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Abstract

High order finite difference approximations with improved accuracy and stability properties have been developed for
tational aeroacoustics (CAA). One of our new difference operators corresponds to Tam and Webb’s DRP scheme in th
but is modified near the boundaries to be strictly stable. A unified formulation of the nonlinear and linearized Euler eq
is used, which can be extended to the Navier–Stokes equations. The approach has been verified for 1D, 2D and axi
test problems. We have simulated the sound propagation from a rocket launch before lift-off.To cite this article: B. Müller,
S. Johansson, C. R. Mecanique 333 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Approximations rigoureuses stables par différences finies pour l’aéroacoustique numérique.Des schémas d’approxima
tion par différences finies d’ordre élevé ont été développés pour l’aéroacoustique numérique dans le but d’accroître la
et la stabilité. L’une de nos méthodes correspond au schéma de Tam et Webb, à l’intérieur du domaine, avec une mo
aux limites du domaine qui permet d’obtenir une stabilité rigoureuse. Notre approche repose sur l’unification des é
non linéaires d’Euler et de leur forme linéarisée. Cette même approche pourrait être appliquée aux équations de Navi
A titre d’exemple, la méthode est appliquée ici à des problèmes à une et deux dimensions, ainsi qu’à un problème
trique. Un exemple simule l’acoustique induite par une fusée avant décollage.Pour citer cet article : B. Müller, S. Johansson,
C. R. Mecanique 333 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

High order finite difference methods have been developed, which are constructed to be strictly stable f
hyperbolic and parabolic problems [1,2]. These methods satisfy the summation by parts (SBP) propert
is analogous to integration by parts and essential to obtain energy estimates. SBP operators have been
linear equations [3] and the nonlinear Euler and Navier–Stokes equations [4,5].

Recently, we have devised strictly stable difference methods minimizing the dispersion error [6]. In th
rior, one of our new schemes corresponds to Tam and Webb’s dispersion relation preserving (DRP) sch
However, opposed to other boundary treatments in the literature, the new schemes are constructed to
for initial-boundary value problems and not just for periodic problems. Thus, the new schemes are well su
CAA, where high accuracy and stability over long times are essential. Here, we apply high order SBP ope
a 1D test problem and the nonlinear axisymmetric Euler equations for sound propagation problems. The
and stability of our approach applied to the nonlinear 2D Euler equations with and without entropy splittin
have been assessed by comparison with the exact solution of the sound generated by a Kirchhoff vorte
elliptical vortex patch, cf. [9–11].

2. Euler equations

Noise propagation is modeled by the Euler equations. The perturbation formulation is used to minim
merical cancellation errors for compressible low Mach number flow. The nonlinear conservation laws o
momentum and energy are expressed in terms of the changes of the conservative variables with respe
stagnation values. Note that no approximation is made [10]. In Cartesian coordinates, the perturbed axisy
Euler equations can be written as

U′
t + F′

x + G′
y = S (1)

where

U′ =




ρ′

(ρu)′

(ρv)′

(ρE)′


 , F′ =




(ρu)′

(ρu)′u′ + p′

(ρv)′u′

(ρH)′u′ + (ρH)0u
′




G′ =




(ρv)′

(ρu)′v′

(ρv)′v′ + p′

(ρH)′v′ + (ρH)0v
′


 , S= −1

y




(ρv)′

(ρu)′v′

(ρv)′v′

(ρH)′v′ + (ρH)0v
′




with

ρ′ = ρ − ρ0, (ρu)′ = ρu, u′ = (ρu)′

ρ0 + ρ′ , p′ = (γ − 1)

[
(ρE)′ − 1

2
(ρu)′ · u′

]
(ρE)′ = ρE − (ρE)0, (ρH)′ = (ρE)′ + p′

t is time, andx andy are the axial and radial coordinates, respectively.ρ denotes the density,u andv thex- and
y-direction velocities,E the specific total energy, andp the pressure.ρ0, (ρE)0 and(ρH)0 denote the stagnatio
quantities of density, total energy density and total enthalpy density, respectively. General geometries are t
a coordinate transformationx = x(ξ, η), y = y(ξ, η). The transformed Euler equations in perturbation form m
for example, be found in [10].
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The 2D Euler equations are obtained forS≡ 0 in (1). If the nonlinear terms in (1) are neglected, the lineari
Euler equations are obtained. Then,(ρu)′ = ρ0u′ andp′ = (γ − 1)(ρE)′.

The multi-dimensional applications start from silence, i.e. the initial conditionU′ = 0, except for the boundary
where the sound is generated. For the rocket launch application, noise is modeled as a time harmonic
perturbation. Non-reflecting boundary conditions are implemented by the first approximation of the En
Majda absorbing boundary conditions. Since the axis of symmetry, i.e. thex-axis, is straddled, the axisymmetr
boundary conditions are imposed by symmetry ofρ′, (ρu)′, (ρE)′ and by anti-symmetry of(ρv)′. At a solid wall,
the normal velocity is set equal to zero.

3. High order method

3.1. Summation by parts (SBP) property

Assume that the computational domain[0,1] is discretized byN + 1 grid pointsxm = mh, m = 0,1, . . . ,N ,
with h = 1

N
. High order difference operatorsQ for ‘d/dx ’ satisfying the SBP property

(u,Qv)h = uT
NvN − uT

0v0 − (Qu,v)h (2)

whereu,v ∈ R
N+1, can be constructed [13,2,14]. The discrete scalar product and norm are defined by

(u, v)h = huTHv, ‖u‖2
h = (u,u)h (3)

whereH is a symmetric positive definite(N + 1) × (N + 1) matrix. Here,H is a diagonal matrix [2]. For th
rocket launch noise application, we employ a SBP satisfying difference operatorQ [2] with third-order accuracy
near the boundaries that coincides with the classical sixth-order central difference operator for the interior

The resulting ODE system is solved in time by the classical fourth-order explicit Runge–Kutta metho
metric terms are discretized by the same difference operators as the flux derivatives to maintain the order
racy of the scheme in curvilinear coordinates. AsH is diagonal, the SBP property is kept with the metric terms
the rocket launch noise application, the boundary conditions are imposed by injection, i.e. they are satisfi
a complete Runge–Kutta time step. This simple implementation of the boundary conditions goes at the ex
reduced stability.

Spurious high frequency oscillations are suppressed by a characteristic-based filter [9–11]. Fourth a
order low pass filters were found to be less accurate than the present characteristic-based filter [12].

3.2. SBP operators for DRP schemes

Dispersion Relation Preserving (DRP) schemes have attracted interest in computational aeroacoustics
formal accuracy of the method is lowered to get a better approximation of the wave number and thus
dispersion error. Using

1

h

τ+1∑
j=1

αj (um+j − um−j ) (4)

as an approximation of du(xm)/dx and choosing the coefficientsαj , j = 1, . . . , τ + 1, such that the accurac
becomes 2τ , the coefficientsαj will contain a free parameter. The approximate wave numberk̃ is given by

hk̃ = 2
τ+1∑

αj sin(jhk) (5)

j=1
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Fig. 1. Approximate nondimensional wave numberhk̃ versus exact onehk for 2nd (a), 4th (b), 6th (c) and 8th (d) order standard cente
difference methods (dashed) and DRP schemes of order four (e) six (f) and eight (g) (solid).

Fig. 1. Approximation du nombre d’onde adimensionnelhk̃ en comparaison de la valeur exactehk pour les schémas centrés classiques (tir
d’ordre 2 (a), 4 (b), 6 (c), 8 (d), et les schémas DRP d’ordre quatre (e), six (f) et huit (g) (ligne).

The free parameter is chosen such that theL2 error squared

π/2∫
−π/2

|hk − hk̃|2 d(hk) (6)

is minimized. A comparison between standard centered finite difference methods and DRP schemes is
Fig. 1, wherehk̃ = hk̃(hk) is plotted. The wave number is clearly better approximated with the DRP scheme
with the standard centered difference methods.

Given a DRP scheme of order 2τ with coefficientsαj , j = 1, . . . , τ + 1, a difference operatorQ which is
accurate of orderτ near the boundary and a diagonal scalar product matrixH in (3) will be derived such that th
summation by parts property (2) is fulfilled. For more details see [6].

To sketch the derivation of the operatorQ, we consider for simplicity the approximation of the derivatived
dx

for
x ∈ [0,∞). The difference operatorQ has to be modified for rows 1, . . . ,2τ . Q has the following structure [13]

hQ = H−1

(
B C

−CT D

)
(7)

whereB is a full 2τ by 2τ matrix,C is a lower triangular matrix andD is an antisymmetric band matrix.
We requireHQ to be antisymmetric, except forh00q00 = −1/2, for Q to satisfy the SBP property. Moreove

HQ should match the DRP scheme in the interior.τ th order accuracy near the boundary requires the differe
operatorQ applied to polynomials of degree 0, . . . , τ to yield the exact first derivatives. Then, we can express
first 2τ elements in the diagonal matrixH in terms ofτ(2τ − 1) elements ofHQ. The other diagonal elemen
of H are 1, and the other elements ofHQ andQ correspond to the DRP scheme. All these conditions lead
system of equations to determine theτ(2τ − 1) unknown elements ofHQ. KnowingHQ and thusH , Q can be
computed.
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Table 1
Order of accuracy foruI using SBP 2-4 and SBP 2-4(6) for the
1D test case att = 1.5

Tableau 1
L’ordre d’approximation pouruI avec SBP 2-4 et SBP 2-4(6)
pour le cas test 1D àt = 1,5

# of grid points SBP 2-4 SBP 2-4(6)

101
202 3.0134 3.0137
401 3.0091 3.0106
801 3.0068 3.0083

4. Results

4.1. 1D test problem

The summation by parts operators for DRP schemes were tested for the hyperbolic system

ut +
(

1 0
0 −1

)
ux = 0, u =

(
uI

uII

)
(8)

with 0 � x � 1, t � 0. With the initial datauI(x,0) = sin 2πx, uII (x,0) = −sin 2πx, and boundary condition
uI(0, t) = uII (0, t), uII (1, t) = uI(1, t), t � 0, the exact solution isuI = sin2π(x − t), uII = −sin2π(x + t).

The boundary conditions were imposed using the simultaneous approximation term (SAT) method [1
orders of accuracy for SBP-2-4 (SBP operator with 2nd order near boundaries and the 4th order standar
in interior) and SBP-2-4(6) (SBP operator with 2nd order near boundaries and the 4th order DRP scheme
from 6th order standard scheme in interior) agree with theory, i.e. we get the expected 3rd order accu
Table 1. For, the global order of accuracy for a finite difference scheme is one order higher than the acc
the boundaries, provided the order of accuracy in the interior is larger than at the boundaries [1]. A more t
study of these new SBP operators shows that the error is about 20% lower for SBP-2-4(6) compared to SBP
Note that no filter was used here.

4.2. Rocket launch noise

The numerical method was verified for test problem 2 of category 4 in [15]: the sound field generated
oscillating circular piston in a wall. The details are given in [16].

The problem formulation is quite similar to the test problem [16,17,12]. Under the rocket, a duct lea
exhaust jet away from the launch zone. Between the duct and the solid wall, sound can enter the comp
domain. This source of sound is approximated as an oscillating piston.

The problem setting can be seen in Fig. 2 on the left. The rocket is modeled as a cylinder with the heig
and the radius 5 m. The nose cone is approximated by a hemisphere with the radius of the cylinder. The
assumed to be generated by a piston between the cylinder and a circle of radius 10 m, cf. Inlet/outlet bou
Fig. 2 on the left. The piston velocity is given as a harmonic perturbationu′ = ε sin(ωt), whereε = 10−4. If the
filter coefficientκ is too low, high frequency oscillations caused by the discontinuity ofu′ at x = 0, y = 10 m are
not damped. Ifκ is too large, the accuracy is degraded by too much numerical damping. A couple of frequ
have been investigated. Here, we only report 33 Hz.

The acoustic pressure contours computed with a smooth 240× 240 grid are shown in Fig. 2 on the right. Th
acoustic pressure amplitude at the top of the hemisphere reaches 38% of the inlet value. The inlet maximu
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Fig. 2. Left: The source of sound is an oscillating piston that oscillates in thex-direction, cf. Inlet/outlet boundary. The axisymmetric bound
is located aty = 0. Right: Solution forp′ when the frequency is 33 Hz. The acoustic pressure is measured in dB. The dashed lines
isobars where the acoustic pressure is 0.

Fig. 2. À gauche : La source acoustique est un piston oscillant dans la directionx, cf. Inlet/outlet boundary (Bord entrée/sortie). L’axe
symétrie est localisé ày = 0. À droite : Solution pourp′ pour une fréquence de 33 Hz. La pression acoustique est mesurée en dB. Les
en pointillés sont les isobarres où la pression acoustique est 0. Légende : Rocket= Fusée, Solid wall boundary= Bord de paroi rigide, Duc
= Canal, Inlet/outlet boundary= Bord entrée/sortie, Farfield boundary= Bord de rayonnement, Axisymmetric boundary with 3 rows of gh
points= Bord axisymétrique avec 3 lignes de points fictifs.

pressure level corresponds to 120 dB. This gives a maximum sound pressure level of 112 dB at the no
rocket.

5. Conclusions

We have devised strictly stable high order difference methods minimizing the dispersion error. The new s
are constructed to be stable for initial-boundary value problems like the Euler equations. The perturbation
the Euler equations has been discretized by a strictly stable fourth order difference method to simulat
launch noise propagation at low Mach numbers.
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