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Abstract

A shape optimization problem is considered for the Dirichlet Laplacian. Asymptotic analysis is used in order to
terise the optimal shapes which are finally given by a singular perturbation of the smooth initial domain.To cite this article:
S.A. Nazarov, J. Sokolowski, C. R. Mecanique 333 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Perturbations singulières en optimisation des formes pour le Laplacien avec conditions de Dirichlet. Un problème
d’optimisation de forme est posé pour l’énergie du Laplacien avec conditions de Dirichlet. Des formes optimales obte
l’analyse asymptotique sont données par une perturbation singulière du domain initial régulier.Pour citer cet article : S.A. Na-
zarov, J. Sokolowski, C. R. Mecanique 333 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

The classical problem of minimization of the energy functional for the Dirichlet Laplacian is addressed.
literature the existence, regularity and stability of optimal shapes for the energy functional is usually conside
der the perimeter constraints. In our Note the perimeter constraint is relaxed, and we analyse the shape op
problem without any regularization term added to the energy functional. On the other hand, we introduce th
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parameterε > 0 which measures the quantity of the material we could add to the initial geometrical domain, s
(7) for the definition of the class of admissible domains. We observe that within our admissible class and
any bounds imposed on the perimeter of the boundary, there is no boundary variation of the domain whic
mizes the first order shape variation of the energy functional. Actually, without such a regularization constr
common use in the shape optimization, the Dirac mass supported at a points∗ of the boundary maximizes the dire
tional derivative of the shape functional. Such a generalized solution is useless both from practical and th
points of view, in addition it destroys the asymptotic procedure used for the construction of solutions.

In order to solve the shape optimization problem within the admissible class, the new design functionH(s), s ∈
Γ 0, is defined in (14). We are looking for an asymptotic solution of the problem, i.e., for sufficiently small po
boundary variations of the reference domainΩ0 which increases the volume of the domain by the valueε > 0. We
construct three terms asymptotics of the energy functional and find out that the energy minimization invo
classical Steklov–Poincaré operator. The operator makes well-posed the variational inequality which we d
optimal variations of admissible domains. This way an asymptotic solution of shape optimization problem
(28) is obtained by solving variational inequality (20), which admits a solution for sufficiently smallε > 0.

The shape optimization problem is formulated in Section 2, basic known properties of Steklov–Poinca
ator are given in Section 3, the leading term of asymptotics of the energy functional is determined in Se
the variational inequality which defines the optimal shapes is introduced in Section 5, and finally the asy
optimal shapes are given in Section 6.

2. Formulation shape optimization problem

We denote byu0 a solution to the Dirichlet problem in the domainΩ0 bounded by a simple, smooth contourΓ 0:

−�u0(x) = f (x), x ∈ Ω0, u0(x) = 0, x ∈ Γ 0 = ∂Ω0 (1)

Problem (1) admits the unique solutionu0 ∈ H 2,2(Ω0) ∩ H
1,2
0 (Ω0) for any f ∈ L2(Ω), it is assumed for the

simplicity of presentation that the right-hand sidef � 0 has the support suppf ⊂ Ω0. The potential energy of th
solution is denoted byE0 = E(u0;Ω0), and takes the form

E(u0;Ω0) = 1

2

∫

Ω0

∣∣∇u0(x)
∣∣2 dx −

∫

Ω0

f (x)u0(x)dx = −1

2

∫

Ω0

f (x)u0(x)dx (2)

Let U be an open neighbourhood of the contourΓ 0, (n, s) is a curvilinear coordinate system onΓ 0, s is the
length parameter,n is the oriented distance toΓ 0 such thatn > 0 outside ofΩ0. Given a small amount of materia
measured byε > 0, the domainΩ0 is replaced by the new domainΩε, such that its boundary is parametrized b
functionh

Γ ε = {
x ∈ U; s ∈ Γ 0, n = h(s)

}
(3)

andh should be chosen in such a way that the increment�E of the potential energy is minimized

�E = Eε − E0 = E(uε;Ωε) − E(u0;Ω0) (4)

By uε is denoted a solution to the Dirichlet problem in the perturbed domain

−�uε(x) = f (x), x ∈ Ωε, uε(x) = 0, x ∈ Γ ε = ∂Ωε (5)

In our settingΩ0 ⊂ Ωε and meas2(Ωε \ Ω0) = ε, hence an admissible boundary variation requires some re
tions on the functionh in (3), which can be introduced in the following way

h(s) � 0, s ∈ Γ 0 (6)

meas2(Ω
ε \ Ω0) =

∫
dx =

∫ h(s)∫ (
1+ �(s)n

)
dnds =

∫ (
h(s) + 1

2
�(s)h(s)2

)
ds = ε (7)
Ωε\Ω0 Γ 0 0 Γ 0
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where� stands for the curvature ofΓ 0 and (1 + �(s)n) is the Jacobian in local coordinates. It is clear that
optimal functionh, if it exists, depends on the small parameterε > 0, which is not indicated in the sequel. In wh
follows, we considerh as a small functional parameter and derive some asymptotic formulae with respect toh. For
brevity ‘· · ·’ means the terms of higher order which can be neglected, however, here we do not precise the
such terms.

In the classical theory of shape optimization [1] the following form of the first order variation of the e
shape functional for Dirichlet Laplacian is obtained

�E = −1

2

∫

Γ 0

h(s)
∣∣∂nu0(0, s)

∣∣2 ds + · · · (8)

However the problem of minimizing the right-hand side in (8) is ill-posed and leadsformally to the solution
h(s) = εδ(s − s∗), whereδ(s − s∗) denotes the Dirac mass concentrated ats∗, ands∗ ∈ Γ 0 is a point at which the
positive functionΓ 0 � s �→ |∂nu0(0, s)| attains its maximum. Here we denote by∂nu0(0, s) = ∂nu0(x), the normal
derivative onΓ 0.

The method of determination of the optimal domain applied in this note, is similar to the method used alr
the fracture criteria [2–5], for a plane crack in the elastic space. Actually, the three terms asymptotic approx
of the potential energy is constructed using the following asymptotic ansatz for solutions to (5)

uε = u0 + u′ + u′′ + · · · (9)

with the termsu′, u′′ linear and quadratic with respect toh. In particular, functional (4) can be replaced by
quadratic approximation which is minimized with respect toh and the procedure leads to a well-posed problem
determination of the functionh for a givenε > 0. The resulting problem, which allows to evaluate the unkno
boundary, takes the form of a variational inequality on the contourΓ 0. The bilinear form in the variational inequa
ity is defined by a nonnegative integral operator. If the inequality constraint (6) is relaxed, and only the qu
inequality constraint (7) is imposed, the variational inequality becomes an equation. Our approach is in
ferent; we solve the variational inequality with the only sign constraints and then adapt the solution in suc
that the quadratic constraint is also verified. It is useful to point out that the asymptotic solution of the var
inequality gets a singular structure: the perturbation of the contourΓ 0 is supported in thecε1/4-neighbourhood o
the points∗, with magnitude of the order O(ε3/4). However, the difference in orders of the infinitesimal magnitu
ε1/4 andε3/4 shows that the boundary perturbation although singular, it is still gently sloped.

3. Steklov–Poincaré operator

For the Dirichlet problem

−�v(x) = 0, x ∈ Ω0, v(x) = H(s), x ∈ Γ 0 (10)

we introduce a pseudo-differential operator, calledSteklov–Poincaré operator, in the usual way [6]. First, we nee
the Poisson kernelP(x;σ), a solution to the problem

−�P(x;σ) = 0, x ∈ Ω0; P(x;σ) = δ(s − σ), x ∈ Γ 0

with the asymptoticsP(x;σ) = −π−1n(x − σ)−2 + O(1), x → σ ∈ Γ 0. Here, we use the same symbolσ for a
point onΓ 0 and its coordinate (the length of the curve). Actually, after the regularization of hipersingular in
(see e.g., [2,7]) we obtain the following formulae

MH(s) = ∂nv(0, s) (11)

MH(s) =
∫ (

H(s) − H(σ)
)
K(σ, s)dσ + k(s)H(s) (12)
Γ 0



308 S.A. Nazarov, J. Sokolowski / C. R. Mecanique 333 (2005) 305–310

el

al

on

s yields
e

dary
whereK(σ, s) = −∂nP (0, s;σ), k(s) = K0(s − 0, s) − K0(s + 0, s), with the symmetric and positive kern
K(σ, s), which has the singularity

K(σ, s) = π−1(x − σ)−2 + O(1), σ → s ∈ Γ 0 (13)

andK(σ, s) = π−1(x − σ)−1 +K0(σ, s) is a primitive of the functionΓ 0 � σ �→ K(σ, s).
The operatorM is a symmetric, elliptic, pseudo-differential operator with the principal symbol(2π)−1/2|ξ |.

For our applications we set

H(s) = −h(s)∂nu0(0, s) = h(s)
∣∣∂nu0(0, s)

∣∣ (14)

and recall that by the maximum principle and under the restriction imposed on the functionf the normal derivative
of the solution to (1) is strictly negative on the boundaryΓ0.

4. Leading terms of the asymptotics

The solutionu0 is extended in a smooth way outside ofΩ0 and expanded in the Taylor series in the norm
variablen. As a result, on the contourΓ ε we have

u0(h(s), s) = 0+ h(s)∂nu0(0, s) + 1

2
h(s)2∂2

nu0(0, s) + · · · (15)

Taking into account the form of the Laplace operator in the curvilinear coordinate system(n, s) and the equality
�u = 0 onΓ 0, inherited from the assumptionf = 0 onΓ0, we obtain that

∂2
nu0(0, s) = −�(s)∂nu0(0, s) (16)

The second term in right-hand side of (15) constitutes the main discrepancy in the boundary condition (5)Γ ε.
The discrepancy is compensated by the solution of the problem

−�u′(x) = 0, x ∈ Ω0, u′(x) = −H(s) = −h(s)∂nu0(0, s), x ∈ Γ 0 (17)

We recognize here the so-called shape derivative of solution to the Dirichlet problem [1]. Integration by part
the leading part of the energy variation i.e., the term−1

2

∫
Ω0 f (x)u′(x)dx takes the form in the right-hand sid

of (8). Collecting second order terms in formula (15) and using the similar Taylor expansion foru′ results in the
boundary value problem for the functionu′′ in ansatz (9):

−�u′′(x) = 0, x ∈ Ω0, u′′(x) = −h(s)∂nu
′(0, s) − 1

2
h(s)2∂2

nu0(0, s), x ∈ Γ 0 (18)

Therefore, taking into account equality (16) we find that

�E = −1

2

∫

Γ 0

h(s)
∣∣∂nu0(0, s)

∣∣2 ds − 1

2

∫

Γ 0

h(s)∂nu0(0, s)

{
∂nu

′(0, s) − 1

2
�(s)h(s)∂nu0(0, s)

}
ds + · · · (19)

In addition, the normal derivative∂nu
′(0, s) can be expressed in terms of the right-hand side in the boun

conditions of (17) using the Steklov–Poincaré operator, namely,∂nu
′(0, s) = −M[h(s)∂nu0(0, s)] = M[H(s)].

5. Variational inequality

In view of the expansion (19) we can consider the quadratic approximation of the energy functional

J (h) = −1

2

∫
h(s)

∣∣∂nu0(0, s)
∣∣2 ds − 1

2

∫
h(s)∂nu0(0, s)

{
M

[
h(s)∂nu0(0, s)

] − 1

2
�(s)h(s)∂nu0(0, s)

}
ds
Γ 0 Γ 0
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The minimization of this functional over the coneH
1/2,2
+ (Γ 0) of nonnegative functions in the Sobolev–Slobodet

spaceH 1/2,2(Γ 0) leads to the variational inequality

H ∈ H
1/2,2
+ (Γ 0): 〈2MH + Λ�H − Λ∂nu0,ψ − H 〉 � 0 ∀ψ ∈ H

1/2,2
+ (Γ 0) (20)

where〈 , 〉 denotes the duality pairing betweenH 1/2,2(Γ 0) andH−1/2,2(Γ 0), as an extension of the scalar produ
in L2(Γ

0). We select

Λ = 1− ∣∣∂nu0(0, s)
∣∣−2

λ (21)

so the solutionH to (20) depends on the Lagrangian parameterλ which is to be chosen in such a way thatH

verifies the quadratic constraints (7) of the form∫

Γ 0

∣∣∂nu0(0, s)
∣∣−1

H(s)

(
1+ 1

2
�(s)

∣∣∂nu0(0, s)
∣∣−1

H(s)

)
ds = ε (22)

In agreement with the properties of the kernel ofM (see (13) and (20)), under the assumption

2k + Λ� > 0 onΓ 0 (23)

it turns out that quadratic term inJ (h) = 1
2a(h,h) − L(h) contains the bilinear forma(·, ·) which is symmetric

and coercive in the spaceH 1/2,2(Γ 0). The standard result for variational inequalities implies the existence
unique solution to (20). In fact, more refined result was proved in [4,8,9].

Proposition 5.1. Under condition (23) variational inequality (20) admits a unique solution H ∈ H
1/2,2
+ (Γ 0) for

any right-hand side Λ∂nu0 ∈ L2(Γ
0). The following estimate holds true∥∥H ;H 1/2,2

+ (Γ 0)
∥∥ � C

∥∥Λ+∂nu0;L2(Γ
0)

∥∥ (24)

where Λ+ = (Λ + |Λ|)/2. If, in addition Λ∂nu0 ∈ Lp(Γ 0) for some p ∈ [2,∞), then the solution H belongs to
the Sobolev space H 1,p(Γ 0) and the following estimate is valid∥∥H ;H 1,p(Γ 0)

∥∥ � Cp

∥∥Λ+∂nu0;Lp(Γ 0)
∥∥ (25)

We point out, that the exponentp = ∞ is excluded from the range. The reason is that in the case ofp = ∞
the Hilbert transform:Lp(R) �→ Lp(R) changes properties and the argument of the proof used in the refer
does not apply. On the other hand, the asymptotic solution constructed in the next section belongs to t
H 1,∞(Γ 0).

6. Asymptotic solution

We assume that the positive functionΓ 0 � s �→ |∂nu0(0, s)| attains the unique global maximum at the points∗,
which in addition is strong, i.e.,

∂nu0(0, s) = A − a(s − s∗)2 + O
(|s − s∗|3

)
(26)

with A,a > 0. From estimate (24), which contains the positive partΛ+ of the quantity (21), we deduce that f
the existence of a small nontrivial solution to the variational inequality (20) it is necessary that the Lagr
multiplier takes the form

Λ = A(1− α) (27)

whereα > 0 is a small parameter, which should be related with the parameterε in the constraints (7) (=(22)). An
asymptotic solution of variational inequality (20) is searched in the form

H(s) ∼ (Aα)3/2(2a)−1/2H(t), t = (Aα)1/2(2a)−1/2(s − s ) (28)
∗
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The fast variablet and the multiplier at the unknown functionH are chosen in such a way that after the co
sponding changes and neglecting the higher order terms (with respect toα → +0) in variational inequality (20
depending onΛ, we obtain the variational inequality independent ofα

1

π

∫
R

∫
R

(
H(t) −H(τ )

)(
Ψ (t) −H(t)

)|t − τ |−2 dτ dt �
∫
R

(1− t2)
(
Ψ (t) −H(t)

)
dt

∀Ψ ∈ C∞
0 (R), Ψ � 0 (29)

which admits the unique solution

H(t) =
{

3−1(2− t2)3/2 for t �
√

2

0 for t >
√

2
(30)

We note that the functionH belongs to the spaceH 1,∞(R) andH 2−µ,2(R) for anyµ > 0.
Formulae (28), (14) and (30), (26) provide the asymptotic solution for arbitrarily smallα > 0. We insert the

formula forh into (7) (or the expression forH into (22)) and taking into account only the leading term, we ob
the relation between the small parametersα andε:

ε = π(2a)−1A2α2 (31)

Assuming (23), which implies estimates (24) and (25), easily follows that the representation (28) effective
stitutes an asymptotic approximation of solutions to (20).
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