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Abstract

The bifurcation problem near an interface is considered for a heterogeneous body made of two different materials that
damage following gradient constitutive relations. The roles of internal length scales on bifurcation are studied especially in the
shortwavelength regime. It is shown that the interfacial complementing condition is always satisfied meaning that a minimum
wavelength exists for the bifurcation mode. The regularization properties of gradient damage models are underlined. A simple
plane strain problem is used to illustrate the results. The interface bifurcated modes are explicitly computed: their wavelengths
turn out to be fixed by the gradient coefficient; the influence of the interface behaviour is also highlightid this article:

A. Benallal, C. Comi, C. R. Mecanique 333 (2005).
0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Résumé

Sur quelques propriétés des interfaces dans les milieux & gradient. Les phénoménes de bifurcation en présence d'inter-
faces sont analysés lorsque le comportement des matériaux constitutifs d’'un solide hétérogene est gouverné par des modele
a gradient. Les roles des longueurs internes sont étudiés particulierement aux faibles longueurs d’onde et on montre que la
condition complémentaire aux interfaces est toujours satisfaite impliquant I'existence d’'une longueur d’'onde minimale pour le
mode de bifurcation. Les effets régularisants sont soulignés et on illustre les résultats a I'aide d'un exemple en déformations
planes ou les modes de bifurcation sont explicitement calcBtés. citer cet article: A. Benallal, C. Comi, C. R. Mecanique
333 (2005).
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1. Introduction

The inelastic behaviour up to failure of quasi-brittle materials is often effectively described by damage models.
Nevertheless, the necessity for the use of enriched models which account for the microstructure of the materials
through a characteristic internal length has become clear in recent years. While from a physical point of view
the introduction of nonlocality is justified by the discrete nature of the real damage process, from a mathematical
point of view the introduction of an internal length is required in order to preserve the well-posedness of the
boundary value problem. In macroscopically homogeneous solids the use of nonlocal gradient dependent models
has been proved to be effective to restore ellipticity [1] and various gradient damage models have been proposed
in the literature and used in numerical analyses [2,3]. However, the problem may also become ill-posed due to the
loss of the boundary complementing condition and of the interfacial complementing condition. In particular the
interfacial complementing condition is of main interest in the case of zone wise heterogeneous solids, i.e. solids
constituted by two or more different materials. Problems in which two different quasi-brittle materials in contact
(e.g. concrete and rock in dam engineering) should be considered are quite common in practice. A discussion of the
regularization properties of nonlocal formulations with respect to these complementing conditions is still lacking,
to the authors’ knowledge. In this Note we consider an heterogeneous body, constituted by two parts, endowed with
different materials properties and in particular with two different internal lengths. The issue of the well-posedness is
addressed with particular attention to the interfacial complementing condition. The results obtained are illustrated
by a simple plane strain example.

2. Gradient damage model

The isotropic elastic-damage model considered is based on the definition of a free energydelegignding
on a scalar damage varialleand a scalar kinematic internal variakle
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Heree is the small strain tensoF is the undamaged elastic tensbrc andn are material parameters and, by
definition, Q = 1. The stresses, the elastic energy release rateand the internal variablg are defined through
the state equations
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For the model, in its local format, the activation and evolution of the damage process is governed by an activa-
tion function fiocal, depending on the static variables, by loading—unloading complementarity conditions and by
associative evolution equations
. . R of . .
foca=Y —x<0; y20; fy=0 D=_Ty=y;, k=—_—_y=y 3
Y dx

wherey is a non-negative damage multiplier.

The nonlocal gradient-dependent model is obtained by adding to the loading function a term depending on the
spatial Laplacian of the damage variable

f = fiocal+ @V?D )

As shown e.g. in [1], the material parameteis proportional to the square of the material characteristic length
., measuring the spatial range of the microscopic interaction between different material points in the damage
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Fig. 1. Sketch of the problem analyzed.

mechanisms. Due to the presence of the gradient term, for finite bodies, proper boundary conditions should be
added. A common choice, thermodynamically motivated in [4] can be written

VD -n=0
n being the normal to the boundary.

3. Bifurcation at theinterface

Let us consider two semi-infinite bodies, labeled-bynd+, described by the above gradient damage model,
endowed with different internal lengths and bonded together at the interfae® (Fig. 1). Assuming full loading
conditions, zero body forces and small strains, the rate problem, for each part, can be expressed

V.6=0, é:%(Vﬂ+VTi¢), f=Y—34+wV2D=0 (5)
Using the state law (2a), the field equations are better written in the form

V- [Q-D)E:Vi]-VDE:e=0 (6)

wV?D—hD+¢:E:Vi=0 (7)

having set: = dy /dk. To these relations, written fef and— parts, one should add interface conditions on traction
and displacements rates and also, for the gradient model under consideration, on damage and gradient of damag
rates. These conditions can be taken in the fonnheing the normal to the interface

6t -m=6"-m, 6-m=K-@"—a) (8)

VDT -m=VD -m, VD -m=SMDt—-D") 9)

While conditions (8a,b) have a clear mechanical meaning, namely equilibrium at the interface and interface consti-
tutive law respectively, conditions (9a,b) are required by the presence of damage gradient in the loading function
but do not have a clear mechanical interpretation. Their particular form has been selected in analogy with (8). The
interface stiffness parameters &, assumed diagonal for simplicity, can vary from zero (free surface condition)

to infinite (perfect bonding). Analogousk;, which dimensionally is the inverse of a length, varies from zero, thus
imposing to the normal gradient of damage to be zero at the interface (‘free surface’ like condition) to infinite, thus
imposing the continuity of damage rates at the interface.

As outlined in [5], the interfacial complementing condition bears interest only in the elliptic regime. For the
situation considered here, ellipticity always holds as was shown in [1]. The system (6), (7) is a system of mixed
order in contrast to the local case. To check its ellipticity and also the complementing condition, it is sufficient to
look at its principal part (in the sense of Agmon-Douglis—Nirenberg [6]). In this case, this amounts to considering
only the higher derivatives in (6) and (7),
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V-[1-D)E:Vi]=0, wV?D =0 (10)

associated to the boundary conditions. We obtain two decoupled problemsqulb. For D #1 andw # 0,

these two problems have no bounded solution other than the triviat en@ and D = 0, therefore the interfacial

condition is always satisfied. As a consequence an upper critical wavenumber exists under which system (6)—(9)

has no bifurcated solution. To obtain this wavenumber, one should consider the complete bifurcation problem.

To investigate the existence of bifurcation starting from a homogeneous state in each part, solution of the system

(6)—(9) are sought in the form (cp e.g. [5,7])
u=w(x1)expitk -x)=aexpEtm-x +ik - x),
D =d(x1) exp(iék - x) = gexplétm - x + &k - x)

wherek is a unit vector of components &, k3 lying in the interface plané;, is the wave number. Functioms(x;)

andd(x1) will in general differ for+ and — parts, while the wavenumbéris taken to be the same for the two

parts, as implied by the interfacial conditions. Direct substitution of the fields (11) into the governing equations
(6)—(7) gives, for the two bodies, the following equation:

(11)
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where we have se¥ = tm + ik. Eq. (12) has non trivial solutions if its determinant vanishes, i.e.
1-19)F
wA= G o with Fe, 1) = (1 + 2001 — D)EA2 — 30 + G (1) (13)

h+ wE2(1—12)
In (13) » and i are the elastic Lamé constants afi¢r) is a biquadratic function of, depending on the strain
tensor.

It is recalled here that in the elliptic regime which holds everywhere and at every time (excdptfdt),

Eq. (13) has exactly four root§+ with positive real part and four other roots with negative real part. These are
rli = +1 and the roots of (¢, t) = 0. This equation is a cubic equation (R) with real coefficients and it has
therefore two real solutiong't and four mutually conjugate roogft and rf (due to ellipticity). These solutions
depend on the wavenumbgr To obtain the general bounded solution, one should consider only the roots with
negative real parts in the-) part of the body and only those with positive real parts in(the part of the body
(see Fig. 1). The eigenvectcxﬁ associated tﬁ)?: (see (12)) are obtained as

af = [(mxk).(e~Ei-Ni)]-Nf+(Nfe:Ei-Nf).(mxk)
jﬁ [Ni (1— D)E*. Ni] (N;#-Ei:e) for j=2,3,4 (14)

wherex is the vectorial product. Assuming distinct, the general solutions™ (x1) andd* (x1) can be expressed
as
4 4 . + o+ 4
(¢:E-N7)-a; +
+ + 4+ Sr m-x + + J J Er m-x :I: gr.m-x
w(xq) = b a; d~(x1) = b E J 15
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Whereb?E are arbitrary coefficients. The last equality being a consequence of (14) and (13). The stress vectors and
the gradients of damage are obtained as

4
Lom=§Y biriexpétim x +ikk-x),
=1 (16)

4
VD*E . m :Sijim : th EX[Xéfjim -x +ikk-x)
j=2
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withr; =m - H (£, Tj) “Nj-aj. Using these last relations together with (15), the interface conditions read

4 4 4
Zlbj ij i Zb* 7 Zb Zb Zb, i Zzb7=.2;b7 (17)
J= j= j=

This leads to a linear system in the unknown coefficiéqjlsb;
Mb=0 (18)

and the bifurcation condition becomes d&t= 0. This last equation gives the critical wavenumber which fixes the
minimum wavelength of the bifurcated modes at the interface.

4. Planestrain example

Results are presented in this section for plane strain conditions with

€12=0, €1=€ry=¢ (19)
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Fig. 2. Evolution of the wavenumber of the bifurcated mode at the interface: influence of the different internal I8rgthshomogeneous
initial state At =1~ =0, ut/u™ =1).
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Fig. 3. Evolution of the wavenumber; (a) varying interface conditigy (b) varying gradient coefficient(*).
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For this 2-D problem Eqg. (12) has the following 6 eigenvalues

112 =—1, 134=1
1—D)(A+2u)(h 2) —4(x 2¢2
rogm YA DG +20)(h 1 0k?) — 4G+ )% (20)
EVA-D)(A + W)
Assuming perfect bondingk( = 0), the interfacial conditions (8) and (9) become
6f1—6,=0, 6;5—6,=0 uaf—u7=0, uy—i,=0
ViDT — V1D~ =0, ViD—S(DT—D7)=0 (21)

Substituting (20) into (11) and the resulting expressions in (21) one obtains a system of 6 equations in the 12
unknowns T, b7 . The remaining equations come from the condition of boundedness at infinite of the solution.
The resulting homogeneous system, Eq. (18), has nontrivial solutionsMf é€0. This equation can be explicitly

written and solved in terms of critical wavenumlgeFig. 2 shows the evolution of the nondimensional wavenum-

beré =¢ /% as a function of the damag@™. When two different material lengttig and/_ are present, two

solutions are found and the bifurcated mode at the interface corresponds to the smallest internal length (gray curve
in Fig. 2). The dashed line corresponds to the loss of ellipticity, which for the gradient model only occur in the limit

DT — 1. Fig. 3(a) illustrates the influence of the interface behaviour assumed in Eq. (21). The different curves re-

fer to different values (marked in the figure) of the normalized interface paraetes ‘:—i withw™ =™ and

w~ =ut. As S increases, bifurcation for a given wavenumbes anticipated (i.e. it corresponds to a lower dam-
age value). In Fig. 3(b) the results obtained with different gradient coefficiehtér different internal lengths)
and fixedw™ are shown (the curves refer to the range 0.1-50 of the aatjan ™).
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