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Abstract

A perturbation approach is used to study localization phenomena in saturated porous media when thermo-mechanical load-
ings and thermo-hydro-mechanical couplings are fully taken into account. We show that various types of localization modes are
possible depending on the constitutive behavior and loading conditions. Examination of the associated conditions in the light of
the classical band approach reveals that the differences between these modes lie in their structure which may involve jumps in
different variables (beside the velocity gradient) such as the gradients of heat and fluid fluxes, the temperature and the pressure
rates.To citethisarticle: A. Benallal, C. R. Mecanique 333 (2005).
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Résumé

Sur les modes de localisation dans les problémes thermo-hydro-mécaniques coupl®s. étudie les phénomeénes de
localisation dans les milieux poreux saturés en prenant en compte de fagon compléte les couplages thermo-hydro-mécaniques
En utilisant une méthode de perturbation, on montre que plusieurs types de modes de localisation sont possibles et on donne
les conditions associées. Linterprétation de ces differentes conditions dans le cadre classique d'analyse de la localisation en
bandes révele la possibilité d’émergence de diverses discontinuités (en plus de celle classique sur la vitesse de déformation)
Celles-ci peuvent concerner les flux de chaleur ou de fluide, la vitesse de température ou encore la vitesse deégpression
citer cet article: A. Benallal, C. R. Mecanique 333 (2005).

0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Keywords: Porous media; Localization; Thermo-hydro-mechanical coupling; Perturbation

Mots-clés: Milieux poreux ; Localisation ; Couplage thermo-hydro-mécanique ; Perturbation

E-mail address: benallal@Imt.ens-cachan.fr (A. Benallal).

1631-0721/$ — see front mattét 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
doi:10.1016/j.crme.2005.05.005



558 A. Benallal / C. R. Mecanique 333 (2005) 557-564

Version francaise abrégée

L'objectif de cette Note est I'obtention de conditions de localisation dans les milieux poreux saturés lorsque
ceux-ci sont soumis a des chargements thermomeécaniques et lorsque les couplages thermo-hydro-mécaniques so
entierement pris en compte. Le comportement des matériaux considérés est représenté par la description de Biot [5
et Coussy [6]. Les variables cinématiques utilisées sont la déformation du sqaglettariation de volume fluide
par unité de volume auquelles seront associées la contrainte tataée la pression instersticielle du fluige
Les mécanismes dissipatifs sont décrits par des variables interiegscomportement réversible est représenté
par I'énergie librew. Le comportement irréversible est déterminé par la fonction de chéaijea, T), les lois
d’évolution (3) contenant les relations de Kuhn—Tucker pour le multiplicateur inélastidieetransport du fluide
est gouverné par la loi de Darcy (4) tandis que la conduction de la chaleur est régie par la loi de Fourier (5). Les
équations de champ sont les équations d’'équilibre quasi-statique du milieu et les relations de compatibilité (7), la
conservation de la masse (8) et la conservation de I'énergie (9). L'analyse est faite en conditions quasi-statiques
dans le cadre de I'hypothese des petites perturbations (voir Coussy [6] pour une discussion détaillée). Cette hypo-
thése stipule en particulier les transformations infinitésimales et les petits déplacements pour le squelette solide,
des petits apports de masse fluide, des petites variations des variables d’état du fluide, des petits vecteurs courar
de masse fluide et des petits vecteurs courant de chaleur. Ces hypothéses permettent en particulier de simplifie
I'écriture de la conservation de I'énergie (9) sous la forme (11) en négligeant les termes d’advection, de convection
et la dissipation due au transport du fluide a travers le squelette. Dans ce cadre, la méthode de perturbation linéaire
est utilisée ici pour I'analyse des phénomenes d’instabilité dans les milieux poreux saturés ou seule la croissance
illimitée des perturbations est considérée d’'une part parce qu’elle est justifiée dans ce cas et d'autre part parce
gu’elle peut servir a la définition de critére de localisation. La linéarisation des relations de comportement et des
équations de champs autour de la solution de référence (associée ici a la déformation homogeéne et uniforme d'ur
massif infini) et la recherche de perturbations de la foéiXe= X(t) exp(i&n - X) conduisent & la condition d'in-
stabilité (29) contenant I'amplitude de la perturbation, le taux de croissgraalirection de polarisation et le
nombre d’'ondé . L'examen de cette condition et ses conséquences quant a la croissance illimitée des perturbations
conduisent aux trois conditions (33), (34) et (35). Ces trois conditions sont toutes associées au régime des longueur:
d’ondes infiniment courteg (— oo) et en ce sens elles peuvent étre considérées comme des conditions de locali-
sation. On montre alors que (33) correspond a des modes ou en plus du gradient des vitesses, les gradients des flt
de fluideM et de chaleuq sont discontinus a travers la bande de localisation. La condition (34) est associée a des
modes ou les vitesses de température et de pression sont discontinus.

1. Coupled thermo-hydro-mechanical constitutive and field equations for inelastic porous media

Isothermal poro-elastic-plastic models are widely used in various engineering fields including geomechanics
and biomechanics. Localization phenomena are widely studied in this context and important contributions to the
field are given in Loret and Prevost [1], Vardoulakis [2,3] and Rudnicki [4]. Other applications in geomechanics
but also in buildings or nuclear waste repositories require the consideration of thermo-mechanical effects and
their couplings with hydro-mechanical effects. The main objective of this note is to derive explicit localization
conditions for inelastic saturated porous media when they are subjected to arbitrary thermomechanical loadings.
This is carried out in the fully coupled thermo-hydro-mechanical situation.

1.1. Constitutive equations
A broad class of rate-independent, coupled thermo-irreversible constitutive equations is considered here for

inelastic saturated porous media. They are given in a compact form in the framework of thermodynamics of irre-
versible processes and are essentially based on Biot’s formulation [5] and Coussy’s general presentation [6]; see
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also Coussy, Dormieux and Detourney [7]. In this context, the basic static variables are the total Cauchy stress
in the combined solid and fluid mix and the pore fluid pressur@he kinematic variables are the macroscopic
straine of the solid (skeleton) and the variation of fluid conter(i.e. the volume change of fluid per unit volume

of mixture). In the poro-elastic-plastic context the kinematic variables are both partitioned into elastic and plastic
parts:

e=¢€+e€’, c=¢+¢? 1)

Beside the static and kinematic variables, a generic collection of supplementary internal variables of various ten-
sorial nature (scalars, vectors or second-order tensors) represented by thexnvaetarsed to describe different
physical mechanisms governing inelastic deformation and associated dissipative phenomena. Finally, the basic
thermodynamical variables to be considered here are the absolute tempgrdheaéemperature gradiemtr” and
the heat flux vectoq.

We denote by =W (e, a, ¢, T) (¥ = e — T's) the Helmholtz free energy per unit volume of the mixtureud
s being the internal energy and entropy per unit volume). It leads to the state laws giving the stress témsor
pore pressurg, the thermodynamical forces associated to the internal variabtesind the entropy by

L | N A @
o€ aC Ja aT

The reversibility domain, defining the range in which inelastic processes are excluded, is defined through the
yield function f (A, &, T) < 0 and inelastic deformations are therefore possible onfy={ 0, and during inelastic
flow the evolution of the internal variables must satisfy Prager's consistgney0. The evolution of internal
variables is given by

a=iP, 1>0, f<0, Af=0 (3)

where the vectoP gives the inelastic flow direction (that may derive from a flow potential funcliea F (A, &, T)
asP = g—ﬁ though not necessarily) and the inelastic multiplieratisfies the Kuhn—-Tucker conditions.
In the rest of the Note we use the notatigy, denoting the second derivative éf with respect taz andb and

define the gradient of the yield surfaQe= %.

Remark 1. In the small strain regime and due to the partition assumption (1), the sti@sa the pore pressuye
are the thermodynamical forces associated to the plastic gttand¢ ? respectively. Therefore, they are omitted
in the explicit dependence of functiorfsand F as they are both containedAn

To complete the description of porous media under thermomechanical loadings, one has to specify two more
things: the relative movement of the fluid with respect to the solid and the heat conduction process.

Let M denote the fluid flux #; being the fluid volume crossing in the time unit the unit surface normal to the
ith axis). The classical transport law for isotropic porous media, reling the gradient of the fluid pressupe
is Darcy’s law

K
M=——(p=0rs9 (4)

whereK is the permeabilityy the viscosity of the fluid and is the gravity acceleration. The permeabilkyand
viscosityv may be state dependent but are assumed here constant for simplicity.
Regarding heat conduction, we adopt the classical Fourier's law

q=—kVT ®)

relating the heat flug to the temperature gradient and in whicks the heat conduction coefficient that may also
be state dependent.
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The Clausius—Duhem inequality (Second Law of Thermodynamics, see e.g. Coussy [6]) reads in this context
ds . . - (9 r
— - T
@ + sdivv 4 div(s yw) +d|v<T) 72 0 (6)
wheres ¢ is the fluid entropy per unit mass,the external heat supplw = pr¢ (Vs — v) with p ¢ the fluid mass

density,v the solid skeleton velocity and; the fluid velocity. Note thal = -~ dﬂ is the material time derivative
py’ i

with respect to the solid motion, % = %—f + v - gradx.

1.2. Field equations

The quasi-static evolution of a poro-elastic-plastic body in the small strain range is described by the previous
constitutive relations, supplemented by the field equations, the boundary and the initial conditions. The relevant
field equations are here conservation of mass, balance of momentum, compatibility and energy conservation. Con-
servation of linear momentum and the geometrical compatibility conditions read respectively

1
dive +b =0, e(u) = 5(Vu+(Vu)T) 7
u being the skeleton displacement field dnthe body force in the solid—fluid mixture. Mass conservation gives
divM +¢=0, or ¢{——(V2p—divprg =0 (8)
vV

the second equation being the result of the substitution of (4) in the first one. Finally, local conservation of energy,
i.e. the First Law of Thermodynamics is (see Coussy [6] for details)

de de . de ) .
—=|0o:— —div —= —div(efw) — M - grad Mb — edivv 9
G =[0G - dva 4 [ pg - dviesw) - M- gradp | + b - ©
wheree is the fluid internal energy per unit mass amthe volume force per unit volume. Notice that the first
bracket is what one would have classically obtained for a solid on its own and that the last bracket is due to the
fluid and its interaction with the solid skeleton.

Using the free energy and the state laws (2), we obtain an alternative, equivalent form of the local conservation
of energy (9).

—TWTTd—T =TV, - d_€ + (TYyr +A)d—a + (TWgT — prf)d—§ — dlvq +r
dr dr dr dr
—edivv —M - [gradp — gradp ey — b] (20)

2. Perturbation and localization analysis
2.1. Basic assumptions

The perturbation and localization analysis to follow will be based on some assumptions. Beside neglecting iner-
tia, small strains and small displacements are assumed for the solid skeleton. For the fluid, only small fluid fluxes
(or small pressure gradients through Darcy’s law) and small state variables changes (pressure, mass density)ar
considered while for both constituents small temperature changes and heat fluxes are assumed. The significanc
and consequences of these assumptions are thoroughly discussed in Coussy [6]. It should be emphasized that th
fluid displacements are not assumed to be small and this allows to apply the results to various practical applica-
tions. These assumptions allow one to simplify the energy conservation relation (10) (and in particular to neglect
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the advective and convective terms but also the dissipation due to the motion of the fluid across the solid) to the
following form

~TWrrT =TWer - &+ (TWor +A)o + TW,r¢ —divg +r (11)
2.2. Incremental constitutive laws

Incremental constitutive relations can be derived by time differentiation of (2) together with (3). However it is
not possible in general to derive a relation between the stress rate and strain rate because of diffusion and convectiol
phenomena. Such relations can be found in some particular but important circumstances that will be shown to play a
crucial role in the rest of the note. More precisely, in the framework of the above assumptions, this is possible when
in the thermomechanical setting, one assumes eighérermal (7 = 0) or local adiabatic (- = q = 0) conditions
while in the hydro-mechanical problem one assumes etftgned (p = 0) or undrained (¢ = 0) conditions. This
leads to four types of incremental relations: isothermal drained, isothermal undrained, adiabatic drained and finally
adiabatic undrained.

2.2.1. Incremental constitutive laws under isothermal drained conditions
This is actually the behavior of the porous skeleton under isothermal conditions and correspbnrd$ tand
p = 0. We have under elastic or inelastic straining the following relations

6=El:&, or ¢6=H:¢ (12)
1 . _ 1 .
Eld _ t[/“ _ WCG ® We{ ’ Hii _ Eld n [g’ae [P] - (7% (lpot{ P)lpfe] ®d['1/a€ [Q] o7 (lp{ot Q)Wez] (13)
‘I/“- Hi
a_9f
Hi 9 P— Q lpota[P] + _(Wga Q)(Wag' P) (14)

2.2.2. Incremental constitutive Iaw§ under isothermal undrained conditions
This corresponds t& = 0 and¢ = 0. The relevant elastic and plastic isothermal undrained tangent moduli to
be putin (12) are now

Ve [Pl @ Woe[Q]
H!

1

E! =W, HY—E!+

, i)
with H}' = af

—-P- Q Wy P (15)
o

2.2.3. Incremental constitutive laws under adiabatic drained conditions
In this situation, we have = 0 andgq = » = 0. The elastic and plastic adiabatic drained tangent moduli involved
in (12) read

Ve @, 17 v v,

EZ = '1/55 — e ® < + 2 £ (WTE - il]j{é) & (lpeT - £W5§> (16)
Vet Vo — Ve Wrr Ve Wiy
Yer

K®L Py, Yeelx — g, War - P)] 17

HO—Ed 4 D=, K=WeelPl— —— W + S <11/T€ - iw&) 17)
Ha lI/;-; v T~ w{ngT l[/;-;
af T{
v, Wg;[ — Q- -¥74) + 5~ Y¥ra - Q) v,
L= welQl - 2Py, T i (weT — eg) (18)
Vee WZ — W Wrr Ver
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a W) (W - P
Had _ _f p_ Q Waa[P (Q {a) ( al )
Jo lI/;_;.
el — g Wag - PIGE — Q- ¥re) + 7 (Wra - Q)] a9)
II/;T — W Wrr
2.2.4. Incremental constitutive laws under adiabatic undrained conditions
We have now; =0 andq = r = 0 the elastic and plastic adiabatic undrained tangent moduli are
" 1
Ea = lpgg — —WTe ® lI/eT
Yrr
(20)
HY — B (Wae[P] — ‘PTT Ure) ® (Wae[Q] + ‘I/TT ( Q “Wroa)Wer)
a a HLI;
af X _(9f
H'=—""— P-Q -¥y,lPl- (=% -Q.vw 21
a S Q 010([ ] lI/TT <3T Q Ta) ( )

Remark 2. Algebraic manipulations, too long to be reported here show that each of the mtfduﬂ“ H? and
H“ are a rank-one update of the other. This remark will help in reducing the growth condition (29).

2.3. Perturbation analysis, growth condition and localization

Let us consider the evolution problem described by Egs. (1 )—(11) for an infinite poro-elastic-plastic medium
with uniform physical properties. This body is assumed to be remotely and uniformly loaded in such a way that
a homogeneous solution in terms of stresses and strains prevails throughout it. We denote by a superscript 0 all
the fields corresponding to this solution. This solution is such that Vp° = q° = 0= V70, To investigate
its stability a perturbation approach is used; thus we superpose to the homogeneous solution at a generic instan
an infinitesimal perturbation denoted Byand we analyze the behavior of the perturbed fielgsu® + su, o =
o0+ 80, etc. Stability is assured if small perturbations produce only limited changes in the solution.

The perturbation fields satisfy a nonlinear system of partial differential equations. This nonlinear initial bound-
ary value problem is not differentiable due to the Kuhn—Tucker conditions. To cope with this difficulty, the reference
solution whose stability is in question will be assumed in total loading during the whole loading process. Moreover,
unloading from the perturbed solution is neglected. Using the fact that the reference solution satisfies all field and
constitutive equations, this nonlinear system is fully linearized around the reference solution

Because of space homogeneity and linearity of the obtained system it is convenient to apply the (space) Fourier
transform. For a generic perturbation fiél, this isX(n, r) = fR3 X (X, t) exp(—i&én - X) dx. One eliminates then
all the spatial derivatives and gets only algebraic or ordinary differential equations (in time) for the Fourier trans-
forms X(n, ¢). This is actually equivalent to seeking solutions of the system in the $otra X (t) exp(ién - x)
wheren is a polarization directior a wave number. Doing so one obtains a (time-dependent) linear system of
differential equations. For stability analysis, the eigenvalue$ this system are required. These are obtained by
seeking solutions in the fordX (t) = X exp(i&n - X) exp(nt) and nown is related to théocal rate of growth (in
time) of the perturbation. The eigenvalues satisfy the following algebraic system (from now on, to simplify the
notation, we omit here the subscript O related to the reference solution):

G = Weel€] + AWuc[Pol + TWre + LWpe + - - (22)

ﬁ=‘1’e§[5]+)~»'1’ag[P0]+T‘1’T§ + W+ (23)
A = _weot[g] - iwota[PO] - TWTO[ - Ew{a + - (24)
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—~ A+iL.P+-—=.T=0 25
oA M e T T (25)
o _ g 5

iE6-n=0, e:g(u®n+n®U) (26)
- K .. ~ L . ~

n¢ + Tézp =0, ~TWrrnT = nTWer - €+ AT x + ni TW,r — kE*T (27)

To obtain this system, we have dropped all terms iim the eigenvalue problem as we are concerned only with
unbounded growth of perturbation. The three first equations are the linearized versions of the constitutive relations.
The fourth is the linearization of the yield condition. Relations (26) represent the linearization of the equilibrium
equations and the compatibility relations (7). Relations (27) are the linearization of the balance of mass (8) and
the energy conservation (11) respectively. This system can be reduced further. Indeed Eq. (23) gives explicitly the
pore pressure as a function of the strain, the plastic multiplier, the temperature and the fluid cgntBaotting

this result in the mass conservation Y2allows to obtain now the fluid content as a function of the strain, the
plastic multiplier and temperature only. Again, reporting the last result in the energy conservajipgi{2g the
temperature as a function of the strain and the plastic multiplier only. Using now the consistency condition (25)
gives the plastic multiplier as a function of the strain only. One can then compute successively the temperature, the
fluid content and finally the pore pressure only in terms of the strain. This allows to obtain the stress perturbation

(using (22)) as a function of strain (or displacement) ahbt H(n, &) : € where the moduli{ are given by
KE2
H(n, &) = n[—nTWrr HYHY + kE2H'HY] + Té[n(T‘I’fT — T W) HIHE + kE?W, HIHY]  (28)

Inserting (28) in the equilibrium equatiai26); taking into account the compatibility relatiq@6), one obtains
the growth condition for perturbations gs- H(#, &) - n] - G = 0 which has nontrivial solutions if and only if
defn-H(n,&)-n]=0 (29)

Now (see Remark 2), due to the fact that each of the mddﬁLIiHl%‘, HZ andH! is a rank one update of the other,
algebraic manipulations allow one to write the instability condition (29) in the more convenient form

An? + BE’n+CE4=0 (30)
kK
A=H"de(n-H".n), C=-—H!detn -H? n) (31)
vV
K
B =kH! det(n-H{ - n) + — (=TWrr W, + TWZ)HY detn - HJ - n) (32)
v

The rate of growth is then easily computed as= 52# whereA = B2 — 4AC.

WhenA is negativep is complex and unbounded growth is marked byiRe= —£2 £ becoming infinite. This
happens Whe@% changes its sign in a loading process. This may occur in two different ways: either through the
change of sign oB and in this casé — oo or through the change of sign dfand in this casé is arbitrary.

When A is positive,n is real and unbounded growth of perturbation corresponds-to co. Here again two

possibilities arise: for an arbitrary wavenumgef % — oo which may happen again wheinpasses through

zero or for¢ infinite when at least one of the roots ro‘e@éﬂEA—*/Z is positive. As the sum of the roots§s= —% and

their product isP = %, this is possible whenevet < 0 (in which case one of the roots is positive) or when in the

same timeP > 0 andS < 0 (in which case the two roots are positive).
Summing up, one can identify three situations that mark transition to unbounded growth of perturbiations:
B =0andC = 0. The associated conditions are

defn-H"-n]=0 (33)
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defn-H¢ .n]=0 (34)

K
kH} detn-HY -n) + — (=TWrr ¥ + TWZ)HY detn - HY -n) =0 (35)
Y
2.4. Discussion

We have exhibited above three conditions corresponding to unbounded growth of perturbations. Let us first
recall and emphasize that these three conditions are associated the infinitely short wavélength) (regime
though the first one (33) is associated to the full wavelength regime. In this sense the three conditions can be
viewed as localization conditions. While the given presentation has the advantage of unifying these conditions, one
could have followed the classical band approach to localization [8]. The obtained conditions can be highlighted in
this framework.

It can be shown that condition (33) which states the singularity of the adiabatic undrained acoustic tensor
corresponds to a localization mode involving beside a jump in the velocity gradient, jumps on temperature and
pore pressure rates (temperature and pressure localization), and where the gradients of heat and fluid fluxes ar
continuous across the band.

In a similar way, when condition (34) is met, stating the singularity of the isothermal drained acoustic tensor,

a localization mode with jumps on the gradients of heat and fluid fluxes are available where the temperature and
pore pressure rates are now continuous.

The interpretation of condition (35) is more difficult. However, let us notice first that this condition is trivially
satisfied when both the isothermal undrained and adiabatic drained acoustic tensors are simultaneously singular
This situation corresponds to a localization mode where the only jump is associated to the velocity gradient and
where the gradients of heat and fluid fluxes together with the temperature and pore pressure rates are continuou:
across the band. It remains now the interpretation of (35) when both the isothermal undrained and adiabatic drained
acoustic tensors are not singular and further when the adiabatic undrained and isothermal drained acoustic tenso
are also not singular as these conditions correspond to (33) and (34). In this case, jumps are possible for all

variables (fully localized mode). Let us also remark that condition (35) involves the nondimensional négmber (
K(leI/TTlI/;;JrTlI/{ZT)

> ) that determines the relative strength of the two dissipation phenomena present in the problem,
i.e. fluid and thermal diffusion.
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