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Abstract

The sedimentation ofN � 1 small arbitrarily-shaped solid bodies near a solid plane is addressed by discarding inertial
and using 6N boundary-integral equations. Numerical results for 2 or 3 identical spheres reveal that combined wall–
and particle–particle interactions deeply depend on the cluster’s geometry and distance to the wall and may even ca
sphere which then moves as it were isolated.To cite this article: A. Sellier, C. R. Mecanique 333 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Sédimentation d’un ensemble de particules solides en présence d’une paroi solide plane. La sédimentation en régime d
Stokes deN � 1 corps solides quelconques situés près d’une paroi plane est étudiée à l’aide de 6N équations de frontière. Le
résultats pour 2 ou 3 sphères identiques montrent que la résultante des intéractions particule-particule et paroi-partic
sensible à la disposition des sphères et peut même s’annuler pour l’une d’elles qui dans ce cas migre comme si elle
Pour citer cet article : A. Sellier, C. R. Mecanique 333 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

The new approach advocated in [1] to compute the low-Reynolds-number falling motions ofN � 1 arbitrarily-
shaped solid bodies investigates pure particle–particle interactions in sedimentation. However, boundarie
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encountered in practice and the case of a solid wall has been only handled in [2,3] forN = 1 and for severa
spheres in axisymmetric motion in [4]. The present work thus investigates combined particle–particle an
particle interactions for arbitrary clusters lying near a plane solid wallΣ by extending [1]. This is achieved by usin
this time a Green’s tensor [5] that vanishes onΣ and therefore again solving 6N boundary-integral equations o
the entire cluster’s surface.

2. Governing linear system

We look atN � 1 solid arbitrarily-shaped particle(s)Pn (n = 1, . . . ,N) immersed in a Newtonian fluid o
uniform viscosityµ and densityρ above the solid and motionlessx3 = 0 planeΣ . For example, the case of a fe
spheres is sketched in Fig. 1.

Under the uniform gravityg eachPn with center of massOn settles with respect to the Cartesian fra
(O,x1, x2, x3) at the unknown angular velocityΩ(n) and translational velocityU(n) (the velocity ofOn). The
fluid and eachPn with volumeVn, center of volumeO ′

n, massMn and surfaceSn have negligible inertia. Hence
the liquid has at a current pointM quasi-steady [1] velocityu, pressurep + ρg · OM and stress tensorσ that obey

µ∇2u = ∇p and ∇ · u = 0 in Ω, (u,p) → (0,0) as|OM| → ∞ (1)

u = 0 onΣ and u = U(n) + Ω(n) ∧ OnM onSn (n � 1) (2)∫

Sn

σ · n dSn + (Mn − ρVn)g = 0,

∫

Sn

OnM ∧ σ · n dSn + ρVng ∧ OnO′
n = 0 (n � 1) (3)

with Ω the fluid domain andn the unit outward normal on the cluster’s surfaceS = ⋃N
n=1 Sn. In order to rewrite (3),

that requires zero net force and torque (with respect toOn) on eachPn of ignored inertia, let us introduce 6N flows
(u(n),i

L ,p
(n),i
L ) with stress tensorσ (n),i

L for L ∈ {T ,R}, i ∈ {1,3} andn = 1, . . . ,N . Those flows fulfill (1) and the
conditions

u(n),i
L = 0 onΣ, u(n),i

L = 0 onSm if m �= n, u(n),i
T = ei and u(n),i

R = ei ∧ OnM onSn (4)

Fig. 1. Identical spheres near thex3 = 0 solid planeΣ : (a) 2-sphere cluster withO1O2 · e3 = 0; (b) 2-sphere cluster withO1O2 normal toΣ ;
(c) 3-sphere cluster withO1O2 = O1O3 = O2O3,O2O3 · e3 = 0 andg = −ge3.

Fig. 1. Sphères identiques au voisinage du plan solideΣ (x3 = 0) : (a) N = 2 etO1O2 · e3 = 0 ; (b) N = 2 etO1O2 perpendiculaire àΣ ; (c)
N = 3 etO1O2 = O1O3 = O2O3,O2O3 · e3 = 0,g = −ge3.
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Becauseu = 0 onΣ wheren = e3 the usual reciprocal identity [6] provides, for any flow(u′,p′) with stress tenso
σ ′ satisfying the equations and far-field behavior (1), the relation

∫

S∪Σ

u′ · σ · n dS =
∫

S∪Σ

u · σ ′ · n dS =
N∑

m=1

∫

Sm

u · σ ′ · n dSm (5)

Upon introducing the vectorf(n),i
L = σ

(n),i
L · n onS, the quantitiesA(n),i,j

(m),L andB
(n),i,j

(m),L with

A
(n),i,j

(m),L = −
∫

Sm

ej · f(n),i
L dSm, B

(n),i,j

(m),L = −
∫

Sm

(ej ∧ OmM) · f(n),i
L dSm (6)

and adopting henceforth the tensor summation convention withU(n) = U
(n)
j ej and Ω(n) = Ω

(n)
j ej , the choice

(u′,p′) = (u(n),i
L ,p

(n),i
L ) in (5) easily shows that (3) becomes

{
A

(n),i,j

(m),T U
(m)
j + B

(n),i,j

(m),T Ω
(m)
j

}
ei = (Mn − ρVn)g = T(n) (7){

A
(n),i,j

(m),R
U

(m)
j + B

(n),i,j

(m),R
Ω

(m)
j

}
ei = ρVn(g ∧ OnO′

n) · e = C(n) (8)

SettingY = (T(1), . . . ,T(N),C(1), . . . ,C(N)), the linear system (7), (8) with 6N ×6N matrixA also readsA · tX =
tY with X = (U(1), . . . ,U(N),Ω(1), . . . ,Ω(N)) the unknown generalized velocity andtV the transposed ofV. As
seen by putting(u,p) = (u(n),i

L ,p
(n),i
L ) and (u′,p′) = (u(m),j

L ,p
(m),j
L ) in the first equality (5) the matrixA is

symmetric. Moreover, if∇[u · ei] = ∇[ui] = ui,j ej andeij = (ui,j +uj,i)/2, the divergence theorem and (1) yie

E :=
∫

S∪Σ

u · σ · n dS = −2µ

∫

Ω

eij eij dΩ < 0 (9)

Since (2) and (4) show thatσ · n = U
(n)
i f(n),i

T + Ω
(n)
i f(n),i

R on S and u = U
(m)
j ej + Ω

(m)
j (ej ∧ OmM) on Sm it

follows from (9), (2) and (6) thatE = −X · A · tX < 0 whateverX. Hence,A is not only real-valued and symmetr
but also positive-definite and (7), (8) thus admit a unique solutionX, here obtained (see (6)) by solely evaluat
the surface tractionsf(n),i

L on the multiply-connected (ifN � 2) cluster’s boundaryS.

3. Relevant integral representations and boundary-integral equations

We denote byM ′(x1, x2,−x3) the symmetric with respect to the planeΣ of any pointM(x1, x2, x3) located in
Ω ∪ S ∪ Σ and introduce forP onS the pseudo-functions [5]

G0
jk(P,M) = δjk/PM + (PM · ej )(PM · ek)/PM3 (10)

G1
jk(P,M) = −G0

jk(P,M ′) − 2cj

[
(OM · e3)/PM ′3]{δk3PM′ · ej

− δj3PM′ · ek + OP · e3
[
δjk − 3(PM′ · ej )(PM′ · ek)/PM ′2]} (11)

with c1 = c2 = 1, c3 = −1 andδjk the Kronecker delta. Extending in our caseN � 1 the result obtained in [7,8] fo

a single particle it is found thatu(n),i
L , subject to (1) and (4), then admits the key single-layer integral represen

−8πµ[u(n),i
L · ej ](M) =

∫

S

[
G0

jk + G1
jk

]
(P,M)

[
f(n),i
L (P ) · ek

]
dS for M in Ω ∪ S ∪ Σ (12)

The above key result (12) appeals to the following remarks and basic consequences:
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(i) Of courseu(n),i
L vanishes onΣ because[G0

jk +Gb
jk](P,M) = 0 if M lies onΣ [5]. However, (12) in genera

also involves for(u′′,p′′) subject to (1) and the propertyu′′ = 0 on Σ an additional double-layer integral whic
only vanishes ifu′′ is a rigid-body motion on eachSm (as is eachu(n),i

L ).

(ii) Each unknown tractionf(n),i
L obeys onS a Fredholm boundary-integral equation of the first kind obtaine

combining (4) and (12). One thus determinesX = (U(1), . . . ,UN,Ω(1), . . . ,Ω(N)) by solving 6N integral equa-
tions on the cluster’s surface.

(iii) Once all vectorsf(n),i
L andX have been evaluated, (12) finally provides if necessary the velocity fieldsu(n),i

L

and thereforeu = U
(n)
i u(n),i

L + Ω
(n)
i u(n),i

R in the liquid domainΩ .

4. Numerical method and preliminary results

As in [1], the integral equation (12) forf(n),i
L is inverted by a boundary element technique [9] with 6-n

isoparametric curved triangular elements andNm nodes on eachSm and aLU factorization algorithm to solve th
discretized counterpart of (12). The procedure which readily recovers [1] far from the wall (see (10), (11)) is
for a single spheroid with uniform densityρs, inequationx2

1 + x2
2 + ε−2(x3 − H)2/ � a2 and separation ratioh =

H/(εa) > 1. If isolated(h = ∞) this body only translates forg = ge3 at the velocityU(1) = ga2(ρs − ρ)v(ε)/µe3
with v(1) = 2/9 for a sphere and for oblate spheroids [6]

v(ε) = {
p(p2 + 3)arctan(1/p) − p2}/12 withp = ε/(1− ε2)1/2 and 0< ε < 1 (13)

Symmetries and linearity confine the analysis to the settingsg = ge1 andg = −ge3 with g > 0. Forρs �= ρ the
non-zero Cartesian velocities, normalized by the velocity of the isolated spheroid and solely depending upo(ε, h),

are found to be

u1 = µa−2U(1) · e1

g(ρs − ρ)v(ε)
, w2 = µa−3Ω(1) · e2

g(ρs − ρ)v(ε)
if g = ge1; u3 = µa−2U(1) · e3

g(ρ − ρs)v(ε)
if g = −ge3 (14)

The computed values are compared in Table 1, for differentN1-node meshes onS1, both with the analytical bipola
coordinates method [10] for a sphere(ε = 1) and the numerical results of [3] for theε = 1/2 oblate spheroid.

Clearly, the agreement is excellent for the sphere and very good for the oblate spheroid. Actually, [2,3]
(12) the extra weakly-singular double-layer integral although (remind our remark (i) below (12)) it vanish
this might explain the small observed discrepancies forε = 1/2.

Although the advocated procedure holds forN � 1 arbitrary bodies, we henceforth present results for clus
(see Fig. 1) of 2 or 3 identical spheresPn with centerOn, radiusa and uniform densityρs �= ρ. We put 242 nodes

Table 1
Computed normalized velocitiesu1,w2 andu3 (see (14)) for a sphere(ε = 1) and theε = 1/2 oblate spheroid for differentN1-node meshes

Tableau 1
Vitesses adimensionnéesu1,w2 andu3 (voir (14)) pour une sphère(ε = 1) et un ellipsoide de révolution aplati(ε = 1/2) en fonction du
nombreN1 de points de collocation

N1 h u1; ε = 1 w2; ε = 1 u3; ε = 1 u1; ε = 0.5 w2; ε = 0.5 u3; ε = 0.5

74 1.1 0.4463 0.0245 0.1087 0.6433 −0.0534 0.246
242 1.1 0.4424 0.0259 0.0886 0.6413 −0.0538 0.244

1058 1.1 0.4430 0.0270 0.0871 0.6411 −0.0538 0.244
[10, 3] 1.1 0.4430 0.0270 0.0873 0.6464 −0.0522 0.241

74 2.0 0.7256 0.0034 0.4726 0.7910 −0.0250 0.473
242 2.0 0.7235 0.0035 0.4707 0.7890 −0.0252 0.472

1058 2.0 0.7232 0.0035 0.4705 0.7888 −0.0252 0.472
[10, 3] 2.0 0.7232 0.0035 0.4705 0.7892 −0.0252 0.477



A. Sellier / C. R. Mecanique 333 (2005) 413–418 417

ies

e
. In

,

locities
–

Fig. 2. Normalized velocitiesu andw in Cases k ifN = 2 andO1O2 · e3 = 0 for δ = 0.1 (k = 1(◦), k = 2(•), k = 3(∗)), δ = 0.5 (k = 1(�),

k = 2(�), k = 3(♦)) andδ = 0.9 (k = 1(
), k = 2(�), k = 3(�)). (a)u with dashed(k = 1,2) and solid(k = 3) curves forδ = 0; (b) w with
dashed(k = 2,3) and solid(k = 1) curves forδ = 0.

Fig. 2. Vitesses adimensionnéesu et w dans les Cas k siN = 2 et O1O2 · e3 = 0 pour δ = 0.1(k = 1(◦), k = 2(•), k = 3(∗)),

δ = 0.5 (k = 1(�), k = 2(�), k = 3(♦)) et δ = 0.9 (k = 1(
), k = 2(�), k = 3(�)). (a) u avec des courbes en trait pointillé(k = 1,2) et
plein (k = 3) pourδ = 0 ; (b) w avec des courbes en trait pointillé(k = 2,3) et plein(k = 1) pourδ = 0.

on Sn and introduce the positive wall–sphere and sphere–sphere separation parameters asδ = a/OO1 · e3 < 1
andλ = 2a/O1O2 < 1, respectively. By linearity we consider the settingsg = ge1 (Case 1),g = ge2 (Case 2),
g = −ge3 (Case 3) withg > 0 and use in Case k the normalized velocities

u
(n),(k)
i = 9µa−2U(n) · ei

2g(ρs − ρ)ck

, w
(n),(k)
i = 9µa−3Ω(n) · ei

2g(ρs − ρ)ck

with c1 = c2 = 1, c3 = −1 (15)

For 2 spheres andO1O2 ·e3 = 0 (see Fig. 1(a)) onlyu = u
(1),(k)
k = u

(2),(k)
k in each Case k,w = w

(1),(1)
2 = w

(2),(1)
2

in Case 1,w = w
(1),(2)
3 = −w

(2),(2)
3 in Case 2 andw = w

(1),(3)
2 = −w

(2),(3)
2 in Case 3 are non-zero. These quantit

are plotted in Fig. 2 versusλ.
As seen in Fig. 2(a), pure wall–sphere(λ = 0) interactions slow down the spheres(u < 1) and increase with

δ and pure sphere–sphere(δ = 0) interactions speed up the spheres(u > 1) and increase withλ. For δλ �= 0 both
interactions interact andu − 1 deeply depends on(δ, λ). If δ = 0.1 (all Cases k) andδ = 0.5 (Case 1) we may hav
u = 1 (a sphere ignores the other one andΣ) or alsou > 1 if λ andδ are large and small enough, respectively
other cases wall–particle interactions are dominant and spheres move slower than if isolated(u < 1). This actually
occurs near the wall whateverλ sinceu then weakly depends onλ, as observed forλ = 0.9. Finally, note thatu
strongly depends on Case k andu

(1),(1)
1 > u

(1),(2)
2 > u

(1),(3)
3 for any pair(δ, λ) with δλ �= 0. In Fig. 2(b) similar

trends are obtained forw with w
(1),(2)
3 > w

(1),(3)
2 andw → 0 asλ → 1 in Case 1 (not in Cases 2 or 3).

If O1O2 is normal toΣ (see Fig. 1(b)) non-zero velocities readu(n) = u
(n),(1)
1 = u

(n),(2)
2 in Case 1 (or 2) and

u(n) = u
(n),(3)
3 in Case 3. As depicted in Fig. 3(a),u(1) < u(2) in each Case k forδ > 0 sinceP1 experiences

stronger wall–sphere interactions thanP2. As in Fig. 2(a),u(n) decreases asδ increases for anyλ andPn might
ignore the other sphere(u(n) = 1) for (n, δ) = (1,0.3) in Case 1 and(n, δ) = (2,0.3) in Cases 1, 3. In addition
u(n) is smaller in Case 3 than in Case 1 andu(2) strongly decreases asλ increases forδ = 0.9.

Finally, we consider in Case 3 the 3-sphere cluster sketched in Fig. 1(c) by plotting in Fig. 3(b) the ve
u(n) = u

(n),(3)
3 for 10λ = 1,5,9. Clearly,u(1) andu(2) = u(3) decrease with 1/δ or λ and for a given sphere

sphere separationλ there exist wall positionsδ1 such thatu(1) = 1, δ2 such thatu(2) = 1 andδc at which all
spheres adopt the same velocity(u(1) = u(2) > 1) whereasu(2) − u(1) has sign ofδ − δ for δ �= δ .
c c
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Fig. 3. (a) Normalized velocitiesu(n) for N = 2 and O1O2 normal to Σ in Case 1 forδ = 0.3 (n = 1(�), n = 2(�)) or δ = 0.9
(n = 1(
), n = 2(�)) and in Case 3 forδ = 0.3 (n = 1(♦), n = 2(�)) or δ = 0.9 (n = 1(�), n = 2(	)); (b) velocitiesu(n) versusδ for
N = 3 in Case 3 ifλ = 0.1 (n = 1(◦), n = 2(•)), λ = 0.5 (n = 1(�), n = 2(�)) andλ = 0.9 (n = 1(
), n = 2(�)).

Fig. 3. (a) Vitesses adimensionnéesu(n) si N = 2 et O1O2 normal àΣ dans le Cas 1 pourδ = 0.3 (n = 1(�), n = 2(�)) ou δ = 0.9
(n = 1(
), n = 2(�)) et dans le Cas 3 pourδ = 0.3 (n = 1(♦), n = 2(�)) ou δ = 0.9 (n = 1(�), n = 2(	)) ; (b) vitessesu(n) dans le Cas
3 siN = 3 etλ = 0.1 (n = 1(◦), n = 2(•)), λ = 0.5 (n = 1(�), n = 2(�)) ouλ = 0.9 (n = 1(
), n = 2(�)).

5. Conclusions

The proposed procedure has a reasonable cpu-time cost and may therefore be embedded in a Ru
march-in-time algorithm to track a time-dependent cluster’s geometry as time evolves. This task is under in
tion both for spheres and non-spherical bodies. As obtained in [3] for one spheroid, we expect to find equ
orientations of non-spherical particles for a few specific initial clusters.
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