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Abstract

A shape optimization problem is considered for the Dirichlet Laplacian. Asymptotic analysis is used in order to charac-
terise the optimal shapes which are finally given by a singular perturbation of the smooth initial ddmeite.this article:
S.A. Nazarov, J. Sokolowski, C. R. Mecanique 333 (2005).
0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Perturbations singuliéres en optimisation des formes pour le Laplacien avec conditions de Dirichlet. Un probléeme
d’'optimisation de forme est posé pour I'énergie du Laplacien avec conditions de Dirichlet. Des formes optimales obtenues par
I'analyse asymptotique sont données par une perturbation singuliére du domain initial régulieiter cet article: SA. Na-

zarov, J. Sokolowski, C. R. Mecanique 333 (2005).
0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

The classical problem of minimization of the energy functional for the Dirichlet Laplacian is addressed. In the
literature the existence, regularity and stability of optimal shapes for the energy functional is usually considered un-
der the perimeter constraints. In our Note the perimeter constraint is relaxed, and we analyse the shape optimizatior
problem without any regularization term added to the energy functional. On the other hand, we introduce the small
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parametet > 0 which measures the quantity of the material we could add to the initial geometrical domain, see (6),
(7) for the definition of the class of admissible domains. We observe that within our admissible class and without
any bounds imposed on the perimeter of the boundary, there is no boundary variation of the domain which maxi-
mizes the first order shape variation of the energy functional. Actually, without such a regularization constraint, of
common use in the shape optimization, the Dirac mass supported at a,pafithe boundary maximizes the direc-

tional derivative of the shape functional. Such a generalized solution is useless both from practical and theoretical
points of view, in addition it destroys the asymptotic procedure used for the construction of solutions.

In order to solve the shape optimization problem within the admissible class, the new design féh@lipne
I, is defined in (14). We are looking for an asymptotic solution of the problem, i.e., for sufficiently small positive
boundary variations of the reference dom&ifi which increases the volume of the domain by the value0. We
construct three terms asymptotics of the energy functional and find out that the energy minimization involves the
classical Steklov—Poincaré operator. The operator makes well-posed the variational inequality which we derive for
optimal variations of admissible domains. This way an asymptotic solution of shape optimization problem in form
(28) is obtained by solving variational inequality (20), which admits a solution for sufficiently small.

The shape optimization problem is formulated in Section 2, basic known properties of Steklov—Poincaré oper-
ator are given in Section 3, the leading term of asymptotics of the energy functional is determined in Section 4,
the variational inequality which defines the optimal shapes is introduced in Section 5, and finally the asymptotic
optimal shapes are given in Section 6.

2. Formulation shape optimization problem

We denote by:g a solution to the Dirichlet problem in the domai? bounded by a simple, smooth contdtf:
—Aupg(x) = f(x), xe€R°  upx)=0, xer®=92° (1)
Problem (1) admits the unique solutia € H22(2°) N Hy?(2°) for any f € L»(£2), it is assumed for the
simplicity of presentation that the right-hand sifle= 0 has the support sugpc $2°. The potential energy of the
solution is denoted by = & (uo; $29), and takes the form

1

E(ug; 2% == IVuo(x)|2dx — | f(x)uo(x)dx = !t f(x)uo(x) dx (2
2 2
20 20

00
Let ¢/ be an open neighbourhood of the contdtft, (n, s) is a curvilinear coordinate system atf, s is the
length parameter, is the oriented distance ©6° such that > 0 outside off2°. Given a small amount of material
measured by > 0, the domain2° is replaced by the new domai, such that its boundary is parametrized by a
functionh

Fsz{xel/{;sel“o,n:h(s)} 3)
andh should be chosen in such a way that the incremenof the potential energy is minimized

AE =& — Eo=E(ug; 2°) — E(ug; 2°) &
By u® is denoted a solution to the Dirichlet problem in the perturbed domain

—Aug(x) = f(x), xe€8°, ug(x) =0, xel®=08° (5)

In our settingR2® c £2¢ and meag(2¢ \ 2% = ¢, hence an admissible boundary variation requires some restric-
tions on the functiork in (3), which can be introduced in the following way

h(s)>0, ser® (6)
h(s)

meas(2° \ 2% = / dx:/[ (1+%(s)n)dnds:/(h(s)+%x(s)h(s)2)ds:s (7)

£2e\00 roo ro
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wherex stands for the curvature df% and (1 + x(s)n) is the Jacobian in local coordinates. It is clear that the
optimal functionz, if it exists, depends on the small parameter 0, which is not indicated in the sequel. In what
follows, we consideh as a small functional parameter and derive some asymptotic formulae with resheEbto
brevity ‘- - - means the terms of higher order which can be neglected, however, here we do not precise the order of
such terms.

In the classical theory of shape optimization [1] the following form of the first order variation of the energy
shape functional for Dirichlet Laplacian is obtained

AS:—%/h(s)|8nuo(O,s)|2ds+-~- (8)
ro

However the problem of minimizing the right-hand side in (8) is ill-posed and |éamsally to the solution
h(s) = &8(s — s4), Wheres(s — s,) denotes the Dirac mass concentrated,aands, € I'° is a point at which the
positive function ™ 5 s > 3,u0(0, 5)| attains its maximum. Here we denote &y:o(0, s) = d,uo(x), the normal
derivative onl"°,

The method of determination of the optimal domain applied in this note, is similar to the method used already in
the fracture criteria [2-5], for a plane crack in the elastic space. Actually, the three terms asymptotic approximation
of the potential energy is constructed using the following asymptotic ansatz for solutions to (5)

=l +u + - 9

with the termsu’, u” linear and quadratic with respect o In particular, functional (4) can be replaced by its
quadratic approximation which is minimized with respech tand the procedure leads to a well-posed problem for
determination of the functioh for a givene > 0. The resulting problem, which allows to evaluate the unknown
boundary, takes the form of a variational inequality on the confufThe bilinear form in the variational inequal-

ity is defined by a nonnegative integral operator. If the inequality constraint (6) is relaxed, and only the quadratic
inequality constraint (7) is imposed, the variational inequality becomes an equation. Our approach is in fact dif-
ferent; we solve the variational inequality with the only sign constraints and then adapt the solution in such a way
that the quadratic constraint is also verified. It is useful to point out that the asymptotic solution of the variational
inequality gets a singular structure: the perturbation of the conft@us supported in thes/4-neighbourhood of

the points,., with magnitude of the order @**#). However, the difference in orders of the infinitesimal magnitudes
¢1/4 ande3/4 shows that the boundary perturbation although singular, it is still gently sloped.

3. Steklov—Poincar é oper ator

For the Dirichlet problem
—Av(x)=0, xef°  w)=H(), xerI® (10)

we introduce a pseudo-differential operator, cafBkl ov—Poincaré operator, in the usual way [6]. First, we need
the Poisson kernd? (x; o), a solution to the problem

—AP(x;0)=0, xe Y P(x;0)=6(s —0), xer?

with the asymptotics (x; o) = - 1n(x — o) 2+ O(1), x — o € I'°. Here, we use the same symlaofor a
point onI"® and its coordinate (the length of the curve). Actually, after the regularization of hipersingular integral
(see e.g., [2,7]) we obtain the following formulae

MH(s) =0,v(0, 5) (11)
MH (s) :/(H(s) —H(o))K(a,s) do + k(s)H (s) (12)

o
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where K (o, 5) = —9,P(0,s;0), k(s) = Ko(s — 0,s) — Ko(s + 0, s), with the symmetric and positive kernel
K (o, s), which has the singularity

K(,s)=nt(x—-0)2?+01), oc—>sel® (13)

andK (o, s) =7 1(x — o)1+ Ko(o, s) is a primitive of the function™® > o - K (0, s).
The operatotM is a symmetric, elliptic, pseudo-differential operator with the principal syni@o)—1/2|£|.
For our applications we set

H(s) = —h(s)d,u0(0, s) = h(s)|0,u0(0, s)| (14)

and recall that by the maximum principle and under the restriction imposed on the fuficiemormal derivative
of the solution to (1) is strictly negative on the boundaby

4. Leadingterms of the asymptotics

The solutionug is extended in a smooth way outside @P and expanded in the Taylor series in the normal
variablen. As a result, on the contour® we have
1
uo(h(s), $) = 0+ h()dnu0(0, $) + Sh()°07u0(0, 5) + - - (15)

Taking into account the form of the Laplace operator in the curvilinear coordinate systejmand the equality
Au=0o0nTI"?, inherited from the assumptiofi= 0 on Iy, we obtain that

92u0(0, ) = —x(s)d,u0(0, s) (16)

The second term in right-hand side of (15) constitutes the main discrepancy in the boundary condition'{5) on
The discrepancy is compensated by the solution of the problem

—Au'(x)=0, xe° u'(x)=—H(s) = —h(s)d,uo(0,s), xerI?° (17)

We recognize here the so-called shape derivative of solution to the Dirichlet problem [1]. Integration by parts yields
the leading part of the energy variation i.e., the te#r%ffzo f(x)u'(x)dx takes the form in the right-hand side

of (8). Collecting second order terms in formula (15) and using the similar Taylor expansighrisults in the
boundary value problem for the functiaff in ansatz (9):

1
—Au"(x)=0, xen°, u'(x) = —h(s)d,u’(0,s) — Eh(s)zanzuo(o, s), xer® (18)

Therefore, taking into account equality (16) we find that

1 1 1
AE = —E/h(s)|anuo(o,s)|2ds - E/h(s)a,,uo(o,s){a,,u/(o,s) - é;f(s)h(s)anuo(o,s)} ds+--- (19)
ro ro
In addition, the normal derivative,u’(0, s) can be expressed in terms of the right-hand side in the boundary
conditions of (17) using the Steklov—Poincaré operator, narbgly(0, s) = —M[h(s)d,uo(0, s)] = M[H (s)].

5. Variational inequality

In view of the expansion (19) we can consider the quadratic approximation of the energy functional

J(h) = —% / h(s)yanuo(o, s)‘zds — :—Zl/h(s)é)nuo(O, s){/\/l[h(s)a,,uo(o, 5)] - %%(s)h(s)anuo(o, s)} ds

ro ro
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The minimization of this functional over the coﬁé/z’z(FO) of nonnegative functions in the Sobolev-Slobodetskii
spaceH 1/22("%) |eads to the variational inequality

He Hi/z’z(l“o)i (2MH + AxH — Adyuo, ¥ —H) >0 Vi € Hi/ZZ(po) (20)

where(, ) denotes the duality pairing betwe@’/%2(1"% and H~1/22(1"%), as an extension of the scalar product
in Lo(I"%). We select

A=1—[3,u0(0,5)| % (21)

so the solutionH to (20) depends on the Lagrangian parametevhich is to be chosen in such a way thdt
verifies the quadratic constraints (7) of the form

/ |8nuo(0, s) |_1H(s) (1 + %x(s)‘&nuo(o, s) ’_lH(s)> ds=¢ (22)
ro

In agreement with the properties of the kernel\df(see (13) and (20)), under the assumption
2 + Ax >0 onr® (23)

it turns out that quadratic term i (h) = %a(h, h) — L(h) contains the bilinear forma(-, -) which is symmetric
and coercive in the spadég?/22(I"%). The standard result for variational inequalities implies the existence of a
unique solution to (20). In fact, more refined result was proved in [4,8,9].

Proposition 5.1. Under condition (23) variational inequality (20) admits a unique solution H € H i/ 2’2(1"0) for

any right-hand side Ad,uq € Lo(I"%). The following estimate holds true

|H: HY?2(%)| < C|| Asdauo: Lo(I0)| (24)

where AL = (A + |A])/2. If, in addition Ad,ug € LP(FO) for some p € [2, o0), then the solution H belongs to
the Sobolev space H17 (1"°) and the following estimate is valid
| H; HYP (50| < Cp|| Ay daueo; Lp(T0) | (25)
We point out, that the exponept= oo is excluded from the range. The reason is that in the cage-ebo
the Hilbert transformZL ,(R) — L ,(R) changes properties and the argument of the proof used in the references

does not apply. On the other hand, the asymptotic solution constructed in the next section belongs to the space
HY(I9).

6. Asymptotic solution
We assume that the positive functiét? > s — |9, u40(0, s)| attains the unique global maximum at the point
which in addition is strong, i.e.,
310(0,5) = A — a(s — 5,02 + O(|s — 5:1°) (26)

with A, a > 0. From estimate (24), which contains the positive part of the quantity (21), we deduce that for
the existence of a small nontrivial solution to the variational inequality (20) it is necessary that the Lagrangian
multiplier takes the form

A=Al—-a) (27)

wherea > 0 is a small parameter, which should be related with the paramétethe constraints (7)£(22)). An
asymptotic solution of variational inequality (20) is searched in the form

H(s) ~ (Aa)¥22a) Y2 H(1), 1= (Aa)?(2a)Y(s — 5. (28)
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The fast variable and the multiplier at the unknown functidd are chosen in such a way that after the corre-
sponding changes and neglecting the higher order terms (with respecet-ta-0) in variational inequality (20)
depending o, we obtain the variational inequality independentof

%f/ (H(t)—H(r))(lll(t)—H(t))|t—r|_2drdt2/(1—t2)(l11(t)—7—[(t))dt
RR R

YU e CPMR), ¥ =0 (29)
which admits the unique solution
3 12-12%2 forr <2
0 fort > /2

We note that the functiof( belongs to the spadd > (R) and H2~*2(R) for any . > 0.

Formulae (28), (14) and (30), (26) provide the asymptotic solution for arbitrarily smalD. We insert the
formula fork into (7) (or the expression fdt into (22)) and taking into account only the leading term, we obtain
the relation between the small paramete@nde:

e =mw(2a) tA%? (31)

H(t) = { (30)

Assuming (23), which implies estimates (24) and (25), easily follows that the representation (28) effectively con-
stitutes an asymptotic approximation of solutions to (20).

References

[1] J. Sokotowski, J.-P. Zolesio, Introduction to Shape Optimization. Shape Sensitivity Analysis, Springer-Verlag, 1992.

[2] S.A. Nazarov, Derivation of the variational inequality for small increase of mode-one crack, Mekh. Tverd. Tela 2 (1989) 152-160;
English transl.: S.A. Nazarov, Mech. Solids 24 (1989) 145-152.

[3] S.A. Nazarov, O.R. Polyakova, On the equivalence of the fracture criteria for a mode-one crack in an elastic space, Mekh. Tverd. Tela 2
(1992) 101-113 (in Russian).

[4] L.H. Kolton, S.A. Nazarov, Quasistatic propagation of a mode-I crack in an elastic space, C. R. Acad. Sci. Paris. Sér. 1l 315 (1992)
1453-1457.

[5] M. Bach, S.A. Nazarov, W.L. Wendland, Stable propagation of a mode-1 crack in an isotropic elastic space. Comparison of the Irwin and
the Griffith approaches, in: Problemi attuali dell'analisi e della fisica matematica, Aracne, Roma, 2000, pp. 167-189.

[6] V.I. Lebedev, V.I. Agoshkov, Poincare—Steklov Operators and Their Applications in Analysis, Akad. Nauk SSSR, Vychisl. Tsentr,
Moscow, 1983, 18 pp. (in Russian).

[7] S.A. Nazarov, O.R. Polyakova, Deformation and tear-off of a thin gasket from hardly compressible material, Mekh. Tverd. Tela 5 (1993)
123-134 (in Russian).

[8] L.H. Kolton, S.A. Nazarov, Variation of the shape of the front of plane mode-one crack which is not in equilibrium locally, Mekh. Tverd
Tela 3 (1997) 125-133 (in Russian).

[9] M. Bach, S.A. Nazarov, Smoothness properties of solutions to variational inequalities describing propagation of mode-1 cracks, in: Math-
ematical Aspects of Boundary Element Method (Palaiseau, 1998), in: CRC Res. Notes Math., vol. 414, Chapman & Hall, London, 2000,
pp. 23-32.



