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Abstract

The model developed in this Note makes it possible to determine the value of the mean indentation pressure usua
hardness from the elastoplastic properties of materials and also the shape of the cone or that of the wedge. The app
rests upon the definition of a linear elastic solid which has the same indentation pressure as the material actually
Cases of cone and wedge indentation are studied. A method to determine the uniaxial stress–strain curve of mate
indentation tests is given. The results are validated using finite element simulations.To cite this article: G. Kermouche et al.,
C. R. Mecanique 333 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Solution approchée du problème de l’indentation cônique et diédrique de matériaux élastoplastiques.Le modèle dé-
veloppé dans cette Note permet de déterminer la valeur de la pression moyenne d’indentation (habituellement dénom
à partir des propriétés élastoplastiques des matériaux. L’approximation développée repose sur la définition d’un solide
linéaire dont la pression moyenne d’indentation est la même que celle du matériau réellement indenté. Une méthod
tification de la courbe contrainte-déformation uniaxiale à partir d’essais d’indentation est proposée. Les résultats so
validés à l’aide de calculs par éléments finis.Pour citer cet article : G. Kermouche et al., C. R. Mecanique 333 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. On indentation tests

The understanding of the indentation of solids is very important to measure the mechanical propertie
faces. The instrumented indentation method makes it possible to measure continuously the load applie
indenter as a function of the penetration depth. Thus, the study of the load-penetration curve can be
determine mechanical properties even when the penetration is very small. The indentation of isotropic
plastic material has been widely investigated over the past few years [1–4] and many laws from expe
studies and simplified models have been proposed. Recently, the development of nanoindentation techn
6] has made it possible to finely characterize the mechanical properties of surfaces. The aim of this stu
propose a new approximate solution of the indentation of elastoplastic materials using a rigid cone or
wedge.

Using an empirical approach based on experiments on metals, Tabor [1] explains that the real defin
hardness is the mean pressure under load. Assuming that the principle of geometric similarity can be a
elastoplastic materials indented by sharp indenters (cone, wedge, Berkovitch, Vickers, etc.), the mean pr
constant during the penetration. The principle of geometric similarity (PGS) has been described by many
[1,7,4] and states that if two indentations are made of the same geometric shapes, then, whatever their size
and stress distributions around the indentation will be geometrically similar. For cone indentation of half-sp
PGS means that stress and strain fields can be written as functions of some reduced coordinatesX = r/a(t) and
Z = z/a(t) wherer andz are polar coordinates anda(t), the contact radius at timet .

σij (r, z, t) = Σij (X,Z) and εij (r, z, t) = Eij (X,Z) (1)

Eq. (1) leads to a contact pressure function of reduced coordinates. Hence the mean pressure does n
on the applied load. There is a close resemblance between problems where geometric similarity is ma
and problems of steady motion. A representative stressσr and a representative strainεr characterizing the stres
and strain distributions (Σij andEij ) corresponding to each other on the uniaxial stress–strain curve can
fined.

Tabor’s suggestion [1] is to relate a representative stress to the mean pressureσr = pm/3 and a representativ
strain to the shape of the indenterεr = 0.2 tan(β) with β the angle from the face of the indenter to the surfa
Hence the uniaxial stress–strain curve can be obtained in a non destructive way using indentation tes
similarity principles, Hill et al. [3,7] and Storakers et al. [8] have shown that these empirical results are va
rigid plastic materials with power law hardening. It has been confirmed by the finite element study of Lar
al. [9]. However, when elastic properties have to be taken into account, Tabor’s relationships are no long
Using the analytical solution of the expansion of an elastoplastic spherical cavity under a hydrostatic p
and assuming that this result can be applied to model cone indentation tests, Johnson [10] proposed a
sion where the mean pressure (or hardness) is related to the yield stress and elastic properties. Using di
analysis and scaling relationships, Cheng and Cheng [4] have applied these methods to the understand
effects of the mechanical properties on indentation results. They have shown in particular that for given
properties,E andν, multiple choices of the plastic parameters – yield stress, strain hardening exponent – a
sible, which produce the same hardness value. Several studies have been made to compare the force p
curve obtained experimentally and also using numerical simulations [11,4]. Recently, several authors hav
lished dimensionless functions for a wide range of material properties using intensive finite element sim
[12]. These functions express the indentation load as a function of mechanical and geometrical prope
have been mainly developed for sharp indentations. Then they used several algorithms to identify plastic
ters [13,14]. The most important drawback of such approaches is that the strain hardening curve must b
Moreover, results are not always stable depending on elastoplastic properties and regulation methods h
applied [15].
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2. A new approximation of wedge and cone indentation

In Sections 2, 3 and 4, the constitutive elastoplastic equations are based on the classical rate ind
Prandtl–Reuss equations for von Mises plasticity with isotropic hardening. Let us introduce the ratio b
the mean pressurepm and the representative stressσr , γ = pm/σr . γ depends onβ and on the elastoplastic prope
ties of the indented material. For linear elastic solids,γ = γe depends only on elastic properties and onβ. For rigid
perfectly plastic materials,σr is equal to the yield stressY · γ = γp depends only onβ (Hill [16], Lockett [17]).

For wedge and cone indentation of linear elastic half-space, the expression of the mean pressure is th
is given by (Love [18]):

pm = 1

2

E

1− ν2
tan(β) (2)

Let us now consider representative stress and strain definitions in this case. On a uniaxial tensile test, t
is related to the strain by theσ = Eε equation. Following the work of Tabor [1], the representative stress o
indentation test is related to the mean pressureσr = pm/γe. Using Eq. (2), the representative strain is given
εr = 1/(2γe(1− ν2)) tan(β). The value ofγe being arbitrary, there is an infinite number of(σr , εr ) couples which
give the correct value of the mean pressure.

Let us now consider elastic perfectly plastic materials. Both elastic and plastic deformations have to b
into account. The representative strain is thus writtenεr = εe

r + ε
p
r . The elastic part is simply given byεe

r = σr/E.
Similarly to the definition of Tabor [1], the representative plastic strainε

p
r is considered to be strongly related

the shape of the indenter. Moreoverε
p
r must be equal to zero when the angle of the sharp indenter is not suffi

to produce plastic strain in the material. Therefore, we assume thatε
p
r can be written as:

ε
p
r = 〈

ζ
(
tan(β) − tan(β0)

)〉
(3)

whereζ is a parameter which will be defined below.〈·〉 represents the McCauley’s bracket.β0 is a critical angle
introduced by Johnson [19] from which plastic deformations have to be taken into account. Whenβ � β0, the mean
pressure is given by Eq. (2).β0 depends on elastoplastic properties and is written

tan(β0) = B
Y

E
(4)

whereB equals toπ(1− ν2)/
√

3 for a wedge and equals to(1− ν2) for a cone. Theoretically, the infinite pressu
at the apex will cause plastic flow even forβ � β0. Plastic deformation will take place but will be very sm
and confined to a small region close to the apex. As suggested by Johnson, such minor deformations s
neglected. In the sequel, we will consider thatβ is bigger thanβ0 which implies thatσr = Y .

The PGS being satisfied, the mean pressure does not depend on the contact radius and on the load app
indenter. Thus representative parameters can be defined. Let us define a linear elastic solid which gives
representative stress and strain as those corresponding to the elastoplastic solid really indented. We will
representative elastic material and its Young’s modulus will be given byEr = σr/εr

Er = Y

Y/E + ζ(tan(β) − tan(β0))
(5)

This material is fictitious and is only used to establish the approximate solution of the model.
For the representative elastic material, the value ofγe = pm/σr is arbitrary. Let us chooseγe equal to the ratio

γ of the elastoplastic solid really indented. Hence the mean pressure obtained with the linear elastic so
same as that obtained with the elastic perfectly plastic solid. It is given by:

pm = 1 Er tan(β) (6)

2 1− ν2

r
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whereνr is the representative Poisson coefficient. Combining Eqs. (4) and (6), one obtains:

γ = pm

σr

= 1

2

1

1− ν2
r

tan(β)

(1− ζB)Y/E + ζ tan(β)
(7)

Eq. (7) must be valid for any elastic perfectly plastic solid. Let us consider the limit case of rigid perfectly
solids. For these solidsγ = γp depends only onβ. Moreover the representative elastic strain is equal to
(Y/E = 0). Eq. (7) then gives:

ζ = 1

2γp

1

1− ν2
r

(8)

γp can be determined using the analysis of Hill [16] for wedge indentation and Lockett [17] for cone indent
Using an experimental approach, Tabor [1] suggestsγp = 3. The last unknown factor relates to the expressio

νr . To satisfy the limit case of elasticity,νr must be equal toν. However, nothing indicates thatνr does not depen
on the mechanical properties of the material and in particular on theY/E ratio. In his study of modelling the
indentation of rigid plastic solids by non linear elastic solids, Hill [3] recommends a value of 0.5 for the P
coefficient in order to satisfy plastic incompressibility. Most engineering materials are more plastic than
during cone or wedge indentation tests, so we recommendνr = 0.5. A simple illustration of these results is
considerγp equal to 3 and a rigid perfectly plastic solidY/E = 0, νr = 0.5. The expressions forσr andεr are:

σr = pm

3
and εr = 0.22 tan(β) (9)

These expressions are very close to those suggested by Tabor [1] in the case of rigid plastic materials.
The main difficulty concerning the extension of this approach to work-hardening elastoplastic solids is

γ = pm/σr ratio is not known in the case of rigid plastic solids. Storakers et al. [8], Larsson et al. [9] and C
and Cheng [4] have shown that when the work hardening is expressed as a power law writtenσ = σ0(ε

p)1/m with
σ0 andm material constants and when the material considered is rigid plastic, the mean pressure is expr
pm = B1σ0(B2)

1/m in whichB1 andB2 are constants.B2 may be viewed as the representative plastic strainε
p
r and

B1 asγ = pm/σr . These results lead us to consider thatγ for rigid plastic solids is constant and thus equals toγp.
Hence Eq. (8) is still valid for work hardening plastic materials. For any elastoplastic material, the mean p
is thus given by substitutingY with σr in Eqs. (7) developed previously for elastic perfectly plastic solids.

pm = 1

2

1

1− ν2
r

σr

(1− ζB)σr/E + ζ tan(β)
(10)

If the stress–strain curve of the material is known, thenε
p
r can be determined for any indentation tests us

Eqs. (3), (4), (8) and (10). Then one obtainsσr and thus the mean indentation pressure – or hardness –
Eq. (10).

3. Identification of the uniaxial stress–strain curve from indentation tests

A major interest of the indentation test is to obtain a(σr , εr ) couple related to the uniaxial stress–strain cu
of the material. For each cone or wedge angleβ, the quantities B andγp are known.ζ is given by Eq. (8) andνr

equals to 0.5. Assuming thatpm and E are known – or can be measured experimentally – the representative
and strain can be computed using the following equations.

σr = ζ tan(β)pm

γpζ tan(β) − (1− ζB)pm/E
(11)

ε = (1− ζB)
σr + ζ tan(β) (12)
r
E
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With the development of the continuous stiffness measurement technique available on most nanoind
devices [5,20], the contactKc stiffness can be measured experimentally. This measure helps to determ
contact area and thus the mean pressure. If the elastic properties of the material are known, the determ
direct, otherwise special procedures must be used [5,20,12]. The measure of the mean indentation pres
one point on the uniaxial stress–strain curve. Consequently, the use of different cone or wedge anglesβ can be
used to determine the uniaxial stress–strain curve of elastoplastic solids.

4. Numerical study

In this section, the results obtained above are verified using finite element simulations of indentatio
Firstly, let us consider the model developed in Section 2 and particularly Eq. (10). Finite element simulatio
been performed with ‘Systus/Sysweld’ [21] using an axisymmetric formulation to model cone indentation.
study, the analysis is performed using a large displacement/large strain option. The plastic flow is descr
a plastic von Mises criterion. In order to ensure plastic incompressibility, four node quadrilateral isopara
elements with a selective reduced integration scheme are used in the plastically deformed area. The me
ticularly fine near the contact zone, but it is also sufficiently wide to approximate a semi-infinite solid. For
representation of the contact geometry, the width of the elements is determined in order to have at least 40
contact where the penetration is maximum. The height of the elements is about five times lower than the m
penetration. The whole mesh contains about 9000 elements and 9400 nodes. The contact between th
and the workpiece is assumed to be frictionless and loading is achieved by monitoring quasi-static displ
of the indenter which is pushed vertically into the workpiece. The major difficulty is that the level of pene
has to reach a certain depth so as to minimize the error on the determination of the contact area and th
computation of the mean pressure [22].

Let us consider an elastic perfectly plastic material with a yield stressY = 100 MPa. Several finite eleme
calculations have also been performed with different values of the Young modulus fromE = 500 MPa toE =
30 000 MPa. For higher values ofE, the mean pressure is approximatively constant. These values could corre
to those of some polymeric materials. The evolution of the mean indentation pressurepm as a function of the Young
modulusE has been studied for a cone angleβ = 10◦ in Fig. 1(left). The approximate model developed in t
paper is plotted as a solid line. Based on the study of Lockett [17], we have chosenγp = 3 andνr = 0.5 for this
cone angle. Each numerical simulation gives a single point on Fig. 1(left). The agreement between the app
model and the results of the numerical simulations is very satisfactory. The model developed by Johnso
plotted but the results are less accurate than those obtained with the model proposed in this paper. An ela
material which exhibits strain hardening has been studied.β is 20◦ and the values ofγp andνr have been chosen
2.8 and 0.5. The law of strain hardening follows a Ramberg–Osgood law –σ = Y + K(εp)n – with Y = 100 MPa,
K = 150 MPa andn = 0.5. Several calculations have also been performed with different values of the Y
modulus fromE = 500 MPa toE = 30 000 MPa. The evolution of the mean pressurepm is plotted as a function
of the Young modulusE on Fig. 1(right). As for the elastic perfectly plastic material the numerical results a
very good agreement with the approximation developed in Section 2.

Finally, the method developed in Section 3 is validated using finite element simulations. Let us cons
following materials: AISI304L [23] and heat treated AISI52100 [24]. The uniaxial stress–strain curve of
materials are an input parameter of the finite element simulations. Twenty numerical simulations correspo
different values ofβ (2◦ � β � 40◦) are performed. In this study, wedge indenters are used because the v
γp is known for each value ofβ (Hill [16]), which is not the case for cone indenters. Each numerical simula
gives the value of the mean indentation pressure. Then Eqs. (11) and (12) giveσr andεr . For each material twent
different points (σr ; εr ) are computed. The curve thus determined is compared to the real uniaxial stress
curve as well as the curve obtained with the Tabor method [1]. The results are plotted in Fig. 2.
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Fig. 1. Mean pressure versus Young’s modulus; left: elastic perfectly plastic solids withY = 100 MPa andβ = 10◦; right: work hardening
elastoplastic solids withY = 100 MPa,K = 150 MPa,n = 0.5 andβ = 20◦.
Fig. 1. Pression moyenne en fonction du module de Young ; à gauche: solides élastiques parfaitement plastiques avecY = 100 MPa etβ = 10◦;
à droite : solide élastoplastique écrouissable avecY = 100 MPa,K = 150 MPa,n = 0.5 etβ = 20◦.

Fig. 2. Comparison of the stress strain curves obtained with the method proposed by Tabor, the present work and from tensil
the stainless AISI304L steel (left) and the AISI52100 heat treated steel (right).
Fig. 2. Comparaison des courbes contrainte-déformation obtenues à partir des méthodes d’identification de Tabor et celle proposé
Note et à partir d’essais de traction pour l’acier inoxydable AISI304L (à gauche) et pour l’acier AISI52100 (à droite) traité thermiquem

For both AISI304L stainless steel (Fig. 2 (left)) and heat treated AISI52100 steel (Fig. 2 (right)), the agr
between the rheology and the model developed in this study is very satisfactory. For AISI304L, Tabor’s a
imation seems to give correct results when the wedge angle is small. It comes from the fact that the defo
is mainly plastic, the solid can thus be considered as rigid plastic andγp is close to 3. In these conditions, th
Tabor model can be used. For higher values ofβ, the approximationγp = 3 is no longer valid. It is the reason wh
this model does not give accurate results. For AISI52100 steel, Tabor’s approximation does not work bec
steel has been heat treated. Consequently the elastic deformation must be taken into account when comp
plastic deformation. This model underestimates the representative stress and the representative strain. C
the Tabor model the approximation developed in this Note gives results very close to the tensile curve of
materials.

These numerical studies help to validate equations developed in Sections 2 and 3. Thanks to their si
these expressions can be used easily with experimental indentation tests to convert hardness values into a
tative stress and a representative strain. Identification methods based on dimensional analysis [4,12,14] gi
equivalent to those obtained in this Note. The main advantage of the method proposed here is that it is ea
and it does not require any approximation of the work hardening curve. Moreover, it does not call for in
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finite element calculations and can be easily and quickly adapted to other shapes of sharp indenters (Be
Vickers, Knoop, etc.).
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