior even at high nonlinearities (see Fig. 2(b)).
In view of the smaller duality gap and the smoother bétrenf the corresponding LCC, the prescription (11) is
to be preferred to the earlier prescription (10). However, only comparisons with exact results will allow corrobora-
tion of this choice.

3.2. Rigidly-reinforced materials

Fig. 3 provides bounds and estimates for the effective flow sttg$ar the case of rigid ri@forcement. The
SO-I estimates are not shown for brevity, liis worth mentioning that the associatedehaves similarly to the
k-1 shown in Fig. 2(a), for the reasons described above. Here, the SO-II estimates, unlike the OSO ones, are found
to satisfy the bounds for all values af, and exhibit essentially no duality gap (see Fig. 3(a)). Fig. 3(b) shows that
the SO-II estimates lie below the corresponding OBQéstimates for alt, although the differences are small. In
fact, they can be shown to agree in the dilute limit, as given by expression (5.3) of [6] with, for anym .

4. Final comments

Estimates of the HS type have also been obtained for the case of simpletsheay§). The trends foég were
found to be similar to those given in [8] for the in-plane shearing of 2D random fiber composites. Interestingly, for
a dilute concentration of (cylindrical) pores in a rigid-ideally plastic matrix subject to simple shear, it was found
in [8] that



154 M. Idiart, P. Ponte Castafieda / C. R. Mecanique 333 (2005) 147-154

which is non-analytic at = 0. For simple shear of (3D) spherical pores in a rigid-ideally plastic matrix, the
corresponding dilute limit is found to be

40 1

p 1 4c||r1 cl
which is also non-analytic at = 0, but with aweaker singularity. Weaker singularities in 3D than in 2D have
already been found by Drucker [9] for the caseefiodic arrays of pores. The question remains as to whether the
singularities predicted by the secoantter method for the random case mayifdeed correct. That this might be
the case is suggested by the comparisons with numerical results provided by Pastor and Ponte Castafieda [10]. In
any case, the mere fact that the second-order method can capture some signature of the strongly nonlinear fields
associated with ideally-plastic composites is already a positive result, as no other method to date seems to able to
do so.

We conclude by emphasizing that the issuehaf best choice for the reference tenséfs and&"” in the

context of the second-order method remains largely odenetheless, the results provided in this Note suggest
that the identification of ") with the macroscopic averageappears to give reasonable estimates. Although giving
sensible estimates for most situations, the earlieiae for these variables (i.e., the phase avera§essuggested
in [2] can lead to inconsistent results for strong nonlinearities, if care is not taken to ensure that the LCC remains
strongly elliptic. To avoid this complication, ¢huse of the prescription (11) is recommended.
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