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Abstract

The bifurcation problem near an interface is considered for a heterogeneous body made of two different mate
damage following gradient constitutive relations. The roles of internal length scales on bifurcation are studied especia
shortwavelength regime. It is shown that the interfacial complementing condition is always satisfied meaning that a m
wavelength exists for the bifurcation mode. The regularization properties of gradient damage models are underlined.
plane strain problem is used to illustrate the results. The interface bifurcated modes are explicitly computed: their wav
turn out to be fixed by the gradient coefficient; the influence of the interface behaviour is also highlighted.To cite this article:
A. Benallal, C. Comi, C. R. Mecanique 333 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Sur quelques propriétés des interfaces dans les milieux à gradient. Les phénomènes de bifurcation en présence d’in
faces sont analysés lorsque le comportement des matériaux constitutifs d’un solide hétérogène est gouverné par d
à gradient. Les roles des longueurs internes sont étudiés particulièrement aux faibles longueurs d’onde et on mon
condition complémentaire aux interfaces est toujours satisfaite impliquant l’existence d’une longueur d’onde minimale
mode de bifurcation. Les effets régularisants sont soulignés et on illustre les résultats à l’aide d’un exemple en défo
planes où les modes de bifurcation sont explicitement calculés.Pour citer cet article : A. Benallal, C. Comi, C. R. Mecanique
333 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

The inelastic behaviour up to failure of quasi-brittle materials is often effectively described by damage m
Nevertheless, the necessity for the use of enriched models which account for the microstructure of the m
through a characteristic internal length has become clear in recent years. While from a physical point
the introduction of nonlocality is justified by the discrete nature of the real damage process, from a mathe
point of view the introduction of an internal length is required in order to preserve the well-posedness
boundary value problem. In macroscopically homogeneous solids the use of nonlocal gradient dependen
has been proved to be effective to restore ellipticity [1] and various gradient damage models have been p
in the literature and used in numerical analyses [2,3]. However, the problem may also become ill-posed d
loss of the boundary complementing condition and of the interfacial complementing condition. In particu
interfacial complementing condition is of main interest in the case of zone wise heterogeneous solids, i.
constituted by two or more different materials. Problems in which two different quasi-brittle materials in c
(e.g. concrete and rock in dam engineering) should be considered are quite common in practice. A discuss
regularization properties of nonlocal formulations with respect to these complementing conditions is still l
to the authors’ knowledge. In this Note we consider an heterogeneous body, constituted by two parts, endo
different materials properties and in particular with two different internal lengths. The issue of the well-posed
addressed with particular attention to the interfacial complementing condition. The results obtained are ill
by a simple plane strain example.

2. Gradient damage model

The isotropic elastic-damage model considered is based on the definition of a free energy densityΨ depending
on a scalar damage variableD and a scalar kinematic internal variableκ ,

Ψ (ε,D,κ) = 1

2
(1− D)ε : E : ε + k(1−κ)

n∑
i=0

n!
i! lni

(
c

1−κ

)
(1)

Hereε is the small strain tensor,E is the undamaged elastic tensor,k, c andn are material parameters and,
definition, 0! = 1. The stressesσ , the elastic energy release rateY and the internal variableχ are defined through
the state equations

σ = ∂Ψ

∂ε
= (1− D)E : ε, Y = −∂Ψ

∂D
= 1

2
ε : E : ε, χ = −∂Ψ

∂κ
= k lnn

(
c

1−κ

)
(2)

For the model, in its local format, the activation and evolution of the damage process is governed by an
tion functionflocal, depending on the static variables, by loading–unloading complementarity conditions a
associative evolution equations

flocal = Y − χ � 0; γ̇ � 0; f γ̇ = 0; Ḋ = ∂f

∂Y
γ̇ = γ̇ ; κ̇ = − ∂f

∂χ
γ̇ = γ̇ (3)

whereγ̇ is a non-negative damage multiplier.
The nonlocal gradient-dependent model is obtained by adding to the loading function a term dependin

spatial Laplacian of the damage variable

f = flocal + ω∇2D (4)

As shown e.g. in [1], the material parameterω is proportional to the square of the material characteristic le
l , measuring the spatial range of the microscopic interaction between different material points in the
c
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Fig. 1. Sketch of the problem analyzed.

mechanisms. Due to the presence of the gradient term, for finite bodies, proper boundary conditions s
added. A common choice, thermodynamically motivated in [4] can be written

∇Ḋ · n = 0

n being the normal to the boundaryΓ .

3. Bifurcation at the interface

Let us consider two semi-infinite bodies, labeled by− and+, described by the above gradient damage mo
endowed with different internal lengths and bonded together at the interfacex1 = 0 (Fig. 1). Assuming full loading
conditions, zero body forces and small strains, the rate problem, for each part, can be expressed

∇ · σ̇ = 0, ε̇ = 1

2
(∇u̇ + ∇Tu̇), ḟ = Ẏ − χ̇ + ω∇2Ḋ = 0 (5)

Using the state law (2a), the field equations are better written in the form

∇ · [(1− D)E : ∇u̇
] − ∇ḊE : ε = 0 (6)

ω∇2Ḋ − hḊ + ε : E : ∇u̇ = 0 (7)

having seth = dχ/dκ . To these relations, written for+ and− parts, one should add interface conditions on trac
and displacements rates and also, for the gradient model under consideration, on damage and gradient o
rates. These conditions can be taken in the form,m being the normal to the interface

σ̇+ · m = σ̇− · m, σ̇ · m = K · (u̇+ − u̇−) (8)

∇Ḋ+ · m = ∇Ḋ− · m, ∇Ḋ · m = S(Ḋ+ − Ḋ−) (9)

While conditions (8a,b) have a clear mechanical meaning, namely equilibrium at the interface and interface
tutive law respectively, conditions (9a,b) are required by the presence of damage gradient in the loading
but do not have a clear mechanical interpretation. Their particular form has been selected in analogy with
interface stiffness parameters inK, assumed diagonal for simplicity, can vary from zero (free surface condi
to infinite (perfect bonding). AnalogouslyS, which dimensionally is the inverse of a length, varies from zero,
imposing to the normal gradient of damage to be zero at the interface (‘free surface’ like condition) to infini
imposing the continuity of damage rates at the interface.

As outlined in [5], the interfacial complementing condition bears interest only in the elliptic regime. F
situation considered here, ellipticity always holds as was shown in [1]. The system (6), (7) is a system o
order in contrast to the local case. To check its ellipticity and also the complementing condition, it is suffic
look at its principal part (in the sense of Agmon–Douglis–Nirenberg [6]). In this case, this amounts to cons
only the higher derivatives in (6) and (7),
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∇ · [(1− D)E : ∇u̇
] = 0, ω∇2Ḋ = 0 (10)

associated to the boundary conditions. We obtain two decoupled problems foru̇ andḊ. For D �= 1 andω �= 0,
these two problems have no bounded solution other than the trivial oneu̇ = 0 andḊ = 0, therefore the interfacia
condition is always satisfied. As a consequence an upper critical wavenumber exists under which system
has no bifurcated solution. To obtain this wavenumber, one should consider the complete bifurcation prob

To investigate the existence of bifurcation starting from a homogeneous state in each part, solution of th
(6)–(9) are sought in the form (cp e.g. [5,7])

u̇ = w(x1)exp(iξk · x) = a exp(ξτm · x + iξk · x),

Ḋ = d(x1)exp(iξk · x) = g exp(ξτm · x + iξk · x)
(11)

wherek is a unit vector of components 0,k2, k3 lying in the interface plane,ξ is the wave number. Functionsw(x1)

andd(x1) will in general differ for+ and− parts, while the wavenumberξ is taken to be the same for the tw
parts, as implied by the interfacial conditions. Direct substitution of the fields (11) into the governing equ
(6)–(7) gives, for the two bodies, the following equation:

[
N · H (ξ, τ ) · N] · a = 0, H (ξ, τ ) = (1− D)E − E : ε ⊗ ε : E

h + ωξ2(1− τ2)
(12)

where we have setN = τm + ik. Eq. (12) has non trivial solutions if its determinant vanishes, i.e.

µ(1− τ2)F (ξ, τ )

h + ωξ2(1− τ2)
= 0 with F(ξ, τ ) = (λ + 2µ)(1− D)ξ2(τ2 − 1)3ω + G(τ) (13)

In (13) λ andµ are the elastic Lamé constants andG(τ) is a biquadratic function ofτ , depending on the strai
tensor.

It is recalled here that in the elliptic regime which holds everywhere and at every time (except forD = 1),
Eq. (13) has exactly four rootsτ+

j with positive real part and four other rootsτ−
j with negative real part. These a

τ±
1 = ±1 and the roots ofF(ξ, τ ) = 0. This equation is a cubic equation (inτ2) with real coefficients and it ha

therefore two real solutionsτ±
2 and four mutually conjugate rootsτ±

3 andτ±
4 (due to ellipticity). These solution

depend on the wavenumberξ . To obtain the general bounded solution, one should consider only the roots
negative real parts in the(−) part of the body and only those with positive real parts in the(+) part of the body
(see Fig. 1). The eigenvectorsa±

j associated toτ±
j (see (12)) are obtained as

a±
1 = −[

(m × k) · (ε : E± · N±
1 )

] · N±
1 + (N±

1 ε : E± · N±
1 ) · (m × k)

a±
j = [

N±
j · (1− D)E± · N±

j

]−1 · (N±
j · E± : ε) for j = 2,3,4 (14)

where× is the vectorial product. Assumingτj distinct, the general solutionsw±(x1) andd±(x1) can be expresse
as

w±(x1) =
4∑

j=1

b±
j a±

j eξτ±
j m·x

, d±(x1) =
4∑

j=1

b±
j

(ε : E · N±
j ) · a±

j

h + ωξ2(1− (τ±
j )2)

eξτ±
j m·x =

4∑
j=2

b±
j eξτ±

j m·x (15)

whereb±
j are arbitrary coefficients. The last equality being a consequence of (14) and (13). The stress vec

the gradients of damage are obtained as

σ̇± · m = ξ

4∑
j=1

b±
j r±

j exp(ξτ±
j m · x + iξk · x),

∇Ḋ± · m = ξ

4∑
b±
j m · N±

j exp(ξτ±
j m · x + iξk · x)

(16)
j=2
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the
with rj = m · H (ξ, τj ) · N j · aj . Using these last relations together with (15), the interface conditions read

4∑
j=1

b+
j r+

j =
4∑

j=1

b−
j r−

j ,

4∑
j=1

b+
j a+

j =
4∑

j=1

b−
j a−

j ,

4∑
j=2

b+
j τ+

j =
4∑

j=2

b−
j τ−

j ,

4∑
j=2

b+
j =

4∑
j=2

b−
j (17)

This leads to a linear system in the unknown coefficientsb+
j , b−

j

Mb = 0 (18)

and the bifurcation condition becomes detM = 0. This last equation gives the critical wavenumber which fixes
minimum wavelength of the bifurcated modes at the interface.

4. Plane strain example

Results are presented in this section for plane strain conditions with

ε12 = 0, ε1 = ε2 = ε (19)

Fig. 2. Evolution of the wavenumber of the bifurcated mode at the interface: influence of the different internal lengths (S = 0, homogeneous
initial state,λ+ = λ− = 0, µ+/µ− = 1).

(a) (b)

Fig. 3. Evolution of the wavenumber; (a) varying interface condition (S); (b) varying gradient coefficient (ω+).
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For this 2-D problem Eq. (12) has the following 6 eigenvalues

τ1,2 = −1, τ3,4 = 1

τ5,6 = ±
√

(1− D)(λ + 2µ)(h + ωξ2) − 4(λ + µ)2ε2

ξ
√

(1− D)(λ + 2µ)ω
(20)

Assuming perfect bonding (K = 0), the interfacial conditions (8) and (9) become

σ̇+
11 − σ̇−

11 = 0, σ̇+
12 − σ̇−

12 = 0, u̇+
1 − u̇−

1 = 0, u̇+
2 − u̇−

2 = 0

∇1Ḋ
+ − ∇1Ḋ

− = 0, ∇1Ḋ − S(Ḋ+ − Ḋ−) = 0 (21)

Substituting (20) into (11) and the resulting expressions in (21) one obtains a system of 6 equations i
unknownb+

j , b−
j . The remaining equations come from the condition of boundedness at infinite of the so

The resulting homogeneous system, Eq. (18), has nontrivial solutions if detM = 0. This equation can be explicitl
written and solved in terms of critical wavenumberξ . Fig. 2 shows the evolution of the nondimensional waven

ber ξ̄ = ξ

√
ω+
µ+ as a function of the damageD+. When two different material lengthsl+c andl−c are present, two

solutions are found and the bifurcated mode at the interface corresponds to the smallest internal length (g
in Fig. 2). The dashed line corresponds to the loss of ellipticity, which for the gradient model only occur in th
D+ → 1. Fig. 3(a) illustrates the influence of the interface behaviour assumed in Eq. (21). The different cu

fer to different values (marked in the figure) of the normalized interface parameter�S = S

√
ω+
µ+ , with ω− = ω+ and

µ− = µ+. As S increases, bifurcation for a given wavenumberξ̄ is anticipated (i.e. it corresponds to a lower da
age value). In Fig. 3(b) the results obtained with different gradient coefficientsω+ (or different internal lengths
and fixedω− are shown (the curves refer to the range 0.1–50 of the ratioω+/ω−).
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