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Abstract

Multi-scale models based on computational homogenisation are nowadays developed for the simulation of complex
behaviour. The use of homogenisation techniques on finite-sized representative volume elements in the presence of q
damage may lead to the presence of snap-backs in the macroscopic material response. A methodology to simulate t
response in the multi-scale technique is proposed, based on the control of the dissipation at the mesoscopic scale.To cite this
article: T.J. Massart et al., C. R. Mecanique 333 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Une méthode de contrôle basée sur la dissipation pour la modélisation multi-échelles des matériaux quasi-fragiles.
Des schémas multi-échelles basés sur des principes d’homogénéisation numériques sont actuellement développés
mulation de comportements matériels complexes. L’utilisation de techniques d’homogénéisation sur des éléments d
représentatifs de tailles finies en présence d’endommagement quasi-fragile peut causer l’apparition d’effets de snap
la réponse matérielle macroscopique. Une méthode est proposée permettant d’introduire ce type de réponse dans
multi-échelles, basée sur le contrôle de la dissipation à l’échelle mésoscopique.Pour citer cet article : T.J. Massart et al., C. R.
Mecanique 333 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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Cette Note traite de l’application des schémas multi-échelles numériques dans le calcul de la répons
statique des matériaux composites quasi-fragiles. Ce type de méthode est basé sur l’extraction de la
macroscopique du matériau sur la base du calcul de la réponse d’un élément de volume représentatif (
taille finie au moyen de relations de transitions d’échelles ([1,2], relations (1)–(3)). Dans les schémas multi-
classiques, la réponse de cet EVR est obtenue via un contrôle en déformation macroscopique (Fig. 1). La
de phases quasi-fragiles dans l’EVR, couplée aux faibles tailles des zones d’endommagement par rappo
mensions de l’EVR (fissuration) peut causer l’apparition de points limites de contrôle en déformations (sna
dans la réponse matérielle macroscopique. Afin d’introduire une telle réponse dans un schéma multi-éche
nécessaire d’imposer la poursuite de la dissipation dans l’EVR, le contrôle de l’EVR ne pouvant plus se fa
quement via la déformation macroscopique. Pour ce faire, cet article propose un moyen de compléter les
de transitions d’échelles afin de contrôler la dissipation au sein de l’EVR, en transférant une variable m
pique contrôlant la dissipation vers l’échelle macroscopique (Section 3.1). Cette méthodologie est préci
le cas d’un modèle mésoscopique d’endommagement à gradient implicite en détaillant les transitions d
correspondantes (relations (4)–(8)), et est illustrée par le calcul de la réponse d’un EVR de maçonnerie.

1. Multi-scale modelling based on computational homogenisation

To avoid the difficulty of defining reliable constitutive models for complex multi-phase materials, multi-
computational approaches are nowadays developed, in which two or more scales of representation are
in structural (quasi-static) computations [1]. Effects which emerge from the material structure, such as d
induced anisotropy, are then captured naturally. The first-order multi-scale approach homogenises the low
detailed description (here denoted ‘mesoscopic’) towards a classical stress-strain response using a Repr
Volume Element (RVE) of the heterogeneous material [1]. In the framework of an infinitesimal strain desc
a macroscopic strainE is obtained at each iteration of a non-linear macroscopic computation for all macros
Gauss points. The solution procedure then requires the macroscopic stress tensorΣ associated to the strainE.
Instead of using a closed-form constitutive relation for this purpose,E is applied in an average sense to a RV
A boundary value problem (BVP) is constructed on the RVE, with boundary conditions defined such t
volume average of the mesoscopic strain on the RVE equals the imposed macroscopic strain. A mesosc
placement field of the form

�u = E · �x + �w (1)

is assumed in each point of the mesostructure, where�x is the position vector within the RVE, and�w is a mesoscopic
displacement fluctuation field accounting for the heterogeneity of the material. A periodic fluctuation is clas
assumed to impose that the average of the mesoscopic strain is the imposed macroscopic strain [2]. Using
odicity assumption, the macroscopic kinematic quantities are imposed on the RVE through displacements
on three control points, as indicated in Fig. 1 for the case of periodic masonry. The response of the RVE is
as the solution of this strain-controlled BVP. As a result of periodicity and assuming equivalence of the va
of macroscopic and mesoscopic work for any strain variation, the macroscopic stressΣ is obtained as the averag
of the mesoscopic stress field and is computed from the forces acting on the control points [2]

Σ = 1

VRVE

∫
VRVE

σ dVRVE = 1

VRVE

3∑
i=1

�x(i) ⊗ �f (i) (2)

where �f (i) is the external force applied to controlling point(i) as obtained by static condensation towards
controlling degrees of freedom,�x(i) is its position, and⊗ denotes an outer (dyadic) product. The scale trans
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Fig. 1. Principle of first-order multi-scale solution scheme illustrated for a periodic masonry RVE.

Fig. 1. Principe d’un schéma multi-échelles au premier ordre illustré pour un EVR de maçonnerie.

also permits to extract the homogenised constitutive tangent from the condensation of the mesostructura
stiffness [2]

δΣ = 4L : δE =
(

3∑
n=1

3∑
p=1

�x(n) ⊗ K(np)
M ⊗ �x(p)

)
: δE (3)

The scale transition procedure attributes a stress-strain response extracted from a finite mesoscopic vo
macroscopic material point, which restricts its application to cases in which a sufficient separation exists
the structural and mesoscopic spatial scales. Any type of model can be used for the constituents in t
For masonry, the quasi-brittle nature of the constituents requires some crack modelling strategy such as
cohesive laws or softening continuum laws with non-locality.

2. Mesostructural snap-back caused by mesoscopic damage localisation

Snap-back is a structural phenomenon appearing in quasi-static loading conditions which results from
calisation of dissipation in zones which are thin with respect to the structural size. It occurs whenever an
zone releases more elastically stored energy than the energy consumed by the dissipating phase. In q
computations (as performed in the above-mentioned nested scheme), the conventional load control or
ment control procedures fail when applied to a snap-back response. A general class of advanced path
techniques has been proposed in [3] to trace such equilibrium paths computationally. A monotonically inc
quantity is used to control the computation. For problems involving localisation, variables related directly
damage process zone have been shown to perform better than global variables [4]. Since in the multi-scal
the macroscopic material point response is obtained from a mesostructural computation on a finite volu
behaviour may also show snap-back, particularly if quasi-brittle materials are considered and dissipation
localise in the weaker constituents. A typical material exhibiting such effects is masonry, with damage con
ing in the relatively thin mortar joints. Classical non-linear displacement-based finite element procedures
the macroscopic scale assume that for a given strain a resulting stress can always be determined. The exi
solution of the mesostructural boundary value problem is thus assumed in the multi-scale scheme. This m
true for macroscopic strains beyond a snap-back point in the homogenised response, at which the entire m
computation will thus fail.
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3. A dissipation control method for mesostructural snap-back handling

3.1. Principle of dissipation control for RVE snap-back

To follow the mesostructural snap-back path in the multi-scale scheme, the macroscopic solution pr
should predict a decreasing macroscopic strain as from the start of the snap-back regime for a solutio
mesostructural problem to exist. The selection of an elastic unloading path should also be prevented. T
along with a decreasing macroscopic strain increment, the scale transition should apply an additional c
which guarantees dissipation inside the RVE by selecting the corresponding tangent stiffness within the
procedure at the mesoscopic level. The RVE may be forced to follow a dissipative path if the growth of a p
selected mesoscopic quantity is imposed by the macroscopic solution procedure. The choice of the quant
allows to enforce dissipation is similar to that used in advanced path following techniques, i.e. a mes
variable related to the damage process zone. This quantity, which is denoted here asα, will be chosen according
to the mesoscopic crack modelling strategy. A relative displacement may be chosen if a cohesive zone s
used [5], or an independent non-local strain degree of freedom if an implicit gradient framework is used [6
mesoscopic quantityα has to be transferred to the macroscopic scale together with a conjugate equation.

The prescription by the macro-scale problem of a value forα gives rise to a conjugate reaction ‘force’. In t
classical multi-scale framework the prescription of an overall strain increment�E on the RVE is achieved throug
six controlling displacement increments{�uM}. External reaction forces{fM} conjugate to these displacemen
are used to compute the macroscopic stress. Similarly, the simultaneous prescription of a mesoscopic
�α controlling the mesoscopic dissipation will lead to the appearance of a conjugate ‘reaction’ or residfα ,
as illustrated in Fig. 2. This residual is the generalised ‘reaction’ that should be applied externally to th
in order to obtain the prescribed value of the increment�α, if the associated dissipation is not in equilibriu
with the imposed{�uM}. This out-of-equilibrium quantity only vanishes if the imposed�α takes the value tha
corresponds to the dissipating solution in which only the overall strain�E would be prescribed, hence the te
‘residual’. In order to obtain the desired solution, the�α imposed by the macroscopic scale must converge to
value for whichfα = 0 along the macroscopic iterations. This equation must be taken from the meso-proble
added to the macroscopic set of equations to obtain the proper correction of�α during the macroscopic iteratio
process.

Within this enhanced control approach, a converged solution of the RVE problem is still required at each
scopic iteration, similarly to the original scheme. The key difference is that the prescription of the incremen
mesoscopic quantityα modifies these intermediate RVE configurations. Hence, at each macroscopic itera
particular configuration of the RVE, compatible with this prescribed quantity�α, is found. Along the macroscop
iterations, the incorporation of the equationfα = 0 forces the configuration of the RVE towards the one with
external prescription of the mesoscopic quantityα. This strategy allows to pass strain control limit points of the
mogenised stress-strain behaviour, and, since it selects the corresponding tangent stiffness, to follow the s
dissipative solution.

Fig. 2. Mesoscopic residual conjugate to the imposed mesoscopic quantity for RVE snap-back control.

Fig. 2. Apparition d’un résidu conjugué à l’imposition d’une quantité pour le contrôle d’un snap-back de l’EVR par dissipation.
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Practically, the residualfα is obtained directly by condensation of the meso-structural system of equ
towards the degrees of freedom used in the macroscopic solution procedure, i.e.{uM} andα. Note that a prope
selection procedure must also identify which dissipating quantityα of the RVE to transfer to the macroscopic sc
at a given stage of the computation. This selection should evolve as a result of the mesoscopic cracking e
At each step, the quantity corresponding to the largest incremental dissipation is selected to control the di
in the subsequent increment.

3.2. A dissipation-driven scale transition for a mesoscopic implicit gradient damage model

The dissipation-driven scale transition is now further elaborated for the case of a mesoscopic no
model [6]. This framework introduces non-locality by use of an averaging field equation, in addition to the e
rium equation, which requires the discretisation of an independent non-local equivalent strain fieldε̄. This field in
turn drives damage evolution. The presence of an independent field eases the extraction of the mesoscop
controlling dissipation. The macroscopic tangent operator now consists of four tensors relating variation
stressΣ and the non-local residualfε̄ to variations of the macroscopic strainE and of the mesoscopic non-loc
equivalent strain variablēε controlling dissipation:

δΣ = 4Cuu
M : δE + 2Cue

Mδε̄, δfε̄ = 2Ceu
M : δE + Cee

Mδε̄ (4)

These tensors4Cuu
M , 2Cue

M , 2Ceu
M and Cee

M can be retrieved from the condensation of the discretized syste
equations of the RVE:[

Kuu
M

]{δuM} + {
Kue

M

}
δε̄ = {δfM}, 〈

Keu
M

〉{δuM} + Kee
Mδε̄ = δfε̄ (5)

where the matrices[Kuu
M ] and {Kue

M } couple external force variations to the displacement variations at the
control points and to the variation of the selected non-local degree of freedom. The line matrix〈Keu

M 〉 and the scala
Kee

M link the non-local residual variation to the control displacements variations and to the mesoscopic no
degree of freedom variation. Relations (5) may be re-written in a tensor-vector format by separating the con
of each control point:

δ �f (n) =
3∑

p=1

Kuu(np)
M · δ�u(p)

M + �Kue(n)
M δε̄, n = 1,2,3, δfε̄ =

3∑
p=1

�Keu(p)
M · δ�u(p)

M + Kee
Mδε̄ (6)

whereKuu(np)
M is a second-order tensor extracted from matrix[Kuu

M ] relating the variation of the displacement

control point(p) to the external force variation at control point(n). The vector�Kue(n)
M which relates the externa

force variation at control point(n) to the variation of the selected non-local degree of freedom is extracted
the column matrix{Kue

M }. Using (2), the variation of stress is related to the variation of the external forces a
to the control points. By accounting for (6), noting thatδ�u(p) = �x(p) · �∇Mδ�u and accounting for the symmetry
the infinitesimal strain tensor, we have

δΣ = 1

VRVE

( 3∑
n=1

3∑
p=1

�x(n) ⊗ Kuu
M

(np) ⊗ �x(p)

)
︸ ︷︷ ︸

4Cuu
M

: δE + 1

VRVE

( 3∑
n=1

�x(n) ⊗ �Kue(n)
M

)
︸ ︷︷ ︸

2Cue
M

δε̄ (7)

A similar development may be performed for the variation of the non-local residual conjugate to the mes
non-local strain degree of freedom, yielding

δfε̄ = 1

VRVE

( 3∑
p=1

�Keu(p)
M ⊗ �x(p)

)
︸ ︷︷ ︸

2Ceu
M

: δE + ( �Kee
M

)︸ ︷︷ ︸
Cee

M

δε̄ (8)
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Fig. 3. Load-displacement curve with snap-back obtained by the multi-scale modelling for homogeneous macroscopic tension–co
loading with related damage distributions.

Fig. 3. Réponse avec snap-back obtenue par traitement multi-échelles pour un chargement homogène biaxial de tension–comp

4. A numerical example

The use of the dissipation-driven multi-scale framework is illustrated here for a mesostructural RVE sna
for the case of running bond masonry. The macroscopic ‘structure’ consists of a single finite element un
mogeneous macroscopic loading. Horizontal tension is combined with vertical compression along the prop
stress path(Σxx,Σyy,Σxy) = (0.2,−1,0). The macroscopic response is assumed to remain homogeneous
masonry is initially periodic, a single period RVE (unit cell) is considered [7]. Damage criteria and materia
erties used for the brick and mortar joints may be found in [7]. Since the macroscopic response is homog
the RVE response is the only possible cause of snap-back in the homogenised material response. It is d
by using the proposed dissipation control strategy. The load factor evolution is represented in Fig. 3 as a
of the top vertical displacement of the structure, which is a direct measure of the macroscopic vertical str
damage distribution in the RVE is depicted at different stages of the computation identified by capital lette
evolving mesoscopic non-local quantity selected for the snap-back control is identified by a star in the
distributions. These selected quantities are related to the highest incremental damage growth. This figu
that the enhanced scheme allows to pass the strain control limit point in the homogenised stress-strain re

5. Closure

The methodology presented in this paper enhances the scale transition used in the classical multi-sca
based on computational homogenisation. It allows to account for the finite size of RVE in computations
ing quasi-brittle failure, potentially resulting in snap-back effects in the RVE response and in the homog
stress-strain response. The principle of the method implemented here for an implicit gradient descriptio
mesoscopic scale may be extended to other types of mesoscopic failure laws, e.g. cohesive laws. Subse
velopments are needed in order to deal with macroscopic localisation.
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