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Abstract

In recent years, several numerical studies have shown the feasibility of Direct Noise Computation (DNC) where the t
flow and the radiated acoustic field are obtained simultaneously by solving the compressible Navier–Stokes equat
acoustic radiation obtained by DNC can be used as reference solution to investigate hybrid methods in which the sou
usually calculated as a by-product of the flow field obtained by a more conventional Navier–Stokes solver. A hybrid app
indeed of practical interest when only the non-acoustic part of the aerodynamic field is available. In this review, some
analogies or hybrid approaches are revisited in the light of CAA.To cite this article: C. Bailly et al., C. R. Mecanique 333
(2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Utilisation de quelques méthodes hybrides pour prédire le bruit d’origine aérodynamique.Plusieurs travaux récen
ont montré la faisabilité d’un calcul direct du bruit d’origine aérodynamique par résolution des équations de Navier
compressibles. Le champ acoustique obtenu par ce calcul direct peut servir de solution de référence pour étudier les
hybrides, où le champ acoustique rayonné est calculé à partir d’une solution des équations de Navier–Stokes obten
solver conventionnel. Les méthodes hybrides sont en effet destinées à prévoir le champ sonore lorsqu’il est difficile d
un calcul aérodynamique compressible. Dans cet article, quelques analogies acoustiques sont revisitées en s’appuy
résultats de l’aéroacoustique numérique.Pour citer cet article : C. Bailly et al., C. R. Mecanique 333 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

Methods for predicting aerodynamic noise were mainly semi-empirical in the past, and were based
power laws established by Lighthill [1] and by others later. Over the last ten years, advances in Compu
Fluid Dynamics (CFD), and especially unsteady calculations, have made accurate predictions possible. En
methods take advantage of this progress to improve predictions by substituting flow parameters of semi-e
models by computed values.

The most spectacular feature of this period has been the rapid development of Computational AeroA
(CAA). Two types of methods have been considered in CAA. In the first, concepts that appeared early in
coustics, namely acoustic analogies or hybrid approaches, are applied using time-dependent CFD da
second, the aerodynamic field and the acoustic field are both calculated by solving the compressible
Navier–Stokes equations. This Direct Noise Computation (DNC) is ambitious, and allows for a more p
investigation of noise source mechanisms, but serious numerical issues must be first addressed. The go
two classes of methods are different, but in the end, the aeroacoustics community needs both groups of p
methods to face practical applications.

In the present paper, some acoustic analogies or hybrid approaches are revisited in the light of CAA
Two topics are especially tackled. The first is concerned with the interpretation of the linear and non-line
of Lighthill’s source term. The discussion is illustrated with the noise generated by vortex pairings in a
mixing layer. This test case has the advantage of having a localized aerodynamic source with mean flow
on the radiated noise. It is also not numerically expensive. Furthermore a reference solution based on
also available [2]. The second topic deals with the presence of solid surfaces. A recent application deal
flow-induced cylinder noise is considered [3].

2. Lighthill’s analogy

2.1. Formulation

The first formulation of an acoustic analogy was derived by Lighthill [1] in 1952. The compressible flu
namic equations are recast into an inhomogeneous wave equation, which yields:

�ρ(x, t) ≡
(

∂2

∂t2
− c2∞∇2

)
ρ(x, t) = ∂2Tij

∂xi∂xj

(1)

where� is the D’Alembertian operator, andTij = ρuiuj + (p − c2∞ρ)δij + τij represents a distribution of equiv
lent noise sources. Here,ρ, ui , p andτij are the instantaneous density, velocity components, pressure and v
stress tensor. The subscript∞ denotes the state of fluid at rest in the far field andc∞ is the speed of sound. T
simplify the discussion, the contribution of viscous terms and entropy fluctuations are assumed to be ne
and Lighthill’s tensor is reduced toTij � ρuiuj . These assumptions could be relaxed if necessary. For an obs
far from the source volume occupied by the turbulent velocity field, the acoustical density fluctuations in 3
space are given by:

ρ′(x, t) � 1

4πc4∞x

xixj

x2

∫
∂2Tij

∂t2

(
y, t − |x − y|

c∞

)
dy (2)

whereρ′(x, t) = ρ(x, t)−ρ∞, x is the observer position andy the source position. Many other integral formulatio
can be derived from (1), and a review on these subtle integral formulations can be found in Crighton [
classical interpretation of Eq. (2) is given in Fig. 1.
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Fig. 1. Interpretation of Lighthill’s analogy. As an illustration, a snapshot of the DNC of subsonic jet noise is shown with the vorticity
the flow and the radiated acoustic pressure outside, from Bogey and Bailly [5]. A hypothetical apparatus measuring the D’Alembertia�ρ will
see a mathematical source term∂2

ij
Tij in the flow region, and will measure zero outside.

Fig. 1. Interprétation de l’analogie de Lighthill. L’image représente le résultat d’un calcul direct du bruit d’un jet subsonique avec le c
vorticité dans l’écoulement et le champ de pression rayonné à l’extérieur, d’après Bogey et Bailly [5]. En imaginant posséder un D’Al
mètre mesurant�ρ, celui-ci indiquerait le terme source mathématique∂2

ij
Tij dans l’écoulement, et zéro à l’extérieur.

2.2. Numerical implementation

For a numerical implementation of Lighthill’s analogy, as it is shown by Sarkar and Hussaini [6] or B
et al. [7], the temporal formulation (2) is more appropriate and more accurate than the formulations base
spatial derivatives ofTij . The retarded-time problem is often replaced by a time accumulation method f
observer [6] in which the source time becomes the reference time and the observer time is imposed byt + |x −
y|/c∞. Note that it is hazardous to merely approximate the source term at the retarded time by its close
available in the computation. For two-dimensional problems, the computation of the integral solution of (1
Fourier space is recommended since the convolution with the 2D Green function has an infinite time integr

The necessary truncation of the source volume in numerical simulations is also a serious difficulty. This p
was first discussed with the numerical estimation of the noise of a bounded isotropic homogeneous turbu
Witkowska and Juvé [10]. The most common case is, however, encountered when the turbulent flow cro
outflow boundary of the integration volume. Indeed, velocity fluctuations should vanish on the boundarie
considered source volume in (2) but they do not and a radiation more efficient than the physical one is pr
the computed solution. Ad hoc methods have been proposed as in [11,12] for instance, or by tapering th
term on the boundaries by a decreasing Gaussian function [2,7].

Another way to obtain the correct solution is to consider the Ffowcs Williams and Hawkings (FWH) for
tion [13] but the calculation must be in general compressible since the fluctuating pressure, including aco
required on the surface enclosing the control volume. A very simple illustration of the FWH formulation ha
recently proposed by Casper et al. [14] with the case of a Taylor vortex convected in a uniform flow. The
formulation is presented in Section 5.

2.3. Mean flow effects

The case of a turbulent flow surrounded by a uniform mean flow, shown in Fig. 2, is now considered i
to illustrate the inclusion of mean flow – acoustics interaction in Lighthill’s tensor. The acoustic fluctuatio
governed by the convected wave equation:
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Fig. 2. Sketch of a bounded turbulent source volume generating noise in a uniform mean flow.

Fig. 2. Représentation d’un volume source fini émettant du bruit dans un écoulement uniforme.

(
∂

∂t
+ U∞

∂

∂x1
ρ′

)2

︸ ︷︷ ︸
(a)

−c2∞∇2ρ′ = 0 (3)

To interpret Lighthill’s equation in this case, we introduce the decomposition of the density and veloci
Lighthill’s tensor:

Tij = ρuiuj = (
ρ∞ + ρ′)(U∞δ1i + u′

i

)(
U∞δ1j + u′

j

)
a straightforward calculation then yields the following expression from Eq. (1):

∂2ρ′

∂t2︸ ︷︷ ︸
(b)

−c2∞∇2ρ′ = ∂2

∂xi∂xj

(
ρu′

iu
′
j

)−2U∞
∂2ρ′

∂t∂x1
− U2∞

∂2ρ′

∂x2
1︸ ︷︷ ︸

(c)

(4)

By noting from (3) and (4) that(a) = (b) + (c), the linear part (c) ofTij is shown to be a propagation ter
corresponding to mean-flow effects on acoustics. For practical applications, we often intend to get an est
the radiated noise from an incompressible turbulent computation which is less expensive. However by us
the incompressible part of the flow to construct Lighthill’s tensor, the acoustic-mean flow interactions are l
sound waves propagate without being affected by the presence of the mean flow.

In a more general case than the one of Fig. 2, the following splitting of the velocityui = ūi + u′
i is introduced

into Lighthill’s tensor:

Tij = ρu′
iu

′
j︸ ︷︷ ︸

T
f
ij

+ρūiu
′
j + ρu′

i ūj + ρūi ūj︸ ︷︷ ︸
T l

ij

(5)

The first partT f
ij involves quadratic velocity fluctuations, and is responsible for the self-noise component

The second partT l
ij is linear in fluctuations, and the contribution of the two first terms to (2) is called the s

noise according to Lilley [15]. This decomposition into quadratic and linear terms is well known in the
of incompressible turbulence where the fluctuating pressure generated by a velocity field satisfies the
equation:

− 1

ρ∞
∇2p′ = ∂2

∂xi∂xj

(
u′

iu
′
j − u′

iu
′
j

) + 2
∂ūi

∂xj

∂u′
j

∂xi

(6)

The first source term in (6) is associated to the slow part of pressure while the term involving the mean
gradients is associated to the rapid part, which is the leading term in the rapid distortion theory. This
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equation was used for instance by Kraichnan [16] to derive a statistical modelling of pressure fluctuatio
turbulent boundary layer.

Reverting to the compressible case, as pointed out by Pridmore-Brown [17] and Lilley [18] among
the linear terms in (5) are also propagation terms. Assuming a sheared mean flowūi = �U1(x2)δ1i the following
inhomogeneous wave equation can be written:

D̄

D̄t

(
1

c2∞
D̄2p

D̄t2
− ∇2p

)
+ 2

d �U1

dx2

∂2p

∂x1∂x2︸ ︷︷ ︸
(f)

= D̄

D̄t

∂2ρu′
iu

′
j

∂xi∂xj︸ ︷︷ ︸
(d)

−2
d �U1

dx2

∂2ρu′
2u

′
j

∂x1∂xj︸ ︷︷ ︸
(e)

(7)

It is now a third order differential equation whereD̄/D̄t denotes the material derivative along the mean flow.
wave operator appearing on the left-hand side of (7) is identical to that derived from the linearized Euler eq
As a result, all the mean flow – acoustic interactions are included in this propagation operator for a shear
flow. The two source terms (d) and (e) on the right-hand side are now quadratic in velocity fluctuations. T
(d) comes directly from the non-linear termT f

ij in Lighthill’s equation (5). The term (e) from the splitting of th

shear-noise termT l
ij of Eq. (5) into a propagation term (f) and the source term (e).

Using the analogy defined by Eq. (7), the source term can be constructed from an incompressible time-d
Navier–Stokes solution and mean flow effects are now provided by the wave operator. However, the homo
solution of (7) is known as the compressible generalization of Rayleigh’s equation and instability waves a
solution of the problem. This point is discussed in [20].

3. Other hybrid methods

At least two groups of acoustic analogies have been developed since the Lighthill theory of noise. In
one, reformulations of Lighthill’s equation were proposed to emphasize the role of vorticity in the produc
sound. The source term is expressed through the Lamb vectorL = ω × u by noting that:

∇ · ∇ · (uu) = ∇ · (ω × u) + ∇2
(

u2

2

)

and one of the first formulations of the vortex sound theory was proposed by Powell [19] for low Mach n
flows:

∂2ρ

∂t2
− c2∞∇2ρ � ρ∞∇ · (ω × u)

Vorticity-based formulations are very useful for analytical studies, but they are usually not recommen
numerical simulations [4].

The second group of methods corresponds to hybrid methods based on a wave operator including all m
effects to remove the linear part of Lighthill’s tensor from the source term. In particular, a reformulation of E
based on Linearized Euler’s Equations (LEE) can be derived, see [20] for details and comments:



∂ρ′

∂t
+ ∇ · (ρ′ū + ρ̄u′) = 0

∂(ρ̄u′)
∂t

+ ∇ · (ρ̄ūu′) + ∇p′ + (ρ̄u′ + ρ′ū) · ∇ū = s

∂p′

∂t
+ ∇ · [p′ū + γ p̄u′] + (γ − 1)p′∇ · ū − (γ − 1)u′ · ∇p̄ = 0

si = −ρ̄
∂u′

iu
′
j

∂xj

(8)
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4. Application to the noise generated by a forced mixing layer

For aerodynamic noise, the sound generated by a plane mixing layer is a very useful model problem. T
parameters are given in Fig. 3. A direct computation of the generated noise was performed by Bogey et
obtain the aerodynamic field and a portion of the acoustic field. The flow development is driven by forc
mixing layer at discrete frequencies so that only the sound generated by the first vortex pairing is obs
the computational domain. This vortex pairing occurs atx � 70δω(0) and the wavelength of the radiated field
λ � 51δω(0) whereδω(0) is the initial vorticity thickness.

Fig. 3. Sketch of the mean flow formed by two isothermal streams at MachM1 = 0.12 andM2 = 0.48 in the lower and upper part
respectively. The mean velocity profile is given byū1(x2) = um[1 + Ru tanh(2x2/δω)] with um = (U1 + U2)/2 = 100 m s−1 and
Ru = (U1 − U2)/(2um) = 0.6. Reω = δω(0)(U1 − U2)/ν = 12800 whereδω(0) is the initial vorticity thickness.

Fig. 3. Croquis de la couche de mélange formée par deux écoulements isothermes de nombre de MachM1 = 0,12 etM2 = 0,48 en haut et en
bas respectivement. Le profil de la vitesse moyenne est donné parū1(x2) = um[1 + Ru tanh(2x2/δω)] avecum = (U1 + U2)/2 = 100 m s−1

etRu = (U1 − U2)/(2um) = 0,6. Reω = δω(0)(U1 − U2)/ν = 12800 oùδω(0) est l’épaisseur de vorticité initiale.

Fig. 4. Noise generated by a mixing layer. Dilatation fields obtained: from Lighthill’s integral with (a)T
f
ij

and (c)Tij as source terms, (b) from
the LEE without mean flow, (d) by direct noise calculation (reference solution). All the calculations are two-dimensional, and qua
comparisons can be found in [21,22].

Fig. 4. Bruit produit par une couche de mélange. Champs de la dilatation obtenus : avec l’intégrale de Lighthill en utilisant (a)T
f
ij

et (c)Tij ,
(b) avec les équations d’Euler linéarisées sans écoulement moyen, (d) par calcul direct du bruit (solution de référence). Tous les c
bidimensionnels et des comparaisons quantitatives sont dans [21,22].
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Fig. 5. Dilatation fields obtained: (a) from the LEE (8), (b) by direct noise calculation (reference solution).

Fig. 5. Champ de dilatations obtenus : (a) avec les équations d’Euler linéarisées (8), (b) par calcul direct du bruit (solution de réfé

Fig. 4(d) shows a snapshot of the dilatation fieldΘ = ∇ · u, which is directly linked to the fluctuating pressu
field in the present case [21]. Mean flow effects on propagation are well marked especially in the rapid
region. The acoustic field predicted by Lighthill’s analogy with the quadratic termT

f
ij = ρu′

iu
′
j only is shown in

Fig. 4(a) whereas the acoustic field predicted by Lighthill’s theory with the full tensorTij is displayed in Fig. 4(c)
This source termTij including all interactions between the flow and the acoustic waves, the solution 4(c
agreement with the direct computation of noise in 4(d). Note finally that Fig. 4(a) compares with Fig. 4(b)
sponding to the solution obtained by LEE (8) without mean flow effects(ū = 0), that Lighthill’s solutions were
obtained with the 2D Green function for consistent comparisons [22] and that the integrations are perform
the whole domain defined by 0� x1 � 200δω(0) and−300δω(0) � x2 � 300δω(0).

Fig. 5 shows the reference solution in (b) and the solution obtained by solving LEE (8) with the sel
source term in (a). The two solutions are in good agreement. Finally, there are two ways to obtain the
acoustic radiation. In the first one, illustrated by Fig. 4(c), the Lighthill tensor is constructed from a compr
solution of the Navier–Stokes solution. This problem is academic since the evaluation of the linear parTij

requires the calculation of the acoustic field, namely the solution of the problem is already known. In the
one, shown in Fig. 5(a), mean flow effects are taken into account by the wave operator and the source terms in (8)
can be computed from an incompressible turbulent flow.

5. Influence of solid boundaries

Lighthill’s theory was generalized by Ffowcs Williams and Hawkings [13] to include the presence of su
A closed surfaceΣ is defined byf (x, t) = 0, with f < 0 in the interior,f > 0 outside, and such that∇f = n
wheren is the outward unit normal vector. As shown in Fig. 6, the functionf defines the control surface outside
which the solution is required, but a solution valid for all space is sought to derive integral formulations inv
the free space Green functionG. Thus, variables have the values of the undisturbed mediumρ∞, p∞ insideΣ and
generalized functions are now considered to take into account the discontinuity acrossΣ thanks to jump terms



C. Bailly et al. / C. R. Mecanique 333 (2005) 666–675 673

er flow.

ne cavité

able

ted on
nt
licopter
ces.
id wall,

a cavity
e
ensor
tion can

effects
Fig. 6. Notations for the Ffowcs Williams and Hawkings formulation.

Fig. 6. Notations pour la formulation de Ffowcs Williams et Hawkings.

Fig. 7. Two examples of configuration for applying the Ffowcs Williams and Hawkings formulation: (a) flow past a cavity and (b) cylind

Fig. 7. Deux exemples de configuration pour appliquer la formulation de Ffowcs Williams et Hawkings : (a) écoulement au dessus d’u
et (b) écoulement autour d’un cylindre.

Noting H the Heaviside function andδ = H′ the Dirac delta function, the equation for the generalized vari
Hρ′ = H(f )(ρ − ρ∞) [23] becomes:

(
∂2

∂t2
− c2∞∇2

)
[Hρ′] = ∂2[H(f )Tij ]

∂xi∂xj

+ ∂[Fiδ(f )]
∂xi

+ ∂[Qδ(f )]
∂t

(9)

with:

Fi = −[
ρui(uj − uΣ

j ) + pδij − τij

]
nj , Q = [

ρ(uj − uΣ
j ) + ρ∞uΣ

j

]
nj

anduΣ the surface velocity. Two additional contributions of dipole and monopole type must now be evalua
the surfaceΣ . Note that Lighthill’s analogy (1) is recovered if the volume insideΣ vanishes, and that the turbule
flow can cross the control surface. Eq. (9) is the starting point of many developments, especially for he
noise predictions [24,25] or for derivating wave extrapolation methods through porous or permeable surfa

To simplify algebra as in the first section, the control surface is now assumed to be a stationary sol
which reduces (9) to Curle’s equation [26], and viscous effects are disregarded. As a result,Fi = −pni andQ ≡ 0.
Fig. 7(a) shows for instance the configuration used to investigate the noise radiated by a grazing flow over
by Gloerfelt et al. [9]. The integral surface is taken along the cavity wallsS0 and the volume integral over th
volumeV0. All the remarks made in the first section about the interpretation of the linear part of Lighthill’s t
and about numerics, still hold. In the case of Fig. 7(a), a convected Ffowcs Williams and Hawkings equa
be derived when the observer is located in a uniform mean flow [8,9] rather than accounting for mean flow
by integrating over the full outside volumef > 0 in including compressible effects inTij .
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Fig. 8. Noise generated by a flow atM∞ = 0.12 around a cylinder, from [3]. Eq. (10) with: on the left, contribution of the volume integ
levels of pressure±0.5 Pa, on the right, contribution of the surface integral, levels of pressure±5 Pa.

Fig. 8. Bruit produit par un écoulement àM∞ = 0,12 autour d’un cylindre, tiré de [3]. Éq. (10) avec : à gauche, contribution de l’intégra
volume, niveaux de pression±0,5 Pa, à droite, contribution de l’intégrale de surface, niveaux de pression±5 Pa.

As for Lighthill’s source term, the surface integral can be calculated with a compressible or an incompr
pressure provided by Navier–Stokes solvers. Since Eq. (9) is satisfied throughout the whole space, the
solution can take the following form:

ρ′ = ∂2[H(f )Tij ]
∂xi∂xj

∗ G − ∂[pδ(f )]
∂n

∗ G = H(f )Tij ∗ ∂2G

∂xi∂xj

− pδ(f ) ∗ ∂G

∂n
(10)

where∂n = ni∂i . The second formulation is often more appropriate numerically, in particular for 2D comput
in Fourier space [8,9]. Fig. 7(b) shows a sketch of the geometry for computing the æolian tone genera
flow around a cylinder. The noise can be calculated with Eq. (10) and is well approximated by the surface
contribution alone for low Mach number flowsM∞ = U∞/c∞, as shown in Fig. 8 for the cylinder case [3
A tailored Green functionG satisfying the boundary condition∂nG = 0 on Σ can also be introduced to solv
Eq. (9). The solution is then given by:

ρ′ = ∂2

∂xi∂xj

[
H(f )Tij ∗ G

]

which allows one to interpret the surface integral contribution of Eq. (10) as the diffraction of the turbulent s
by the cylinder itself [3,23]. The tailored Green functionG is in general difficult to determine, at least analytica
and formulation (10) is preferred. However, the use of an incompressible solver to calculate the pressur
surface is only valid for the low frequency limit, when the diffraction problem is governed by a Poisson eq
i.e.� → c2∞∇2 without specular acoustic reflection.

6. Concluding remarks

For low Mach number flows and complex geometries, acoustic analogies based on an incompressible
Stokes solver remain a good strategy to compute radiated noise. Indeed, mean flow effects are expected t
and the direct computation of noise is still difficult to apply to complex configurations. Nevertheless, when
coupling between acoustic waves and turbulence occurs or when the high-frequency component of spectr
computed, a compressible simulation is then necessary to apply the Ffowcs Williams and Hawkings form
for instance.
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