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Abstract

The paper presents numerical simulations of the Marangoni—Bénard convection in a real symmetric three-layer system.
The temperature gradient is directed along the interfaces. Nonlinear regimes of steady and oscillatory convective flows are
investigated by means of the finite-difference method. Transitions between the motions with different spatial structures are
studied.To cite thisarticle: V. Shevtsova et al., C. R. Mecanique 333 (2005).
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Résumé

Etude non-linéair e de la convection ther mocapillaire dansun systéme symétrique atrois couches. Ce travail présente les
simulations numériques de la convection de Marangoni—-Bénard dans un systéme réel symétrique a trois couches. Le gradient d
température est dirigé le long des interfaces. Les régimes non-linéaires des écoulements convectifs stationnaires et oscillatoire:
sont étudiés par la méthode des différences finies. Les transitions entre les mouvements a structure spatiale différente son
également étudiéeBour citer cet article: V. Shevtsova et al., C. R. Mecanique 333 (2005).
0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

It is well known, that the thermocapillary convection plays a dominant role in many technological microgravity
experiments. The case when the system has only one interface between different fluids has been studied analytically
and numerically in many works (see, for example, the monograph [1]).

Recently a new scientific direction of investigation, convective instabilities in multilayer systems, was con-
ceived. In multilayer systems, containing more than one interface, some new phenomena may arise as a result of
the interaction between different interfaces. Numerical investigations of thermocapillary convection in multilayer
systems were started in [2—4]. In these papers the linear stability of the mechanical equilibrium state and the nonlin-
ear regimes of convection have been studied. In particular, in [2] and [4] it was shown that a three-layer system may
become unstable with respect to the oscillatory disturbances. An analysis of different mechanisms of interaction
between Rayleigh and thermocapillary instabilities in real three-layer systems was given in [5].

Prakash and Koster found the analytical solution describing the velocity and the temperature fields for the
parallel flow in the core region of a three-layer fluid system under the action of the temperature gradient directed
along the interfaces (see [6,7]). The flow field in the end-wall region was analyzed by matching with the core region
flow [7,8]. This approach works for long layers in the case of weak nonlinear effects (for small values of Grashof
and Marangoni numbers).

The experimental results on Marangoni—Bénard instability under microgravity conditions in three-layer systems
have been described in [9-11].

In the present Note we perform the nonlinear simulations of convective flows in a closed cavity filled by a
symmetric three-layer system when one fluid is sandwiched between two layers of another fluid. The case where
the temperature gradient is directed along the interfaces is considered. Both steady and oscillatory convective
regimes are studied.

The paper is organized as follows. The formulation of the problem is given in Section 2. The results of nonlinear
simulations are presented in Section 3. Section 4 contains some concluding remarks.

2. General equations and boundary conditions

Let the space between two parallel rigid horizontal plates be filled by three immiscible viscous fluids with
different physical properties (see Fig. 1). Even in the absence of gravity, we shall call the layer 1 as the ‘top layer’
and the layer 3 as the ‘bottom layer’. The equilibrium thicknesses of the layets ane= 1, 2, 3. We assume that
deformations of interfaces are small, and their influence on the flow and the temperature distribution can be ignored.
The surface tension coefficients on the upper and lower interfacasdo,, are linear functions of temperatufe
o =09 —aT, o, =040 — . T. We do not take into account buoyancy effects which are negligible in the case of
thin layers or under microgravity conditions. The vertical plates are kept at different constant temperatures. The
overall temperature drop & Let us use the following notations:

p=p1/p2, v=v1/v2, nN=n1/n2, K =kK1/k2, X =x1/X2, a=az/a1
P« =p1/03, Ve =V1/V3, Nx=01/N3, K«=Kk1/K3, Xx=X1/X3, ax=azs/a1

Here oy, Viu, 1w, km» Xm @nda,, are, respectively, the density, the kinematic and the dynamic viscosity, the heat
conductivity and the thermal diffusivity of theth layer(m = 1, 2, 3). As units of length, time, velocity, pressure
and temperature we use, a%/ul, vi/ai, ,olvf/af ande, respectively. The complete nonlinear equations governing
the Marangoni convection (see [5]) have the following form:

. . .

W + W V)V = —enV pim + cnAvy, (1)
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Fig. 1. Geometric configuration of the region and coordinate axes.
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Here,e1=c1=di=1;e0=p,c2=1/v,d2=1/x; e3= ps, c3=1/vy,d3 =1/ xs.
The conditions on the rigid horizontal boundaries are:
z=1L 11=0 T1=1/2—x/L
z=—a—ay: v3=0; T3=1/2—x/L
We consider the following conditions on vertical boundaries= 1, 2, 3):
T _ g
ax
The boundary conditions on the interface- 0 can be written in the form:

x=-L/2,L/2: ¥, =0;

" 0z 9z P 3y
Vg = V2, VUl =U2y, V=2, =0
T1=T>
0Ty 07T>»
K— = —=
9z 0z

dvy dvy nM 0Ty _0 dvyy dvzy, M 0Ty

and at; = —a:

_181)2)[ _ n_lavsx _ %ﬂ :0 _18U2y _ _18U3y _ %@ =0
9z * 9z P ox ' 9z * 9z P 3y

U2y =U3x, U2y =13y, V2, =03 =0

To =13
oT: oT:

K71_2 =/<;1—3
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Here P = v1/x1 is the Prandtl number for the liquid in layer 1 abti= a6a1/n1x1 is the Marangoni number.

The boundary value problem formulated above was solved by the finite-difference method. Equations were
approximated on a rectangular uniform mesh<886 (L = 3.2), 112x 56 (L = 16), 168x 56 (L = 32) using a
second-order approximation for the spatial coordinates. The explicit scheme was applied for solving the evolution
equations. The Poisson equations were solved by the iterative Liebman successive overrelaxation method on eacl
time step: the accuracy of the solution was 10The details of the method may be found in [1].

3. Numerical results

Let us consider the real symmetric system silicone oil 47v2—water-silicone oil 47v2 with the following set of
parametersy = 1.7375,v =2,k = 0.184, x = 0.778; nx = vx = ks = xx = 1; P = 25.7. We takea = a, = 1.

This means that the exterior layers have the same thermophysical properties.

First, let us consider the cavity with the small aspect réfic= 3.2). Even for small values of the Marangoni
number(M # 0) the mechanical equilibrium state is impossible and a steady motion takes place in the system. The
streamlines and isotherms for the definite value of the Marangoni number are presented in Fig. 2. One can see tha
in the central part of the cavity the flow is nearly parallel. Along the interfaces, the fluids move from the hot wall
to the cold wall. In the middle layer the motion consists of two vortices of different signs and has the ‘two-store’
structure. The flow fields in different layers are coupled by viscous stresses. Near the lateral walls the fluid may
move both upwards and downwards. For relatively small valued diie flows are quite symmetric with respect
to the vertical axisc = 0.

With the increase of the Marangoni number the intensity of the flow near the hot wall becomes higher than
that near the cold wall. At the larger valuesMfthe steady motion becomes unstable and the regular oscillations
develop in the system. The snapshots of the streamlines for one period of oscillations are presented in Fig. 3. During
the oscillatory process the vortices become longer in the horizontal direction (Fig. 3(b)) and than the additional
vortices appear in the middle layer (Fig. 3(c)). These new vortices move to the right, than they are reflected by the
cold lateral wall and start to move in the opposite direction (Figs. 3(e)—(g)). Finally, the new vortices couple with
the main vortices in the middle layer and the oscillatory process is repeated.

Now let us consider the longer cavity with = 16. As in the case of the short cavity, for relatively small
values of the Marangoni numbéd # 0) the steady motion takes place in the system. At the larger valuds of
(M, > 130000 the steady state becomes unstable and the oscillations appear in the system. The snapshots of
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Fig. 2. (a) Streamlines and (b) isotherms for the steady motid#i #t1000;L = 3.2.
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Fig. 3. Snapshots of streamlines for the oscillatory motion during one peri#d=a850 000;L = 3.2.



316 V. Shevtsova et al. / C. R. Mecanique 333 (2005) 311-318

1.05 ----
3 0.508 -
25 0575 ---
2 142 -
1.5
1
05
0

1.03 ----
3 0.494 -----

-0.0447

25 .0.584 ---
0 112 -
1.5
p
05
0

1.06 ----
3 0.518 -+

-0.0261

2.5 20,57 e
2 ey e
1.5
1
05
0

(©)
Fig. 4. Snapshots of streamlines for the oscillatory motion during the half of the perddd-2250 000;L = 16.

streamlines for the half of the period of oscillations are presented in Fig. 4; the vortices in the middle layer have
the chess-order configuration. One can see that during the oscillatory process the number of vortices is changec
in the layers. The wave moves to the left, i.e. from the cold end to the hot end. This direction of the motion is
characteristic for hydrothermal waves [12].

For the cavities withZ. = 32 the transition from the steady state to the oscillatory flow takes pladg, at
80000. The snapshots of streamlines for the oscillatory process during one period are shown in Fig. 5. For larger
values of M the oscillations become irregular. The full diagram of convective regimes on the @lané) is
presented in Fig. 6.
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Fig. 5. Snapshots of streamlines for the oscillatory motion during one peridd=atL10 000;L = 32.

4. Conclusion

Nonlinear regimes of convection in a three-layer symmetric system when the temperature gradient is directed
along the interfaces, have been studied. The shape and the amplitude of convective flows are investigated by the
finite-difference method. It is found that with the increase of the Marangoni number the steady state becomes
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Fig. 6. The diagram of regimes.

unstable and the oscillations develop in the system. In long cavities the hydrothermal waves are developed. The
waves move in the direction of the temperature gradient. The diagram of convective regimes is constructed. The
presented type of oscillations may be fulfilled in experiments under microgravity conditions.
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