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Abstract

The aim of this Note is to predict by means of large eddy simulations the three-dimensional structures and second
and heat fluxes which develop within a heated curved duct, for applications to rocket engines cooling channels. We
existence of unsteady Görtler-type vortices above the concave wall, as well as intense secondary vortices taking the
two quasi-steady counter-rotating cells of Ekman type close to the convex wall. These cells control heat exchanges. Th
ejections and sweeps close to the convex wall when it is heated. In this case the Nusselt number undergoes strong
fluctuations which might induce material alterations.To cite this article: C. Münch, O. Métais, C. R. Mecanique 333 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Turbulence dans les canaux de refroidissement des moteurs de fusée : Simulation des Grandes Echelles. L’objectif
de cette Note est de prédire par simulation des grandes échelles les structures tridimensionnelles et les flux seco
masse et de chaleur se développant dans un conduit courbe chauffé, pour des applications aux canaux de refro
des moteurs de fusée. On montre l’existence de tourbillons instationnaires de type Görtler sur la paroi concave,
des tourbillons secondaires intenses formant deux cellules contra-rotatives quasi-stationnaires de type Ekman près
convexe. Ces cellules contrôlent les échanges thermiques. Elles induisent des mécanismes d’ejections et de balaya
la paroi convexe quand elle est chauffée. Ceci provoque de fortes variations transverses du nombre de Nusselt qui
conduire à une dégradation des matériaux.Pour citer cet article : C. Münch, O. Métais, C. R. Mecanique 333 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

The prediction of heat and mass transport processes in curved ducts is of interest for engineering app
like compressors, turbines or cooling ducts of rocket engines. Several experimental investigations have b
formed to study the turbulent flow within curved ducts without any heating: [1,2]. These works have brou
light the destabilizing effect of the concave wall when the convex wall has conversely a stabilizing action.
ing from this centrifugal instability, Görtler vortices appear on the concave wall and an intense cross-stre
develops. Numerical studies have been performed by [2,3]: the difficulty lies in the correct prediction of this
stream flow (called secondary flow) and of the related turbulence characteristics. As far as the relationship
Görtler vortices and heat transfer is concerned, Toe et al. [4] have experimentally investigated the bound
over a concave heated wall of a duct. No numerical work has yet been devoted to the study of the combin
of curvature and heating in a closed duct for a turbulent regime. We here perform Large Eddy Simulation
to investigate the turbulent flow and the associated coherent vortices and structures in a curved square d
having presented the numerical procedure (Section 2), we first study the curved duct without any heating
to as non-heated duct). Then we consider two distinct configurations: heating applied respectively on the
and convex walls. Our main goal is to investigate the mutual influence of the secondary flow and the heat

2. Numerical methods

We solved the LES modified three-dimensional compressible Navier–Stokes equations (see [5]). The
scale model is the selective structure-function model proposed by [6]. Three supplementary relations and e
are considered: (i) the Sutherland empirical law to describe the molecular-viscosity variation with tempe
(ii) the gas is considered as an ideal gas with the corresponding equation of state; (iii) the turbulent Prandt
is equal to 0.6. Curvilinear coordinates are used and the equations are discretized with a fully-explicit McCo
scheme [7], second-order in time and fourth-order in space. On Fig. 1(a), the computational-domain geo
presented. The curved duct has a length of 13.6 Dh in the streamwise direction (s), Dh being the hydraulic diamete
The parameters of the simulations are the following: Reynolds number,Re = 6000 based on the mean bulk veloc
Ub (see [8] for definition); Mach numberMa = 0.5; molecular Prandtl numberPr = 0.7. A non-uniform numerica
grid is used with 160× 50× 50 nodes, in the streamwise direction (calleds), the direction normal to the curve
walls (calledn) and the spanwise direction (calledz) respectively. In then andz directions, an hyperbolic-tange
stretching is utilized: the first node close to the wall is located 1.8 wall units away. We here use the same g
resolution as [8] for the straight duct with the same Reynolds number; indeed, these authors have shown th
resolution is sufficient to obtain good comparisons with DNS and laboratory experiments. The boundary co
on the four walls consist in a no-slip velocity assumption, and a uniform temperature. One original featur

(a) (b)

Fig. 1. (a) Geometry of the computational domain; (b) Pressure coefficient on the curved wall — concave, - - - convex.

Fig. 1. (a) Géométrie du domaine de calcul ; (b) Coefficient de pression sur la paroi — concave, - - - convexe.
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present computation is that a fully-developed turbulent state is achieved at the duct inlet thanks to the simu
computation of a periodic duct which provides a turbulent inflow field at each instant. The inflow and o
boundary conditions are obtained through the use of the characteristics conditions proposed by [9].

3. Non-heated ducts

We first consider a duct with all its walls at the same imposed temperatureTw. On Fig. 1(b), we represent o
both curved walls the non-dimensionalized pressure coefficientCp, defined byCp = (p − pi)/(po − pi), wherep

is the pressure at the wall.po andpi are the pressure at the outflow and the inflow respectively. The vertical
denote the start and the end of the curved part. Just before the beginning of the curvature, we observe thaCp rises
on the concave wall and decreases on the convex side. Then, in the curved part,Cp declines on both walls, but th
difference between the two curves remains steady. After the end of the curvature, the twoCp becomes identica
on both walls showing the disappearance of the radial pressure gradient. This radial pressure gradient is o
created to balance the centrifugal forces, as pointed out by [1], and generates strong secondary flows. On
display the mean velocity projected on sections perpendicular to the mean flow, in order to display this se
flow. Note that the mean quantities are determined through time averaging. In the duct inlet, confinement-
counter-rotating vortices develop, two in each corner, as found by [8]. From the beginning of the curved p
centrifugal force associated with the azimuthal velocity componentU is at hand. The centrifugal force is maximu
near the duct core whereU is maximum, while it becomes zero near the wall due to the vanishing velocity. The
is therefore pushed towards the concave wall near the duct center: due to mass conservation, it leads to
stream flowing from the concave towards the convex wall near the side walls as shown on Fig. 2(b). Once th
has impacted the convex wall, the accumulation of fluid leads, near the duct symmetry plane, to a fluid
away from the convex wall. Eventually, this transverse flow generates two rotating cells near the convex w
Figs. 2(c) and 2(d)). As we move downstream, these two cells of Ekman’s type come closer intensifying th
ejection in the middle plane of the convex wall. Note that two extra vortices of small size form in the duct c
of the convex wall: these are of opposite sign with respect to the two main vortices. On Fig. 3(a), we repre
maximum value in each cross section of the secondary flow intensity defined as maxn,z(

√
(V/Ub)2 + (W/Ub)2)

as a function of the downstream distance in the duct. In the inlet part, the maximum intensity reaches abo
the bulk velocity: this is consistent with the results found by [8] in the straight duct. Right from the beginn
the curved part (first dotted line) the cross flow intensifies reaching around 24% of the bulk velocity near

(a) (b) (c) (d)

Fig. 2. Mean velocity vectors projected on cross-sections of the curved isothermal duct showing the secondary flows for: (a)s/Dh = 0.5;
(b) s/Dh = 5; (c) s/Dh = 7.6; (d) s/Dh = 13.6. The concave wall is at the bottom of each section.

Fig. 2. Flux secondaires moyens dans des sections du conduit non chauffé en : (a)s/Dh = 0,5 ; (b) s/Dh = 5 ; (c) s/Dh = 7,6 ;
(d) s/Dh = 13,6. La paroi concave se situe au bas de chaque section.
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Fig. 3. (a) Maximum of the mean secondary flow intensity: — non-heated duct,�: heated concave wall,�: heated convex wall; (b) visualizatio
of the Görtler vortices throughQ-isosurfaces= 0.6U2
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Fig. 3. (a) Intensité maximale des flux secondaires : — sans chauffage,� : paroi concave chauffée,� : paroi convexe chauffée ; (b) visualisatio
des tourbillons de Görtler par iso-surfaces deQ = 0,6U2
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(a) (b) (c) (d)

Fig. 4. Mean velocity vectors projected on two cross-sections of both curved heated ducts, and isolines of mean temperature (s[0.3]):
at s/Dh = 1: (a) concave, (b) convex heated wall; ats/Dh = 8.7: (c) concave, (d) convex heated wall.

Fig. 4. Flux secondaires dans les deux conduits chauffés et iso-valeurs de la température (pas[0,3]) : ens/Dh = 1 : paroi (a) concave chauffée
(b) convexe chauffée ; ens/Dh = 8,7 : paroi (c) concave chauffée, (d) convexe chauffée.

of the curved part. The straight outlet part induces a net decrease but the intensity is still much stronger th
inlet.

Another aspect of this complex flow is the development of Görtler vortices on the concave wall due
centrifugal instability. These three-dimensional unsteady structures can be identified throughQ isosurfaces.Q, the
second invariant of the velocity-gradient tensor, constitutes a good way to identify intense vortices [10]. We
Q-isosurfaces colored by the longitudinal vorticity in the curved part of the duct on Fig. 3(b). Flow animation
that the Görtler vortices originally forming on the concave wall are driven towards the convex wall by the pr
gradient. They are subsequently trapped in the core of the Ekman vortices where they become quasi-stea

4. Heated curved ducts

We now discuss the heat transfers in a curved duct with a differential heating between the internal a
boundaries. The gravitational effects are here negligible and all the changes are due to compressibility. We
two distinct cases to study the influence of the two different types of curvature on heat transfer. Firstly, t
perature of the concave wall is taken equal to three times the temperature of the other three walls,Tw. Secondly,
heating is applied in the same manner but on the convex wall. In Fig. 4, we represent the secondary flows
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(a) (b)

Fig. 5. (a) Nusselt number in the duct central plane,z/Dh = 0.5; (b) in the planez/Dh = 0.25 in the curved duct with heating applied on t
concave wall —, on the convex wall - - -.

Fig. 5. (a) Nombre de Nusselt dans le plan de symétrie,z/Dh = 0,5 ; (b) dans le planz/Dh = 0,25 dans le conduit courbe chauffé sur la pa
concave —, convexe - - -.

isolines of mean temperature for both cases of heating. From the beginning of the duct, we observe a si
modification of the secondary flow. Indeed, its intensity becomes higher not only close to the heated wall
on the sidewalls. In both cases of heating, according to Fig. 3(a), the maximum of intensity reaches values
of the bulk velocity at the inflow. Within the curved part, ats/Dh = 8.7, curvature effects become dominant. W
may, however, observe some significant modifications induced by the heating. When the convex wall is he
two Ekman vortices recede from each other and from the convex wall. Moreover the secondary flow ma
intensity is slightly higher than in the non-heated case (see Fig. 3(a)). We next investigate the mutual influ
the secondary vortices on the heat transfer. On Figs. 4(a) and 4(b), temperature isolines are very simila
cases near the heated wall. After the curvature, the existence of the Ekman cells close to the convex w
to a very distinct development of the thermal boundary layer in both cases. When the convex wall is hea
secondary flow drives hot fluid deep in the core region. Conversely, for concave wall heating, the thermal b
layer thickness is quasi-homogeneous. Another way to quantify heat exchanges consists in displaying th
number defined by:Nu(s, z) = k(T )

∂T (s,n,z)
∂n

|wall/(
k(Tw)Tw

Dh
), wherek(T ) is the fluid thermal conductivity. We hav

plottedNu as a function ofs/Dh in the symmetry plane and closer to the sidewalls, atz/Dh = 0.25 on Figs. 5(a)
and 5(b). At the inflow, the thermal boundary layer development is similar for the two cases of heating a
Nu(s) decreases at the same rate. Conversely, the behaviour ofNu is notably different in the curved part dependi
on the nature of the heating. When the convex wall is heated, the strong ejection of hot fluid away from the
wall due to the formation of the Ekman vortices induces a progressive decrease of the temperature gradien
to the heated wall and therefore a continual decrease of the heat flux in the duct central plane. Converse
the concave wall is heated, the early decrease in the straight part is followed by a strong increase. Thi
stage is attributable to the formation of the Ekman cells which induce an intense transport of cold fluid aw
the convex wall towards the concave hot wall: this amplifies the temperature gradients near the concave
consequently the heat flux. At the end of the curved part, the difference between the two fluxes reaches
mum: concave wall heating yields a heat flux five times higher than convex wall heating. The strong relat
between the Ekman vortices and the heat flux is confirmed by the evolution ofNu in the straight outlet part of th
duct. For convex wall heating, the decrease of the Ekman cells intensity is associated with a heat-flux i
The opposite takes place for concave wall heating with a diminution of the heat flux. In the planez/Dh = 0.25,
Nu behaves similarly to the central plane for concave wall heating. It is very different when the heating
plied on the convex wall: the Ekman cells indeed drive cold fluid from the sidewalls toward the convex wa
sweep of cold fluid impacting the heated wall plays a significant role nearz/Dh = 0.25 and creates a rise of th
Nusselt number (Fig. 5(b)) which proceeds even after the end of the curved part. The subsequent decrea
explained by the displacement of the Ekman cells towards to duct center and by the decrease of the Ekm
intensity.
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5. Conclusion

LES of the turbulent flow in curved square duct have been carried out to investigate curvature effects. W
observed that an intense secondary motion develops perpendicular to the mean flow, due to the lack o
between the centrifugal force and the radial pressure gradient. Two quasi-steady counter rotating cells o
type appear near the convex wall and Görtler vortices develop on the concave side. We have next investi
combined effects of curvature and heating and separately considered the case of the heating applied on
concave wall or on the convex wall. For concave wall heating, the heat flux is enhanced due to the pre
the Ekman cells near the opposite convex wall which transport cold fluid towards the heated wall. For conv
heating, the Ekman cells generate an ejection of hot fluid in the symmetry plane region associated with a w
flux. The sweeping motion of cold fluid towards the heated wall on each side of the central ejection is con
linked with an enhancement of the heat flux. These combined sweeping and ejection motions induce
transverse variations of the Nusselt number. In practical situations such as the cooling channels of rocket
it can yield important transverse thermal constraints and significant material alterations of the heated conv
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