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Abstract

A model describing a macroscopic mechanism of the rupture of a free liquid film is introduced and analysed in the framework
of the thin-film approximation. The process is shown to be driven by the surface-tension gradient arising when the rate of
variation of the free-surface area due to external disturbances becomes comparable with the inverse surface-tension-relaxation
time. The proposed mathematical description of the rupture phenomenon does not require the introduction of intermolecular
forces into the equations of macroscopic fluid mechafigsite thisarticle: Y.D. Shikhmurzaev, C. R. Mecanique 333 (2005).
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Résumé

Mécanisme macroscopique de rupture de couches minces libreBans le cadre de I'approximation de couches minces,
on introduit et on analyse un modeéle macroscopique de rupture d’'une couche mince liquide. On démontre que le processus est
alimenté par le gradient de la tension surfacique chaque fois quand le taux de variation de I'aire de surface libre provoqué par
les perturbations extérieures devient comparable avec I'inverse du temps de relaxation de la tension surfacique. La description
mathématique du phénomene de rupture proposée ici ne nécessite pas l'introduction explicite des forces intermoleculaires dans
les équations de la mécanique des fluides macroscopRpue.citer cet article: Y.D. Shikhmurzaev, C. R. Mecanique 333
(2005).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

The rupture of a free liquid film is an example from a wide class of fluid motion where the flow domain’s
topology changes in a finite time. The peculiarity of this phenomenon is that, unlike the breakup of a cylindrical jet,
in the planar geometry of a film the capillary pressure is always a stabilizing factor tending to counter the effects
of external disturbances and restore the initial shape of the film. In the literature, the rupture of films has been
studied in the situation where the film is already so thin that the opposite interfaces feel each other’s presence via
long-range intermolecular forces, which then act as a breaking mechanism [1,2]. In the present Note, we examine
what happens before that and whether or not the process of thinning a free film with a thickness on a macroscopic
rather than molecular scale and its eventual rupture can be modelled in the framework of fluid mechanics without
invoking intermolecular forces.

The key physical idea of the present study is as follows. The deformation of a free surface associated with
variation of its area is a mechanism that drives the liquid-gas interface out of its equilibrium state. This influence
is opposed by the relaxation mechanism rooted in thermodynamics that tends to restore the equilibrium state of
the interface and bring its surface properties, such as the surface tension, back to their equilibrium values. In
almost all flows, the characteristic time scale associated with the rate-of-change of the free-surface area is by
many orders of magnitude larger than the surface-tension-relaxation time so that, if there are no other macroscopic
factors influencing the surface tension (such as the temperature or surfactant concentration gradients, external
electromagnetic fields, etc.), one can consider the surface tension of the liquid-gas interface to be a known constant.

The situation changes in the case of the rupture of a free film. In the process of thinning of a free film, to
leading order in the aspect ratio, the velocity profile across the film is that of a plug flow so that for the relative
rate at which the fresh free surface are#s created one had/S) dS/dr o« (1/h)dh/dr and it tends to infinity
(and hence the corresponding time scale tends to zero) as the film’s thiékdesseases. Thus, for sufficiently
thin films external disturbances can cause significant deviation of the interfacial properties, first of all the surface
tension, from their equilibrium values. Then, for a general case of a spatially nonuniform disturbance one will have
a surface tension gradient which generates the Marangoni flow, and if the film is sufficiently thin, it can be ruptured
due to the resulting motion before the thermodynamic equilibrium of the interface is restored. We examine this
scenario using a simple model of fluid flow with forming/disappearing interfaces [3], which was developed for,
and shown to be successful in, describing dynamic wetting [3-5]. In the present work, the model is used without
any adhoc alterations.

2. Thin-film approximation
To study a free-surface flow with a topological transition of the flow domain in the framework of the theory of
fluid motion with forming interfaces [3] one has to consider solutions of the Navier—Stokes equations,
V.u=0, p(dU/dt +U-Vu)=—Vp+uVvVau (1)

satisfying at an a priori unknown free surfagér, ) = O with the inward normah = V f/|V f| the boundary
conditions

afjor+Vv* - Vf=0 2)
—p+un-[Vu+ (Vu*]-n=0V-n, pn-[Vu+ (Vw*]- (I —nn)+ Vo =0 ()
pU—V)-n=(p" —p)T™t,  8p* /3t + V- (V) =—(p* = p))T " 4)
(14 40p)Vo =4B(° —u)- (I —nn), o =ap® —b(p*)? (5)

together with some conditions in the far field specifying a particular flow and initial conditions. In addition to the
known kinematic condition (2) and conditions on the normal and tangential stress (3),vidiéne metric tensor,
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the model accounts for the mass exchange between the bulk and the surface phase (4) as the interface relaxes
towards its equilibrium state with the surface dengitytending to its equilibrium valug? (r is the relaxation
time; u andv*® are the bulk and the surface-phase velocity, respectively). For spatially nonuniform flows, like the
rupture of a film, the appearing gradient of the surface tensidirst, influences the flow via the tangential-stress
condition (the Marangoni effect; the second condition in (3)) and, secondly, forming a torque with the tangential
stress, it makes the tangential to the interface components of the surface welagtyate from the corresponding
component of the bulk velocity evaluated at the interface (the first condition in (5)). The equation of state in the
surface phase (the second equation in (5)) is taken in a simple barotropic form approximating the general equation
of state for the surface phase,= f(p*, T), whereT is the absolute temperature, for the process of interface
formation. The concept of the ‘surface density’ as a parameter of state was first introduced by Gibbs [6] and since
then used in different forms, together with the notion of surface velocity, by many authors [7]. Eqg. (5) takes into
account that the surface tension decreases from its equilibrium walses (o) if the surface phase becomes
compressed or extremely rarefied. In particular, a hypothetical instantly created free surface correspords to
and, as one would expect, has zero surface tension; the latter is acquired as the molecular motion leads to the
formation of a certain structure of the interfacial layer, which is macroscopically modelled as a two-dimensional
‘surface phase’. Estimates for material constantg and ¢ for some fluids have been obtained by analysing
experiments on dynamic wetting [5].

The general three-dimensional problem can be considerably simplified in the thin-film approximation with the
ratio of characteristic length scales in the directions normal and tangential to the déna small parameter. We
will consider this approximation for a plane two-dimensional flow in a film of incompressible Newtonian fluid of
viscosity u and densityp surrounded by an inviscid dynamically-passive gas. Let the film's shape be described
by y = +h(x, t) in a suitably chosen Cartesian coordinate frame@nd', v, v° denote, respectively, the and
y components of the bulk and surface velocities. Then the thin-film approximation can be obtained by using the
following asymptotic expansions:

o
x=Lex, y=Le%y, t=r1,€%, hL 1= Zez(”+l)hn (6)
n=0
o0 o0
YU =" tupul), W =) (v, 0))
n=0 n=0

o o
pP_1 = Zez("_l)pn, (aoe_l, p'bat) = Zézn(ﬁn, op)s ase—0
n=0 n=0
where L = u?(po,) L, t, = u3p~t0,2, U = oopn™1, P = po?uu=2. After the standard asymptotic analysis to
leading order one arrives at the following set of equations:

dup oup 1 dop 4 90 oup _duo(x, 1)

—_— —_— = —— | hog— s =V 7
7 T"%% o ax+hoax<°ax> YO= TR @
dhg s 0ho s dpy  9(pgup)

— _— = S —_— —_— = 0 8
a7 Hopr — o 0t T ox ®)
dop _ doho ) e e

524,3('46—”0)7 (uo—ué)g — (vo—v}) = x(p5— 05) 9)

o0 = apl — b(p})? (10)

where = Bup~to Y1 + 4ap)~, ¥ = au(bpo.t)~t and 5 = pSha?. In obtaining (7)—(10) it was assumed
that all nondimensional parameters appearing after the use of scaling (6) af&) @92 — 0. In particular, this
means thatztﬂ‘[_l — 0 ase — 0 so that, physically, the process described by (7)—(10) takes place on a time
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scale small compared withand, according to the second equation (8), the relaxation mechanisms have no time to
restore the equilibrium surface density (and hence the equilibrium surface tension).

Egs. (7)—(10) can be simplified further for medium to high-viscosity fluids by using the estimates for material
constants of the model obtained from experiments on dynamic wetting [5]. These estimates show that for such
fluids ¥ « 1 andg > 1 and hence, to leading order in these parameters, it follows from (9) that one can neglect
the difference betweequ, vy) and (uo, vo). Then, after simple algebra we arrive at an initial-value problem for
the following set of nonlinear equations:

8u+ ou 180‘+43 h8u (11)
T T | M

ot ox hox hox\ 0x

oF 03(Fu)

St =0 F=(p:  o=ap’ —b(p')? (12)

(Hereafter for brevity we drop the overbar and the subscript 0.) In (11), the surface tension gradient on the right-
hand side appears as the only driving force, unlike the case of the breakup of a cylindrical jet [8], where the
Marangoni effect and the capillary pressure due to the cross-sectional curvature play comparable roles.

3. The process of rupture

As already mentioned, the scaling (6) implies, in particular, that Egs. (11), (12) operate on a time scale small
compared with the surface-tension-relaxation time, and, with no relaxation ind{%2}, = const,i» = h = const,
p® = p* = const is a solution of (11), (12) for arbitrary valuesigfi and 5*. A linear stability analysis of this
solution leads to a dispersion relationship of the form

S

1/2 do
~ 52 ns

w=ku — 2ik |:1:t <1+ 4k2f1> i| wherex = a %) (13)
and w andk are the angular frequency and wavenumber, respectively. Hence the solution is stable @or
which for the surface equation of state given by the second equation (12) correspdhdsd@(2b) and unstable
otherwise. In other words, it is stable if the rarefaction of the surface phase increases the surface tension, which then
contracts the surface and replenishésOn the other hand, if the surface tension decreases with decrease in
then a local rarefaction of the surface phase due to an external disturbance leads to a local reduction in the surface
tension whose gradient then acts to pull the film apart and redtiGven further. The dispersion relationship
(13) also indicates that, unlike Rayleigh’s instability of a cylindrical jet, the most destabilizing are short-wave
disturbances.

In order to illustrate how the Marangoni effect incorporated in (11) and (12) leads to the rupture of a free film
in the nonlinear regime consider the evolution of the film that after an external finite-amplitude disturbance makes
o = p*, wherep? is in the unstable zone.( 0). It is instructive to look at the borderline case where 0, i.e.
p° =a/(2b). Thus, let us consider a small disturbance= a/(2b)[1 — A exp(—x2/1%)], whereA is the relative
amplitude and is the width of the disturbance.

Fig. 1 shows the film’s profile at various times obtained via numerical integration of (11) and (12):d.1
and/ = 0.5. As one can see, the initial disturbance of the surface tension indeed leads to the film’s thinning due to
the Marangoni effect. In the thin-film approximatipn= —20u/0x and, ag increases, the pressure in the minimal
cross-section goes through a global minimum (Fig. 2) suggesting a transition to a new dynamic regime. The essence
of this regime follows from Fig. 1, which shows a gradual formation of a distinct structure consisting of a departing
main body of fluid (macrofilm) and a vanishing residual film of an increasingly uniform thickness. Given that the
(almost constant) thickness of the macrofilm and the (infinitesimal) thickness of the residual film are separated in
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Fig. 1. Profiles of the free surface at different moments in time. Solid lines 1-9 are obtainee- for 10, 15, 20, 25, 30, 35, 40 and 45,
respectively. Dashed lines a—d correspond+041, 42, 43 and 44.

Fig. 1. Profiles de la surface libre aux moments différents. Les lignes continues 1-9 sont obtenus-@ut0, 15, 20, 25, 30, 35, 40,
respectivement. Les lignes en pointillé a—d correspondent aux temp4, 42, 43 et 44.

|
—
o
I
5
||||||||||l||||\

Fig. 2. The pressure in the minimal cross-section vs time £00.5 (curve 1) and = 0.7 (curve 2).
Fig. 2. La pression dans la section transverse minimale en fonction du temps=p0OiB (courbe 1), et pour= 0,7 (courbe 2).

scale, the late stage of the evolution of the residual film must take place in a self-similar regime. This regime is
given by

u=x(t—19)" L (h,p*,0)=(H,R,aR)(t —tg) *

whererg, H and R are constants determined by the preceding evolution of the film. In this solution, both terms on
the right-hand side of (11) become separately zero thus indicating that the process is driven by the departing ends
of the macroscopic film whereas the residual film simply follows and gets thinner accordingly. Thus, there is no
effect of the residual film on the departing ends of the macrofilm and hence of these ends on each other. In effect,
this is what ‘rupture’ means in dynamic terms.

Since the thinning of the residual film does not lead to singularities in the solution, in practice, as one computes
the global flow numerically, the residual film can be neglected once its thickness becomes smaller than the spatial
resolution of the code.

The main feature of the mechanism of rupture considered above is that it does not require the free surfaces being
brought together by the (singular) forces of attraction of the molecular origin, whose inclusion in macroscopic
fluid mechanics is methodologically questionable. It is also noteworthy that, physically, the microscopic evolution
of the film that follows after the opposite interfacial layers ‘touch’ is a natural continuation of the mechanism
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described above. Indeed, ‘touching’ of the opposite interfaces means that each of them is no longer separating two
bulk phases, and it is this position between the bulk phases (associated with asymmetry of intermolecular forces
acting on the interfacial layer) that gives rise to the surface tension. Hence, ‘touching’ interfaces lose their surface
tensions at the point of contact and, given that in the remaining parts of the film the surface tension is still nonzero,
the film is pulled apart by the surface-tension gradient. This final ‘microscopic rupture’ is physically the same as
the macroscopic process described in the present paper.
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