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Abstract

CAA simulation requires the calculation of the propagation of acoustic waves with low numerical dissipation and dis
error, and to take into account complex geometries. To give, at the same time, an answer to both challenges, a Disc
Galerkin Method is developed for Computational AeroAcoustics. Euler’s linearized equations are solved with the Disco
Galerkin Method using flux splitting technics. Boundary conditions are established for rigid wall, non-reflective bound
imposed values. A first validation, for induct propagation is realized. Then, applications illustrate: the Chu and Kova
decomposition of perturbation inside uniform flow in term of independent acoustic and rotational modes, Kelvin–He
instability and acoustic diffraction by an air wing.To cite this article: Ph. Delorme et al., C. R. Mecanique 333 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Applications de l’aéroacoustique numérique basées sur une méthode de Galerkine discontinue. La simulation de la
propagation aéroacoustique impose de calculer la propagation d’une onde acoustique dans un écoulement inhomo
une faible erreur numérique de dissipation et de dispersion, tout en prenant en compte des géométries complexes.
de donner, une réponse trés générale, une méthode de Galerkine discontinue du premier ordre a été mise en œuvre p
coustique numérique. Les équations d’Euler linéarisées sont résolues avec la méthode de Galerkin discontinue, en
technique dite duflux splitting. Des conditions aux limites sont établies pour des parois rigides, des parois traitées, une
tion de non-réflexion et des valeurs imposées. Une première validation est réalisée dans le cadre de la propagation
de longueur infinie. Puis, des applications variées illustrent le potentiel de la méthode : décomposition de Chu et de K
d’une perturbation à l’intérieur d’un écoulement uniforme en modes acoustiques et de rotation, instabilité de Kelvin–He
et diffraction acoustique par une aile d’avion.Pour citer cet article : Ph. Delorme et al., C. R. Mecanique 333 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

CAA involves two main problems at the same time. First, the numerical method must be able to s
acoustic wave propagation with low numerical dissipation and low numerical dispersion. Second, it req
take into account real geometries. The high-orderFDM (Finite Difference Method) schemes, initially introduc
by Tam [1], are a good answer to the first problem but, the simulation of acoustic scattering by realistic
tries still remains problematic because, the structured meshing of real geometries is often complex. Th
Element Method uses unstructured meshes but, it is still not able to solve Euler’s linearized equation
spurious mode. Recent improvement of computing technology make today accessible the Discontinuous
Method forCAA [2]. The method is a quite relevant external approximation. It simulates wave propagatio
a small level of dissipation, without dispersion and allows to use automatic mesh maker or mesh refineme
nics [3].

2. Physical model

Euler’s linearized equations are computed. Assuming a subsonic flow, the entropy equation is used (ra
the energy equation). Supposing at initial time, entropy is spatially uniform, it remains spatially uniform
time. Such an hypothesis is not essential for the method but, it is commonly done and provides a smal
problem. The partial differential equations system is a Friedrich’s system due to the Godonov–Mock’s t
asserting the system is symmetric if and only if amathematical entropyexists. Concerning our problem, usin
variable�ϕ = (u1, v1, a0ρ1/ρ0)

1, it results in the symmetric system:

∂t �ϕ +Ai∂i �ϕ +B �ϕ = �0
where:

A1 =



u0 0 a0

0 u0 0

a0 0 u0


 , A2 =




v0 0 0

0 v0 a0

0 a0 v0


 , B =




∂xu0 ∂yu0 −∂xa0

∂xv0 ∂yv0 −∂ya0
a0
ρ0

∂xρ0
a0
ρ0

∂yρ0 (γ − 1) (∂xu0 + ∂yv0)




As matrixAi∂i is symmetric, matrixAini is diagonalizable; this is an important remark for the method prese
in this paper. Moreover, we are able to write themathematical energybalance:

∂t

∫
Ω

1

2
�ϕ2 + 1

2

∮
∂Ω

�ϕtAini �ϕ + 1

2

∫
Ω

�ϕt
(
B +Bt − ∂iAi

) �ϕ = 0 (1)

This mathematical energybalance has a physical sense. Indeed, it is the sum per mass unit of kinetic
(u2

1 + v2
1)/2 and acoustic energya2

0ρ2
1/ρ2

0. In (1), the second term is obviously the flux and the third term is
source of this energy. MatrixB +Bt − ∂iAi vanishes when flow is uniform. Otherwise, the matrix does not ha
determined sign. It means energy can increase indefinitely depending on the flow stability.

3. Discontinuous Galerkin method

Only main features of the method are presented in this Note and for more details we invite one to read Re

1 Where(u1, v1) is the acoustic velocity vector,ρ1 the acoustic density,a0 the sound speed andρ0 the mean flow density.
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3.1. Variational formulation

For ak-orderDGM, test and interpolation functions are chosen in same functional space composed by
{Wk,k ∈ N} of kth order polynomials inside each element. It may be discontinuous on edges bordering elem
the functional space is piecewiseWk polynomial functions. The fact that both, test and interpolation functions
discontinuous prevent from directly writing a weak formulation for all domains. Actually, theDGM is a patchwork
of weak formulations inside each element and boundary conditions are connecting elements to each other.
elementωh, the weak formulation can be expressed:

∀h, ∀ �ψh ∈ Wk(ωh),

∫
ωh

(
∂t �ϕh +Ai∂i �ϕh +B �ϕh

) · �ψh +
∮

∂ωh

M(n)
( �ϕo

h − �ϕi
h

) · �ψi
h =

∫
ωh

�g · �ψh (2)

where�ϕo means the exterior trace,�ϕi the interior one and�g is the source.M is a boundary operator. By summatio
onh:

L
( �ϕh, �ψh

) =
∫
Ω

(
∂t �ϕh + Ai∂i �ϕh + B �ϕh

) · �ψh +
∑
h

∮
∂ωh

M(n)
( �ϕo

h − �ϕi
h

) · �ψi
h −

∫
Ω

�g · �ψh = 0 (3)

The first term and the third term are usually the same for the allDGM (up to a summation by parts), but the seco
one depends on the method. The method we have chosen is called characteristics method because it gen
characteristics method in 1D. AsAini is symmetric, this matrix is diagonalizable and can be splitted into a pos
(set of positive eigenvalues) and a negative part (set of negative eigenvalues):

Aini = [Aini]+ + [Ai · ni]−
In this methodM = [Ai · ni]−, it is a fully upwind scheme. If usingkth order polynomials, the precision ord

is k + 1.

3.2. Solver

When harmonic solution exists without absolute instabilities in the Huerre and Monkewitz’s sense [6],
monic solver is used to compute the solution. Otherwise, a time solver based on a second-order Run
method is used, in that case, aCFL condition must be satisfied [7].

3.3. Boundary conditions

Consider the elementωj localized in contact with border∂Ω . We have∂ωj ∩ ∂Ω �= ∅ and boundary condition
are imposed on the segment ofωj in contact with∂Ω (a1, for example). In local representation, the variatio
formulation can be written:∫

ωj

t �ψI
(
∂t �ϕ +Ai∂i �ϕ +B �ϕ) +

∮
a1

t �ψ[d2,d3]M �ϕ[d2,d3] −
∮
a1

t �ψ[d2,d3]I �g

+
∮
a2

t �ψ[d3,d1][Aini]−
( �ϕ[d6,d7] − �ϕ[d3,d1]

) +
∮
a3

t �ψ[d1,d2][Ai ni]−
( �ϕ[d8,d9] − �ϕ[d1,d2]

)

Boundary conditions are introduced in the variational formulation with specific expressions ofM and�g:

– for rigid or lined walls (p1 = Z�v1 · �n), whereZ is the impedance, and we find:

M(β) = a0
[

(1+ β) �n ⊗ �n (β − 1)�n
−(1+ β) t �n (1− β)

]
whereβ = Z − 1

is the transmission coefficient

2 Z + 1
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M(β) formulation leads to aβ-independentCFL condition [7] which is not true forM(Z) formulation, this
property is important for inverse problem. Ifβ = 1, the walls are rigid (hard sound obstacle). Ifβ = 0, this is
a plane wave impedance, used as an imperfect (1st order) non-reflective boundary condition.

– for imposed value condition

M = −[Aini]− and �g = �ϕ0

Those expressions lead to a well-posed mathematical problem in the temporal case [7].

4. Induct propagation

ElementsP0 to P6 have been implemented and are used to approximate acoustics while aP1 approximation
is used for flow fluid variables (�v0, p0, ρ0). We are studying the precision of theDGM depending on the mes
refinement. Consider an infinite linear duct whose constant cross section is 1/2 meter, the duct contains air. Doma
Ω is shown in Fig. 1, it is a 3 m long portion of the duct. To simulate propagation in an infinite duct, modal so
n = 0 at frequencyf = 3.4 kHz is imposed at the portion entrance (left) and non-reflexion boundary cond
at the exit (right). The walls of the duct are rigid (up and down). For moden = 0 and only for this mode, ou
‘imperfect non-reflexion boundary conditions’ works perfectly.

To compare analytic and computed solutions, a cut along axis (y = 0.25 m) is realized and acoustic pressure
plotted on a 2D-plot. Atf = 3.4 kHz, the number of wavelengths for a 3 m long portion is 30. Comparison
presented forP1 in Figs. 2 and 3. The analytical solution whose expression is:

p1(x, y, t) = sin

(
2πf t − 2π

λ
x

)
is the paler plot and computed solution is in black.

This results shows forP1 elements a minimalλ/12 mesh discretization is required to avoid important numer
dissipation and to keep a good agreement with the analytical solution. Similar computations have been
for elementsP0 to P6 and minimal mesh refinement requirements are listed in Table 1. This results are in
agreement with 1D analysis [8]. Note in any case, the dispersion error is low due to the fully upwind schem

Fig. 1. DomainΩ .

Fig. 1. DomaineΩ .

Fig. 2.p1(x,0.25) (Pa) – Rigid Walls – meshλ/7.

Fig. 2.p1(x,0.25) (Pa) – parois rigides – maillageλ/7.

Fig. 3.p1(x,0.25) (Pa) – Rigid Walls – meshλ/12.

Fig. 3.p1(x,0.25) (Pa) – parois rigides – maillageλ/12.
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Table 1
Element order versus mesh refinement

Tableau 1
Ordre de l’élément suivant la discrétisation

Pj 0 1 2 3 4 5 6

h λ
40

λ
14

λ
4

λ
3

λ
2

λ
2 λ

Fig. 4.p1(x,0.25) (Pa) – Lined Walls – meshλ/12.

Fig. 4.p1(x,0.25) (Pa) – parois traitées – maillageλ/12.

The analytical solution for modes propagating inside an infinite linear lined duct in the presence of a she
is found solving Lilley’s equation [9,10]. We are going to compare the analytical solution to theDGM computed
solution. Consider air contained inside the domain presented in Fig. 1 is moving with celerity:

v0 =
{

50 tanh(15y) if y � 0.25 m

50 tanh(15(0.5− y)) if y > 0.25 m
(m/s)

Analytical and computed solutions are plotted in Fig. 4 with same representation as previously and are fou
in good agreement when mesh discretization is aboutλ/12.

5. Acoustic and rotational modes and Kelvin–Helmholtz instability

In 1958, Chu and Kovasznay [11] initiated the decomposition of perturbations inside uniform flow in te
independent acoustic, rotational and entropic modes. For isentropic transformation, entropic modes do n
The DGM is based on Euler’s linearized equations. If we introduce a source containing acoustic and ro
modes in the presence of a uniform flow, simulations should be able to point out the propagation of th
different modes. Inside domainΩ flow is uniform: �v0 (m/s)= 100�x. Non-reflective boundary conditions are im
posed on∂Ω . On the element containing point(0.50,0.25), we introduce a source that�∇×�v1 �= �0 and �∇ · �v1 �= 0.
A numerical simulation based on theDGM is realized. In Fig. 5, the acoustic pressure field is plotted and show
different modes propagating with different speeds. A deeper analysis of results shows a good agreemen
Chu and Kovasznay’s prognostication. There is a flow convected rotational mode and an acoustic mode
tion. Computation was stopped before rotational mode reached the non-reflective border. The boundary c
used to simulation a no-reflection does not work for rotational mode.

Inside a non-uniform flow, the decomposition initiated by Chu and Kovasznay is no longer valid, becaus
flow gradients exchanges between flow and aeroacoustics. Consider the configuration of previous secti
the flow profile versusy has tanh variations with an inflection on line(y = 0.25) (shear layer). On the inflectio
line (y = 0.25), flow speed isv0 = 100 m/s. A simulation based on theDGM is realized. The computed values f
acoustic pressure are plotted in Fig. 6. The simulation clearly shows an instability slowly developing. and
with speedv0 = 100 m/s. Again, the computation was stopped before the instability reaches the non-refl
boundary condition because the conditions used are not suitable for instabilities,PML technics under developme
should solve that difficulty.
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Fig. 5. Acoustic and Rotational Modes,p1.

Fig. 5. Modes acoustiques et rotationnelle,p1.

Fig. 6. Kelvin–Helmholtz instability,p1.

Fig. 6. Instabilité de Kelvin–Helmholtz,p1.

Fig. 7. Flow speedv0.

Fig. 7. Vitesse de l’écoulement.

Fig. 8.f = 2 kHz, Acoustic pressure fieldp1.

Fig. 8. 2 kHz, champ de pression acoustiquep1.

6. Acoustic diffraction

The computation of acoustic diffraction is important for environmental impact and to study the noise ge
by airplanes at take-off. We are going to study the acoustic diffraction of noise by a Joukovsky air wing
A 2D domain containing the profile is meshed. Non-reflective boundary conditions are imposed on the d
border and rigid wall boundary conditions are imposed around the profile. Joukovsky profile is chosen be
prevents from complementaryCFD computations as the flow speed is given with analytical expressions. The
speed is irrotational�∇×�v0 �= �0 and such computations could be carry on with potential equation. Howeve
DGM remains more general and is able to carry on acoustic diffraction computations for different profiles
use Euler’s or Navier Stockes equations basedCFD computations. Numerical values ofv0 are plotted in Fig. 7.

An harmonic monopole acoustic source pulsing atf = 2 kHz is placed at point(−1.5,−0.5). A simulation is
realized and the acoustic pressure corresponding to the computed solution is plotted in Fig. 8. The figur
shows the acoustic diffraction resulting from the presence of the air wing.

7. Conclusion

The Discontinuous Galerkin Method presents many advantages to solve Euler’s linearized equations sy
studying Computational AeroAcoustics problems. Complex geometries are easily introduced using automa
maker programs. Because of its mathematical foundations, the method is accurate, robust and suitable fo
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industrial problems. TheCPU and memory requirement are the main disadvantages and they are less impor
high order numerical schemes. The results presented in the paper, show the flexibility and quality of the
for computational aeroacoustics.
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