
/

solitary
n of the
original

nd in the
dedicated

é
quations
de l’outil

umériques
oulement
simulation
C. R. Mecanique 333 (2005) 351–357

http://france.elsevier.com/direct/CRAS2B

On the Navier–Stokes equations simulation of the head-on
collision between two surface solitary waves

Pierre Lubin∗, Stéphane Vincent, Jean-Paul Caltagirone

Transferts, ecoulements, fluides, energétique (TREFLE), UMR CNRS 8508, site École nationale supérieure de chimie et de physique de
Bordeaux (ENSCPB), université Bordeaux 1, 16, avenue Pey-Berland, 33607 Pessac cedex, France

Received 8 February 2005; accepted 8 February 2005

Available online 16 March 2005

Presented by Michel Combarnous

Abstract

The scope of this Note is to show the results obtained for simulating the two-dimensional head-on collision of two
waves by solving the Navier–Stokes equations in air and water. The work is dedicated to the numerical investigatio
hydrodynamics associated to this highly nonlinear flow configuration, the first numerical results being analyzed. The
numerical model is proved to be efficient and accurate in predicting the main features described in experiments fou
literature. This Note also outlines the interest of this configuration to be considered as a test-case for numerical models
to computational fluid mechanics.To cite this article: P. Lubin et al., C. R. Mecanique 333 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Sur la collision frontale de deux ondes solitaires par simulation des équations de Navier–Stokes. Ce travail est consacr
à l’étude numérique de la collision bidimensionnelle frontale de deux ondes solitaires par simulation numérique des é
de Navier–Stokes en formulation diphasique. L’intérêt de cette étude réside dans la démonstration de la capacité
numérique original à traiter efficacement ce problème d’onde hautement non-linéaire. Dans cette Note, les résultats n
sont comparés aux résultats disponibles dans la littérature. Une première investigation de l’hydrodynamique de l’éc
général est proposée. Il est ainsi démontré que cette configuration est d’une très grande utilité pour valider un code de
de mécanique des fluides numérique.Pour citer cet article : P. Lubin et al., C. R. Mecanique 333 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

Solitary waves are known for having some interesting properties, such as a symmetrical form with a
hump and a propagation with a uniform velocity without changing form. When simulating two-phase flow
important to evaluate the general accuracy of the numerical methods and schemes by checking, for exa
balance of mass and energy in the computing domain. Thus, the results of the different solitary wave a
theories can be used to compute the initial kinematic properties and simulate the waves propagations in
depths over horizontal beds in periodic domains [1]. The precision of the simulation is assessed by comp
free surface shapes and velocities to the theoretical values.

Another major interest is in the type of interaction that can happen between solitary waves, especially th
head-on collision between two waves travelling in opposite directions. Maxworthy [2] carried out two k
wave interaction experiments. After studying the reflexion occurring when a single wave hits a vertical en
Maxworthy compared the case of two waves interacting directly. Three main features were outlined from
experiments. First, it has been shown that the waves reach a maximum amplitude greater than the sum of
wave amplitudes. Moreover, experimental results showed that a collision has some consequences on the
both wave-wave interactions or end-wall reflexions) such as spatial phase shifts and the shedding of s
weaker waves following the first. Su and Mirie [3] developed analytical solutions for calculating the effects
collision, up to the third order of accuracy. They stressed on the fact that the collision does leave imprint
colliding waves with spatial phase shift and shedding of secondary waves, which is confirmed by Mirie and
They also calculated analytically the maximum run-up amplitude reached during the collision of the two s
waves, as a function of both propagating wave amplitudes.

This head-on collision problem has never been tackled using the Navier–Stokes equations. The intere
Note is thus twofold. On one hand, we want to prove that simulating head-on collisions between solitary
can be used as a test-case in order to verify the accuracy of the numerical schemes when solving two-p
problems. On the other hand, we intend to show the ability of the numerical model to reproduce such a n
problem with a high level of precision concerning the maximum run-up amplitude reached during the colli
the two solitary waves. Furthermore, we want to explain the hydrodynamics of the phenomenon.

However, we will not go any further into the details dealing with the spatial phase shift as both cited a
[2,3] showed discrepancies in the comparison between experimental and analytical results. Moreover, so
tradictions are found in the literature. Some authors claim that the solitary waves suffer from permanen
amplitude after the interaction [5–7]. The solitary waves do not recover from a transitional loss of amplitu
thus do not return to their nearly original heights. Some authors tend to prove the contrary [3,4,8,9], t
long-term effect of the collision being the phase shift of the solitary waves. We choose to focus on the prel
study of the first numerical results, this particular point being of great interest for a perspective work which
undertaken.

2. Numerical model

The incompressible Navier–Stokes equations in their single fluid formulation [10] are used to mod
air/water free surface flow at small interface scale in an Eulerian framework. The coupling between veloc
pressure and the divergence free property are solved thanks to an augmented Lagrangian method, which
originally adapted to two-phase flows by Vincent et al. [11]. In this novel approach, the local penalty term
trolling the incompressibility constraint is estimated through a non-dimensional analysis of the physical
Numerically, a minimization procedure is implemented in order to tackle with the augmented Lagrangi
Uzawa algorithm is used to solve the associated minimization or penalty problem.

Fixed staggered Cartesian grids ensure an Eulerian representation of free surface flows. The space d
of the inertial term are discretized by a hybrid Upwind-Centered scheme and the viscous term is approxim
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a second order Centered scheme. The implicit time discretization implies the building of a linear system w
solved thanks to an iterative BiCGSTAB II solver, preconditioned under a Modified and Incomplete LU (M
technique.

Concerning the single fluid formulation of the motion equations, an advection equation of a phase funC

is required to track the free surface evolutions (C = 0 in the air andC = 1 in the water). A Volume Of Fluid
approach (VOF) is considered to treat the interface tracking. The hyperbolic equation is solved with an
Lax–Wendroff TVD scheme (Total Variation Diminishing), which does not require any reconstruction of the
function.

All the details and references associated to the numerical model can be found in Vincent and Caltagirone
The present numerical model has been validated by studying, for example, the simple case of solitar

propagations in constant depths over horizontal beds in periodic domains [1] or the more complicated
three-dimensional plunging breaking waves [14]. This model has been also proved to simulate accurately a
wave hitting a vertical end wall [15]. Indeed, Maxworthy [2] considered that, since the system of two he
colliding waves of equal amplitude is symmetric about the mid-plane, this configuration can be modelle
single wave hitting a vertical wall.

3. Head-on collisions between two solitary waves

Su and Mirie [3] developed analytical solutions for calculating the effects of the collision, up to the third or
accuracy. The subscriptsR andL refers to the right- and left-going waves heading towards each other, respec
For two head-on colliding solitary waves with their maximum heights defined asεR andεL, the maximum run-up
ηm is defined by:

ηm = εR + εL + εR εL

2
+ 3

8
εR εL(εR + εL) (1)

with ε = H/d , d being the water depth andH the waveheight.

3.1. Initial conditions

We simulate two solitary waves with different amplitudes propagating towards each other in a 20 m lo
0.6 m high periodic domain. This configuration increases the level of difficulty as we will see the waves co
several times during the simulation, the waves moving out of the domain on one side to re-enter on the ot
This complexity will thus allow us to put in evidence the high level of accuracy of our numerical method
numerical domain is discretized into 1000×150 regular Cartesian cells (�x = 2×10−2 m and�z = 4×10−3 m).
A symmetry boundary condition in the lower limit and a free boundary condition in the upper limit are imp
The simulation time step is chosen to verify the stability criterion (Courant–Friedrichs–Levy) less than o
the interface algorithm. We run 3250 iterations, which corresponds to 27 s of propagation. All calculatio
made using the values of the densities and the viscosities of air and water, as:ρa = 1.1768 kg m−3 andρw =
1000 kg m−3, µa = 1.85× 10−5 kg m−1 s−1 andµw = 1× 10−3 kg m−1 s−1.

The wave crests are initialized far apart from each other atxR = 5 m andxL = 15 m (Fig. 1). The wate
depth isd = 0.302 m, the waveheights areεR = 0.11 andεL = 0.33, which give the dimensional amplitud
HR = 0.03322 m andHL = 0.1 m, so the crests ordinates are located atzR = 0.33522 m andzL = 0.402 m,
respectively. The initial wave celerities arecR = 1.8134 m s−1 andcL = 1.9859 m s−1, as predicted by the firs
order theory [16,1]. From Eq. (1), the maximum theoretical run-up isηm = 0.1349 m, which gives a maximum
ordinatezm = 0.4369 m. The waves are assumed to meet for the first time att = 2.7 s andx1st collision= 9.8 m.
During the 3250 iterations (27 s of propagation), the waves will propagate and collide each other four time
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Fig. 1. Initial condition for the head-on collisions test-case:t = 0 s,εR = 0.11 andεL = 0.33,C > 0.5.

3.2. Flow description

We predicted that the abscissa of the first collision isx1st collision= 9.778 m, which agrees with the theoretic
valuex = 9.8 m, as shown in Fig. 2(c). We illustrate in Fig. 2 the first collision in detail. Both waves prop
towards each other and seem to merge into a unique wave, which amplitude is higher than the sum of bot
ing waves (Fig. 2(c)). The profile looks like a ‘single wave’. During the interaction, we could observe tha
vertical accelerations are developed until the merging wave reached its maximum amplitude. At the insta
the vertical velocity vanishes, the kinetic energy is nil and the potential energy reaches its maximum magni
unique wave seems to be at rest. Then it starts to fall down, both waves splitting apart to recover their origin
acteristics. However, it can be observed in Fig. 2(f) that the left-going wave seems to be slightly distorted
is consistent with the discussions of Maxworthy [2] and Su and Mirie [3]. The left-going wave looks asymm
and appears to propagate with a slightly higher celerity than its initial one. As pointed out by Maxworthy [
left-going wave is steeper than originally and propagates faster until it recovers its original shape. Then it
nizes itself before colliding with the right-going wave another time. We can clearly see a weak wave follow
left-going wave, propagating in the same direction. These observations are not so easy to do with the rig
wave because of its low amplitude. The waves collide four times, due to the periodic configuration of the n
cal domain. The resulting flow gives a general impression of spasmodic movement because of the left-go
which is subjected to accelerations and decelerations between each collision and the slow motion of the tw
coming together.

During the 3250 iterations, the right-going wave should propagate along 48.96 m and the left-going wave
propagate along 53.62 m. These theoretical distances correspond to the abscissae the waves should ha
in the case they would not have been interacting. We checked that the waves passed more than two time
initial position propagating without major distortion. However, we recorded that the right-going wave prop
along 48.3 m and the left-going wave along 52.2 m. This corresponds to a translation of 0.66 m and 1.4
compared to the respective values for the distance of propagation, simply estimated with the initial celeri
the time of simulation. This difference is due to the time delay during their interaction and, also, possibly
the numerical dissipation of our model.

The right-going wave loses 1× 10−3 m of its amplitude after each collision, the amplitude at the end b
z = 0.334 m (so a total loss of 1.22 × 10−3 m or 3.6 × 10−1%). The left-going wave loses 8× 10−3 m after the
first collision, then loses 3× 10−3 m on average, the amplitude at the end beingz = 0.384 m (so a total loss o
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(a) (b)

(c) (d)

(e) (f)

Fig. 2. Details of the first collision at various instants:C > 0.5. (a)t = 1.9 s, (b)t = 2.2 s, (c)t = 2.7 s, (d)t = 3.2 s, (e)t = 3.4 s, (f) t = 5.7 s.



356 P. Lubin et al. / C. R. Mecanique 333 (2005) 351–357

)

es birth
dding of
igher the

ve loses
and found
ed

complex
omparing
g to be
d Su and
ter after
hods to
omenon,

o con-
solitary

tions to
in order

S (In-
gramme
sources
or their
d us in

04) 237–
Table 1
Maximum run-up ordinates reached for each collision

Collisions zm (m) (theory) zm (m) (numerical results) Error (m) Error (%

1st 0.4369 0.4372 3× 10−4 7× 10−2

2nd 0.4279 0.4301 2× 10−3 5× 10−1

3rd 0.4229 0.4247 2× 10−3 4× 10−1

4th 0.4215 0.4233 2× 10−3 4× 10−1

1.6 × 10−2 m or 4%). These successive losses in amplitudes put in evidence the fact that each collision giv
to secondary dispersive waves travelling in the same direction of the wave which they come from. The she
secondary waves is enhanced at higher amplitudes. This point has been discussed by Maxworthy [2]: the h
wave is, the higher the secondary shed wave will be. This is confirmed by the fact that the right-going wa
less amplitude than the left-going one. The numerical error has been evaluated for the mass conservation
to be less than 4.8 × 10−2%, the initial volume being volini = 6.271 m2. Table 1 is a summary of each calculat
maximum amplitudes, considering the loss of amplitude for each wave after each collision.

4. Concluding remarks and perspectives

The numerical model, which has been presented, is thus able to take accurately into account highly
nonlinear phenomena such as solitary waves interactions. The precision of the simulation is assessed by c
the numerical results with experimental and analytical results, which makes this configuration interestin
considered as a test case. The present results agree with the observations made by Maxworthy [2] an
Mirie [3]. It has been observed that the collisions induce imprints to the waves, the waves propagating fas
each collision and losing amplitude. As we ensure ourselves about the capability of our numerical met
handle with the head-on collision problem, we are now having a close inspection on the phase shift phen
as the refereed authors did not agree in their results.

A systematical study of the configuration with two solitary waves of same amplitudes colliding is als
sidered, as Maxworthy [2] left the discussion open about the opportunity to do the analogy between two
waves of same amplitudes interacting directly and the wave-reflexion case.

Our main interest is to use our numerical model to work on appropriate head-on collisions configura
investigate whether or not the solitary waves suffer from permanent loss of amplitude after the interaction,
to discuss with the contradictory results found in the literature.
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