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Abstract

We consider an elastic beam formed by three layers, fixed at one end and loaded at the free end. We call adherents the upper
and lower Iayerﬂi and£2¢ and an adhesive laye??,. We denote by ,, the thickness of each layer and we suppose that
the stiffness of the adhesive Iayerei% with respect to that of the adherents. By an asymptotic analysis we obtain the zeroth
order limit problem and the form of the second order displacem@otsite this article: M. Serpilli, C. R. Mecanique 333
(2005).
0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Résumé
Analyse asymptotique de poutres multicouche. Si I'on considere une poutre élastique constituée de trois couches, fixée a
une extrémité. La strate supérieure et inférieure sont indiquées de laXpre2° , alors que la partie centrale, ou adhésive
£2%,. Nous prendronsh+ , comme I'épaisseur de chaque strate et supposerons que la rigidité du adhésive et de I'efdre de
par rapport avec les strates supérieures et inférieures. Par la méthode de I'expansion asymptotique on obtient le probléme limite
de I'ordre zéro et les fonctions de déplacement de I'ordRo@r citer cet article: M. Serpilli, C. R. Mecanique 333 (2005).
0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction and statement of the problem

In this Note we consider a compound beam fixed at one end consisting of three layers, with the middle one being
softer in comparison to the upper and lower ones. This situation corresponds, for instance, to two layers bonded
together by an adhesive joint made of glue or other soft materials. Using the asymptotic expansion method, we

E-mail addressmichele_serpilli@yahoo.co.uk (M. Serpilli).

1631-0721/$ — see front mattét 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
doi:10.1016/j.crme.2005.07.001



594 M. Serpilli/ C. R. Mecanique 333 (2005) 593-598

derive a mathematical one-dimensional model of a layered beam from two-dimensional linear elasticity equations.
We refer to [1,2] for asymptotic methods and homogenization techniques and for an analysis of junctions for plates,
to [4] for a complete analysis of rod models and to [3] for modelling of plates. Other important references are [5,6]
which concern with models of adhesive joints, [7,9] about bonded joints with thin adhesive layer and [8] which
deal with adhesively bonded nonlinearly elastic plates.

We consider the Euclidean spaEé with a Cartesian coordinate fram@, e;, ). Let ¢ be a positive real
‘small’ parameter such that O=<< 1. Given the constarit > 0 we define:

2°=02°UQRLURE CR?

Q8 = (=ht,, ht) x (0, L), fzi=(h§1,hfn+2h ) x (0, L), Q° = (—ht,, —ht, —2h®) x (O, L)

ret=n*, h*) x{a), a=0,L, = () x (0,L), K" =ht +2h%, h™*=—ht —2h°

25 =05 N5 =1{h} x (O, L), 25:!23052,‘3,:{—hf,1}x(0,L) 1)
We consider a two-dimensional three-layer strip of lengthccupying the reference configuratie?f. We study

the physical problem corresponding to the mechanical behaviour of a two-dimensional compound three-layer bearr
with a soft core, supposed to be fixed at one end. The thickné§sasd#;, are linearly dependent ef £ ,, =
eh+ . The total height of the beam iShZ + 2h,, + 2h_ = 2h. The beam is submitted to body forcgs " =
(f,.i""s) in £2¢, to surface forceg™® = (g ¢) on boundariess*¢ and to a system of forcds" tme (hiL’i””g)
loading the free end™%-¢. The material of each layer is homogeneous, isotropic and linearly elastic with Lamé’s
coefficientsA?,, u& anda;,, u;,. The Lame’s constants o2 and2¢ are mdependent of A% = A4 anduf =
w+, while the elastic moduli of2/, depend orz in this way: /\8 = &2\, wo,=¢€ 2.

We will employ the summation convention on repeated mdlces moreover, we suppose Latin indices#gxcept
take their values in the sét, 2}. Indicesm is only used to denote those functions related to the middle layer.

Let Vp(£2¢) be the following space of admissible displacements:

Vo(2°) = {(d) € [HY(25)]%: uf =0 0on 0} )
The variational formulation of the two-dimensional linear elastic problem is given by:

u® € Vo(2¢) with uf = {uf in 2%, uf, in 2%, u® in 2°}
/ O_i€j (ué‘)elej (v€) dxé‘ _ / fi me 8 dx + / :|:8 é‘ d)Cz + / hiL,:l:,msvlfe dxi (3)
Qim ‘Q:t,m r*e FL’E

for all v® € Vp(£2¢) with
v' = {v% inQ2%, v, ing;,, v:int}
wheree® (u®) = (e; (ug)) is the linearized strain tensoe, u®) = (aguj + 38 9)/2 (whered; := 9/dx;) and

E(us) = (a](uf)) is the stress tensor, related to the dlsplacement field (u*) by Hooke’s generalized law:
of;(u®) = Afel,, (uf)éij + 2ucef; (u’).

2. Equivalent formulation of the problem

In order to study the behaviour af when the thickness of the three layers goes to zero, we introduce the
following change of variable from the reference configuration (dependenttofa fixed one (independent of
[3.4]:
IT tx = (x1,x2) € 2, - xf =I5 (x1) = (x],x5) = (e +ex1,x2) € §i
ny‘, X = (x1,x2) € §m - x = Hs (xm) = (x]_s xz) = (ex1,x2) € Qe 4)
I8 ix_ = (x1,xp) € 2 — x% =T1¢ (x_) = (x{,x5) = (—& + &x1, x2) € 2°
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Then we suppose the following orders of magnitude for the forces:

fEa) =effx), e =)
) =3 x), ) =2 £ (x)

g () =e%r (1), g5 (x%) =egy (x) )
Ry ) =ehPT(x),  hy (%) =hy T (x)
") =Sy ), hy " () = e%hy " (x)

where the functionsfl.i’m, gl.ﬂE andhl.L’i’”’ are independent of the parameteiHence, by introducing the scaling
of unknowns and test functions as [3,4]:

ui(e)(x) = eui(x®), u2e)(x)=uj(x®) forallu®e [Hl(szf)]2 (6)
we can derive the following equivalent problem for the scaled displaceméts
u(e) € Vo(R2)
co(u(e),v) + szcz(u(s), v) + eca(ule), v) + sece(um (€), Um) @
= &% (v) + &8r(v,,) forall v e Vp(£2)
where the bilinear formeg, c2, c4 andcg and the linear formg and/, are defined in [10].

3. Theasymptotic expansion

In order to obtain the characterization of the limit problem we assume the asymptotic expansion for the solution
of the elastic problem (7):

uim(e)=ul,, +e%ui,, +e'ul,, +hot., ho.t =higherorder terms (8)

By substituting these expressions into the scaled variational problem (7) and by identifying the terms with
identical power ok, we obtain, as customary, a sequence of equations, which are reported in [10].

By studying each variational problem we obtain the following characterization of the limit problem. First, we
define the first and second order moments:

hm+2h+ —hy,
St = / x10dxq, S_ = / x1dxg
h —hm—2h_
hm+2h+ _hm _hm
. 2 — 2 o 2
Iy = x7 dxg, I, = xqdxg, I_:= x7 dxg
hm hm _hm_th

Theorem 3.1. If the system of applied forces verifies
fiel?(R2y), gy eLl?0O,L), ffeHY0,L;L%h3, k), g5 € HYO,L),

then

a) the limit displacement fie elongsto t espac@o(fz),t atis
he limit displ field® bel h h
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ug’l(xl, x2) = u(j,l = “9n,1 =01(x2), 1€ H?O,L)
uQ p(r1, x2) =n2(x2) — x19281, n2€ HY(O, L)
u0 5(x1,x2) = E2(x2) — x10281,  £2€ HY(O, L) (10)
U H(x1,x2) = 12 —; @ + X1<n22;m$2 - 324“1)
where¢1, n2, &2 are solution of the coupled problefwe denote witlyp’ := 92¢ (x2))
L
/[(E+I+ + E_1.)¢] — E4Synp — E_S_np]uv] dxz
0
L L
= / Frupdxo — / Myvjdxp + FL 5 ui(L) + My T ui(L),  Yuie HX(O, L) (12)
0 0

L

L
/ [K2(12 — £2)v2 + (2E 4 hyny — E4 Sy ¢ )vp] dxa = / Fy vadya + Fy Tup(L),
0 0
Vuz € HY(0, L) (12)
L
[—K202— £2)v,+ QE_h_&, — E_S_¢{)v)]dro = / Fy vydra+ Fy " vy(L),
0
Vu, e HY(O, L) (13)

O ~—n=

with Ei,m =4 g A+ )/ Ak + 20 m), K?:= u,/2h,, and Fy, My, in, FiL’i, MlL’i are func-
tions of the forces and are given [ih0].

(b) The limit variational problen{11)—(13)is equivalent to the following differential problefooupled bending-
stretching equations

(Eyl +E_1.)¢]" —E S0y —E_S_&'=F1+ M, in(0,L) (14)
K22 — &) + E+ S48 —2E hyny=Fy in(0,L) (15)
~K*(n2— &)+ E-S_¢' —2E_h_& =F; in(O,L) (16)

As we can clearly notice from the previous differential system, the central adhesive layer behaves as an elastic
interphase of stiffnes& 2 which reacts to the gap between the axial displacements of the two adherents. The
fourth order equation (14), associated with the flexural behaviour of the beam, is strongly coupled with the axial
displacements of the two adherents. Thus, the structural anisotropy and heterogeneity of the beam, due to the
presence of the adhesive, lead to a strong coupling of the system.

4. Characterization of u?2

Using the asymptotic development method, we characterize the second order displacements. We notice that
if the compatibility conditions (17) at the free end are satisfied, it is possible to characterize theé’tand the
well-known boundary layer phenomenon will not appear. Otherwise, a detailed analysis of boundary layer, to be
developed by classical techniques [1,5], is required. This will be performed in [10].
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Theorem 4.1. If the system of applied forces verifies
fifeLl?(2y), grel?0,L), ffeH0L;L*hi,hY)), & €HYO,L)
and the compatibility conditions ik = L

hy " = [he me11(@?) + G + 200 m)e22()]

(17)
hy ™" = (A me12u?)]
then the limit displacements’ can be written in the form
2 2 x%
uf g =us q(x2) — vy <X132772 - ?3224“1) (18)
2 2 x%
uZ g =u” 1(x2) —v- <X132$2 - 732241) (19)
2 2
2 uigtu” 1 - - 2 - ~ A
U1 =|—"% + §(U+ + Ve + U )y, 02261 — Vil 0202 + Vi, 8262 — Vil (32112 — 0262)
2 2 . N
Ui1—-4u_1 vy V- 1. ~
=l Co e — —daka+ = (Py — D) d
+X1[ o 5> 022 — = 252 + 4(v+ V_)hpm 02261
2
x|, O2ma—0282 .
+ ?1 [VmT — V02201 (20)
2 2 ~ N h? ‘1; 2
uy o =u7 5(x2) +x1 [4(V+ +v4) (hazzﬂz - ?3222§1> + e 32£+,1}
2 3 Tt
- A X X F.
— (3t +40y) [71322772 - 313222&] -2 (21)
Pt
2 2 - . h? d2 2
us p=u” H(x2) +x1| 40— + V)| —hok2 — ?82224“1 + P dou” g
x2 x3 Fi
— (30_ +4D_)| Zdoako — L dpoots | — —2— (22)
2 6 [
2 3 Tkm
X X F.
g o = w5, H(x2) — X109 (x2) — L(x2) — = (x2) — =2 (23)
2 6 Km

where by = A /Atm + 20+m), Vem = ftm/Atm + 2U+m), F;i’m = ffzi’m dx, f;i’m =
fF;i’m dr1, g5 1= (85 + F5)lv=tn-

The limit variational problem that allows us to find the unknown displaceméntsxz), u? ;(x2), u3 ,(x2),
2(x2) is expressed ifiL0]; the form of function®, ¢, ¥ andgfwz is expressed ifiL0] and they only depend on

u
u? 1 (x2), u? 1 (x2), U ,(x2), u? ,(x2), andnz, &, {1 which are the solution of the limit proble(f1)—(13)

+.1
We decide to express explicitly the polynomial dependence with respecbbthe second order displacements,

instead of using liable functions of warping and of Timoshenko used by Trabucho-Viafio [4]. Although those
functions have a significant mechanical meaning, we prefer to write more readable, practical and easily usable
expressions.

In the paper [6] a similar model of a two-dimensional three-layer strip is reported. The main differences are
that in [6] the compound beam consists of three layers with the middle one being thinner than the upper and lower
ones: the order of magnitude of its thicknesg4scompared to that of the two adherents which: jsvhile we
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considered the same magnitudéor the thickness of each layer; the Young modulus of the middle layer is scaled
with 2, while we scale it withe? they suppose that the displacements satisfy the homogeneous Lamé systems
wiVau(x) + (A + 2ui)VV - u(x) = 0, while we use a variational formulation of the problem; they consider

the beam to be fixed on both ends, while we use a strong clamping just on one end. Then, Klarbring—Movchan
characterize displacements at first and second orders. The first order longitudinal displacement is a piece-wise
linear function of the through-the-thickness coordinate, while the transversal one is a function only of the axial
coordinate. The second order transversal and axial displacements are respectively quadratic and cubic function
of the through-the-thickness coordinate. The equation which allows to characterize the transversal zeroth order
displacement is substantially identical to the one we found: this means that by reducing of one order of magnitude
both the thickness (from to £2) and the Young modulus of the adhesive (frefto ¢%), it is possible to obtain

the same displacement field, thus the same beam model, which consequently seems to be valid in more gener:
situations.

The work [8] deals with asymptotic method applied to adhesively bonded nonlinearly elastic plates. The assump-
tions concerning with the order of magnitude ratios of the thicknesses and the elastic moduli between adherents
and adhesive are the same used in [6]. The two-dimensional plate model is similar to the one obtained in [6] and
in my work, i.e., a piece-wise linear axial displacement with respect of the through-the-thickness coordinate, while
the difference is in the governing equations of the limit problem which, indeed, are nonlinear according with the
considered framework.
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