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Abstract

A model describing a macroscopic mechanism of the rupture of a free liquid film is introduced and analysed in the fra
of the thin-film approximation. The process is shown to be driven by the surface-tension gradient arising when the
variation of the free-surface area due to external disturbances becomes comparable with the inverse surface-tension
time. The proposed mathematical description of the rupture phenomenon does not require the introduction of interm
forces into the equations of macroscopic fluid mechanics.To cite this article: Y.D. Shikhmurzaev, C. R. Mecanique 333 (2005).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Mécanisme macroscopique de rupture de couches minces libres.Dans le cadre de l’approximation de couches minc
on introduit et on analyse un modèle macroscopique de rupture d’une couche mince liquide. On démontre que le pro
alimenté par le gradient de la tension surfacique chaque fois quand le taux de variation de l’aire de surface libre prov
les perturbations extérieures devient comparable avec l’inverse du temps de relaxation de la tension surfacique. La d
mathématique du phénomène de rupture proposée ici ne nécessite pas l’introduction explicite des forces intermolecu
les équations de la mécanique des fluides macroscopique.Pour citer cet article : Y.D. Shikhmurzaev, C. R. Mecanique 333
(2005).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

The rupture of a free liquid film is an example from a wide class of fluid motion where the flow dom
topology changes in a finite time. The peculiarity of this phenomenon is that, unlike the breakup of a cylindr
in the planar geometry of a film the capillary pressure is always a stabilizing factor tending to counter the
of external disturbances and restore the initial shape of the film. In the literature, the rupture of films ha
studied in the situation where the film is already so thin that the opposite interfaces feel each other’s pres
long-range intermolecular forces, which then act as a breaking mechanism [1,2]. In the present Note, we
what happens before that and whether or not the process of thinning a free film with a thickness on a mac
rather than molecular scale and its eventual rupture can be modelled in the framework of fluid mechanics
invoking intermolecular forces.

The key physical idea of the present study is as follows. The deformation of a free surface associa
variation of its area is a mechanism that drives the liquid-gas interface out of its equilibrium state. This in
is opposed by the relaxation mechanism rooted in thermodynamics that tends to restore the equilibrium
the interface and bring its surface properties, such as the surface tension, back to their equilibrium va
almost all flows, the characteristic time scale associated with the rate-of-change of the free-surface ar
many orders of magnitude larger than the surface-tension-relaxation time so that, if there are no other mac
factors influencing the surface tension (such as the temperature or surfactant concentration gradients
electromagnetic fields, etc.), one can consider the surface tension of the liquid-gas interface to be a known

The situation changes in the case of the rupture of a free film. In the process of thinning of a free
leading order in the aspect ratio, the velocity profile across the film is that of a plug flow so that for the r
rate at which the fresh free surface areaS is created one has(1/S)dS/dt ∝ (1/h)dh/dt and it tends to infinity
(and hence the corresponding time scale tends to zero) as the film’s thicknessh decreases. Thus, for sufficient
thin films external disturbances can cause significant deviation of the interfacial properties, first of all the
tension, from their equilibrium values. Then, for a general case of a spatially nonuniform disturbance one w
a surface tension gradient which generates the Marangoni flow, and if the film is sufficiently thin, it can be ru
due to the resulting motion before the thermodynamic equilibrium of the interface is restored. We exam
scenario using a simple model of fluid flow with forming/disappearing interfaces [3], which was develop
and shown to be successful in, describing dynamic wetting [3–5]. In the present work, the model is used
any adhoc alterations.

2. Thin-film approximation

To study a free-surface flow with a topological transition of the flow domain in the framework of the the
fluid motion with forming interfaces [3] one has to consider solutions of the Navier–Stokes equations,

∇ · u = 0, ρ(∂u/∂t + u · ∇u) = −∇p + µ∇2u (1)

satisfying at an a priori unknown free surfacef (r , t) = 0 with the inward normaln = ∇f/|∇f | the boundary
conditions

∂f/∂t + vs · ∇f = 0 (2)

−p + µn · [∇u + (∇u)∗
] · n = σ∇ · n, µn · [∇u + (∇u)∗

] · (I − nn) + ∇σ = 0 (3)

ρ(u − vs) · n = (ρs − ρs
e)τ

−1, ∂ρs/∂t + ∇ · (ρsvs) = −(ρs − ρs
e )τ

−1 (4)

(1+ 4αβ)∇σ = 4β(vs − u) · (I − nn), σ = aρs − b(ρs)2 (5)

together with some conditions in the far field specifying a particular flow and initial conditions. In addition
known kinematic condition (2) and conditions on the normal and tangential stress (3), whereI is the metric tensor
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the model accounts for the mass exchange between the bulk and the surface phase (4) as the interfa
towards its equilibrium state with the surface densityρs tending to its equilibrium valueρs

e (τ is the relaxation
time; u andvs are the bulk and the surface-phase velocity, respectively). For spatially nonuniform flows, li
rupture of a film, the appearing gradient of the surface tensionσ , first, influences the flow via the tangential-stre
condition (the Marangoni effect; the second condition in (3)) and, secondly, forming a torque with the tan
stress, it makes the tangential to the interface components of the surface velocityvs deviate from the correspondin
component of the bulk velocityu evaluated at the interface (the first condition in (5)). The equation of state i
surface phase (the second equation in (5)) is taken in a simple barotropic form approximating the general
of state for the surface phase,σ = f (ρs, T ), whereT is the absolute temperature, for the process of inter
formation. The concept of the ‘surface density’ as a parameter of state was first introduced by Gibbs [6] a
then used in different forms, together with the notion of surface velocity, by many authors [7]. Eq. (5) tak
account that the surface tension decreases from its equilibrium valueσe = σ(ρs

e ) if the surface phase becom
compressed or extremely rarefied. In particular, a hypothetical instantly created free surface correspondsρs = 0
and, as one would expect, has zero surface tension; the latter is acquired as the molecular motion lea
formation of a certain structure of the interfacial layer, which is macroscopically modelled as a two-dime
‘surface phase’. Estimates for material constantsα, β and τ for some fluids have been obtained by analys
experiments on dynamic wetting [5].

The general three-dimensional problem can be considerably simplified in the thin-film approximation w
ratio of characteristic length scales in the directions normal and tangential to the filmε as a small parameter. W
will consider this approximation for a plane two-dimensional flow in a film of incompressible Newtonian flu
viscosityµ and densityρ surrounded by an inviscid dynamically-passive gas. Let the film’s shape be des
by y = ±h(x, t) in a suitably chosen Cartesian coordinate frame andu, us , v, vs denote, respectively, thex and
y components of the bulk and surface velocities. Then the thin-film approximation can be obtained by us
following asymptotic expansions:

x = Lεx̄, y = Lε2ȳ, t = tµε2t̄ , hL−1 =
∞∑

n=0

ε2(n+1)hn (6)

(u,us)U−1 =
∞∑

n=0

ε2n−1(un,u
s
n), (v, vs)U−1 =

∞∑
n=0

ε2n(vn, v
s
n)

pP −1 =
∞∑

n=0

ε2(n−1)pn, (σσ−1
e , ρsba−1) =

∞∑
n=0

ε2n(σn,ρ
s
n), asε → 0

whereL = µ2(ρσe)
−1, tµ = µ3ρ−1σ−2

e , U = σeµ
−1, P = ρσ 2

e µ−2. After the standard asymptotic analysis
leading order one arrives at the following set of equations:

∂u0

∂t̄
+ u0

∂u0

∂x̄
= 1

h0

∂σ0

∂x̄
+ 4

h0

∂

∂x̄

(
h0

∂u0

∂x̄

)
, v0 = −ȳ

∂u0(x̄, t̄ )

∂x̄
(7)

∂h0

∂t̄
+ us

0
∂h0

∂x̄
= vs

0,
∂ρs

0

∂t̄
+ ∂(ρs

0u
s
0)

∂x̄
= 0 (8)

∂σ0

∂x̄
= 4β̄(us

0 − u0), (u0 − us
0)

∂h0

∂x̄
− (v0 − vs

0) = χ̄ (ρs
0 − ρ̄s

e ) (9)

σ0 = aρs
0 − b(ρs

0)
2 (10)

whereβ̄ = βµρ−1σ−1(1 + 4αβ)−1, χ̄ = aµ(bρσeτ)−1 and ρ̄s
e = ρs

eba−1. In obtaining (7)–(10) it was assume
that all nondimensional parameters appearing after the use of scaling (6) are of O(1) asε → 0. In particular, this
means thatε2tµτ−1 → 0 asε → 0 so that, physically, the process described by (7)–(10) takes place on a
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scale small compared withτ and, according to the second equation (8), the relaxation mechanisms have no
restore the equilibrium surface density (and hence the equilibrium surface tension).

Eqs. (7)–(10) can be simplified further for medium to high-viscosity fluids by using the estimates for m
constants of the model obtained from experiments on dynamic wetting [5]. These estimates show that
fluids χ̄ � 1 andβ̄ � 1 and hence, to leading order in these parameters, it follows from (9) that one can n
the difference between(us

0, v
s
0) and(u0, v0). Then, after simple algebra we arrive at an initial-value problem

the following set of nonlinear equations:

∂u

∂t
+ u

∂u

∂x
= 1

h

∂σ

∂x
+ 4

h

∂

∂x

(
h

∂u

∂x

)
(11)

∂F

∂t
+ ∂(Fu)

∂x
= 0, F = (h,ρs); σ = aρs − b(ρs)2 (12)

(Hereafter for brevity we drop the overbar and the subscript 0.) In (11), the surface tension gradient on th
hand side appears as the only driving force, unlike the case of the breakup of a cylindrical jet [8], wh
Marangoni effect and the capillary pressure due to the cross-sectional curvature play comparable roles.

3. The process of rupture

As already mentioned, the scaling (6) implies, in particular, that Eqs. (11), (12) operate on a time sca
compared with the surface-tension-relaxation time, and, with no relaxation in (12),u ≡ û = const,h ≡ ĥ = const,
ρs ≡ ρ̂s = const is a solution of (11), (12) for arbitrary values ofû, ĥ and ρ̂s . A linear stability analysis of this
solution leads to a dispersion relationship of the form

ω = kû − 2ik2
[
1±

(
1+ ρ̂sλ

4k2ĥ

)1/2]
, whereλ = dσ

dρs
(ρ̂s) (13)

and ω and k are the angular frequency and wavenumber, respectively. Hence the solution is stable forλ < 0,
which for the surface equation of state given by the second equation (12) corresponds toρ̂s > a/(2b) and unstable
otherwise. In other words, it is stable if the rarefaction of the surface phase increases the surface tension, w
contracts the surface and replenishesρs . On the other hand, if the surface tension decreases with decreaseρs ,
then a local rarefaction of the surface phase due to an external disturbance leads to a local reduction in th
tension whose gradient then acts to pull the film apart and reduceρs even further. The dispersion relationsh
(13) also indicates that, unlike Rayleigh’s instability of a cylindrical jet, the most destabilizing are short
disturbances.

In order to illustrate how the Marangoni effect incorporated in (11) and (12) leads to the rupture of a fr
in the nonlinear regime consider the evolution of the film that after an external finite-amplitude disturbance
ρs ≡ ρ̂s , whereρ̂s is in the unstable zone (λ � 0). It is instructive to look at the borderline case whereλ = 0, i.e.
ρ̂s = a/(2b). Thus, let us consider a small disturbanceρs = a/(2b)[1 − Aexp(−x2/l2)], whereA is the relative
amplitude andl is the width of the disturbance.

Fig. 1 shows the film’s profile at various times obtained via numerical integration of (11) and (12) forA = 0.1
andl = 0.5. As one can see, the initial disturbance of the surface tension indeed leads to the film’s thinning
the Marangoni effect. In the thin-film approximationp = −2∂u/∂x and, ast increases, the pressure in the minim
cross-section goes through a global minimum (Fig. 2) suggesting a transition to a new dynamic regime. The
of this regime follows from Fig. 1, which shows a gradual formation of a distinct structure consisting of a dep
main body of fluid (macrofilm) and a vanishing residual film of an increasingly uniform thickness. Given th
(almost constant) thickness of the macrofilm and the (infinitesimal) thickness of the residual film are sepa
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Fig. 1. Profiles of the free surface at different moments in time. Solid lines 1–9 are obtained fort = 0, 10, 15, 20, 25, 30, 35, 40 and 4
respectively. Dashed lines a–d correspond tot = 41, 42, 43 and 44.

Fig. 1. Profiles de la surface libre aux moments différents. Les lignes continues 1–9 sont obtenus pourt = 0, 10, 15, 20, 25, 30, 35, 40
respectivement. Les lignes en pointillé a–d correspondent aux tempst = 41, 42, 43 et 44.

Fig. 2. The pressure in the minimal cross-section vs time forl = 0.5 (curve 1) andl = 0.7 (curve 2).

Fig. 2. La pression dans la section transverse minimale en fonction du temps pourl = 0,5 (courbe 1), et pourl = 0,7 (courbe 2).

scale, the late stage of the evolution of the residual film must take place in a self-similar regime. This re
given by

u = x(t − t0)
−1, (h,ρs, σ ) = (H,R,aR)(t − t0)

−1

wheret0, H andR are constants determined by the preceding evolution of the film. In this solution, both ter
the right-hand side of (11) become separately zero thus indicating that the process is driven by the depar
of the macroscopic film whereas the residual film simply follows and gets thinner accordingly. Thus, ther
effect of the residual film on the departing ends of the macrofilm and hence of these ends on each other.
this is what ‘rupture’ means in dynamic terms.

Since the thinning of the residual film does not lead to singularities in the solution, in practice, as one co
the global flow numerically, the residual film can be neglected once its thickness becomes smaller than th
resolution of the code.

The main feature of the mechanism of rupture considered above is that it does not require the free surfac
brought together by the (singular) forces of attraction of the molecular origin, whose inclusion in macro
fluid mechanics is methodologically questionable. It is also noteworthy that, physically, the microscopic ev
of the film that follows after the opposite interfacial layers ‘touch’ is a natural continuation of the mech
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described above. Indeed, ‘touching’ of the opposite interfaces means that each of them is no longer separ
bulk phases, and it is this position between the bulk phases (associated with asymmetry of intermolecul
acting on the interfacial layer) that gives rise to the surface tension. Hence, ‘touching’ interfaces lose their
tensions at the point of contact and, given that in the remaining parts of the film the surface tension is still n
the film is pulled apart by the surface-tension gradient. This final ‘microscopic rupture’ is physically the s
the macroscopic process described in the present paper.
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