
/

ise

eometries
minated
tion prob-
sing finite

n
xes et les
problèmes

couplé des
de l’énergie

regard des
C. R. Mecanique 333 (2005) 713–718

http://france.elsevier.com/direct/CRAS2B

Computational AeroAcoustics: from acoustic sources modeling to farfield radiated no
prediction

A stable and efficient hybrid method for aeroacoustic sound
generation and propagation

Jan Nordströma,b,∗, Jing Gongb

a The Department of Computational Physics, Division of Systems Technology, the Swedish Defence Research Agency,
164 90 Stockholm, Sweden

b The Department of Information Technology, Scientific Computing, Uppsala University, 751 05 Uppsala, Sweden

Available online 9 September 2005

Abstract

We discuss how to combine the node based unstructured finite volume method widely used to handle complex g
and nonlinear phenomena with very efficient high order finite difference methods suitable for wave propagation do
problems. This fully coupled numerical procedure reflects the coupled character of the sound generation and propaga
lem. The coupling procedure is based on energy estimates and stability can be guaranteed. Numerical experiments u
difference methods that shed light on the theoretical results are performed.To cite this article: J. Nordström, J. Gong, C. R.
Mecanique 333 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Une méthode hybride, stable et efficace pour la génération et la propagation acoustique.Nous discutons de la faço
de combiner une méthode de volumes finis en maillage non structuré, largement utilisé pour les géométries comple
phénomènes non linéaires, avec une méthode trés performante de différences finies d’ordre élevé adapté pour les
dominés par la propagation acoustique. Cette procédure numérique fortement couplée rend compte du caractère
phénomènes de génération et de propagation acoustique. La procédure de couplage est basée sur des estimations
et la stabilité peut être alors garantie. Les expériences numériques utilisant les méthodes de différences finies, en
résultats théoriques, sont réalisées.Pour citer cet article : J. Nordström, J. Gong, C. R. Mecanique 333 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

The computation of aeroacoustic sound can in many applications be divided into two parts: (i) The comp
of the source in the near field by solving the nonlinear fluid flow equations; (ii) the calculation of sound propa
to the far field by solving linear equations. Sometimes the coupled character of the problem, i.e. the fact
sound source influence the sound propagation and that the sound propagation influence the nature of the
important. In those cases, the coupling must be kept in the computational procedure for a correct result.

In computational fluid dynamics, node based unstructured finite volume methods are widely used to
complex geometries and nonlinear phenomena. It is also clear that high order finite difference methods
efficient for wave propagation dominated problems such as computational aeroacoustics and computatio
tromagnetics.

In this paper we will discuss how to combine the finite volume method described and analyzed in [1
the finite difference methods considered in [2–4]. In real life calculations, the finite volume method will mai
used close to the sound source where complex geometries and nonlinear phenomena are important while
efficient finite difference method are ideally suited for the pure sound propagation part in the far field.

Both these methods employ so-called summation by parts (SBP) operators and impose the boundary c
weakly. This specific character of the methods enables us to couple these different methods together in
way. Moreover, it can be shown that a strictly stable procedure which is important for long time calculati
realistic meshes can be obtained, see [1–4].

In a forthcoming paper we will show in detail how to combine the finite volume method with the finite diffe
method in a truly stable way. Here we will indicate how to obtain those results and exemplify the whole pro
by using finite difference methods.

2. Analysis

The continuous problem we are interested in is of the general form:

ut + Aux + Buy = 0, (x, y) ∈ Ω ⊂ R
2 (1)

with suitable boundary and initial conditions. In (1),u is the vector of unknowns andA and B are constant
symmetric, square matrices withm rows and columns. For aeroacoustic applications we can consider (1) to
symmetrized Euler equations. The energy method applied to (1) gives

d

dt
‖u‖2

Ω = −
∮

∂Ω

uT(Ax̂ + Bŷ)u · n̂ds (2)

with the use of Greens formula and the symmetry ofA andB. In (2),‖u‖2 = ∫
u2 dx dy, n̂ is the outward pointing

unit normal to∂Ω , x̂ and ŷ are the unit vectors in thex- andy-directions and ds is the infinitesimal arc length
element counted counter clockwise aroundΩ .

The number of boundary conditions at any point on the boundary is equal to the number of negative eige
of (Ax̂ + Bŷ) · n̂. When referring to the problem (1), it is assumed that the boundary conditions are such th
is true.

2.1. The two different numerical approximation methods

Let u denote a grid function andux its exact derivative projected onto the same grid. We callD = P −1Q an
(n + 1)th order accurate approximation of the first derivative operator if

Du = ux + [
O(hn), . . . ,O(h2m), . . . ,O(hn)

]T (3)
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Fig. 1. (a) The unstructured grid (solid line) and the dual grid (dashed line); (b) a hybrid grid with an interface.

Fig. 1. (a) Maillage non structuré (trait plein) et maillage dual (tiretet) ; (b) maillage hybride avec une interface.

where 2m > n. The operatorD = P −1Q is an SBP operator if (i) the matrixP is symmetric and positive definit
and defines a scalar product(u, v)P = uTPv and a norm‖u‖2

P = (u,u)P and (ii) the matrixQ is nearly skew-
symmetric andQ + QT = B, whereB is diagonal such thatB = diag[−1,0, . . . ,0,1]. These properties yield,

(u,Du) = uTPDu = uTQu = u2
N − u2

0 − (Du,u)

which completely mimics integration by parts. 2mth order accuracy in (3) requiren = 2m − 1 and aP which have
blocks at the upper left and lower right corners. With a purely diagonalP , we can obtain an SBP operator ifn = m

which leads to(m + 1)th order accuracy.
We can couple one type of finite difference method to another but also to a node based finite volume me

we use diagonal norms in the finite difference method. We consider finite volume approximations of the dif
operators such that

Dx = P −1Qx, Dy = P −1Qy, Qx + QT
x = Y, Qy + QT

y = X (4)

whereP is a diagonal matrix with the control volumes from the dual grid, see Fig. 1(a), on the diagona
non-zero elements inY,X are�yi,−�xi respectively and correspond to the boundary points. Eq. (4) show
also the finite volume scheme is on SBP form since

(u,Dxu) = uTPDxu = uTQxu = uTYu − (Dxu,u)

The unstructured finite volume method is at most second order accurate.
Both the finite difference and finite volume scheme described above require a particular boundary trea

order to obtain stability. There are various techniques but we will use the so-called SAT method develope
The SAT technique is a penalty procedure that can be used to specify outer boundary conditions as well a
block interfaces, see Fig. 1(b). For details we refer the reader to [1–5].

2.2. Stable interface treatment

We will discretise (1) onΩ: −1� x � 1, 0� y � 1 using 2 blocks with an interface atx = 0. We consider finite
difference methods in both blocks and discretize the domains withn andl points and in thex-direction andk points
in they-direction and denote thenkm × 1, lkm × 1 vectorsu andv, respectively. Note that the grid points at t
interface match. The difference operators in thex- andy-direction might be different in the left and right doma
and are denotedDL

x , DR
x , DL

y andDR
y . Further we introduce the following simplifications,ĨL = In ⊗ Ik ⊗ Im,
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ĨR = Il ⊗ Ik ⊗ Im, Σ̃L = In ⊗ Ik ⊗ ΣL andΣ̃R = Il ⊗ Ik ⊗ ΣR . The notation⊗ stands for the Kronecker produc
By using these notations, the semi-discrete system becomes,

ĨLut + (
DL

x ⊗ Ik ⊗ A
)
u + (

In ⊗ DL
y ⊗ B

)
u = (

(P L
x )−1 ⊗ Ik ⊗ Im

)
Σ̃L

(
eN ⊗ (uN − v0)

) + SATL (5)

ĨRvt + (
DR

x ⊗ Ik ⊗ A
)
v + (

Il ⊗ DR
y ⊗ B

)
v = (

(P R
x )−1 ⊗ Ik ⊗ Im

)
Σ̃R

(
e0 ⊗ (v0 − uN)

) + SATR (6)

where the right-hand sides are the penalty terms.ΣR andΣL arem × m matrices that are determined by stabili
Note that we have a penalty onuN − v0 which is the difference between the solution along the interface.
term SATL andSATR denotes the penalty terms at the outer boundaries. These are scaled to precisely ca
boundary terms.e0 = (1,0, . . . ,0)T andeN = (0, . . . ,0,1)T arel × 1 andn × 1 vectors, respectively.

In [6], it was shown that the scheme above is stable and conservative ifP L
y = P R

y and

λi
L <

λi

2
, λi

R = λi
L − λi (7)

wherei = 1, . . . ,m. In (7), λi is the ith eigenvalue of the symmetric matrixA = XΛXT whereX contains the
eigenvectors ofA. We have also assumed thatΣL = XΛLXT andΣR = XΛRXT. The first condition in (7) is the
stability condition and the second condition is the conservation condition, see for example [2].

It has now been indicated how to couple two different blocks together in a stable way using finite diff
methods of SBP type. Note that the computational blocks have to share the points constituting the interna
aries at each block interface and that the norm along the interface has to be the same at both sides, i.e
P L

y = P R
y . In a forthcoming paper we will show in detail how to couple the building blocks (the finite vo

method and the finite difference method) of the final hybrid method, see Fig. 1(b), in a stable way. The s
proof proceeds essentially along the lines described above.

3. Numerical experiments

Numerical experiments that support the basic idea in this paper, namely that it is worthwhile to couple a
low order method with an efficient high order method in a stable way will be shown. Examples that highlig
stability issues will also be given. We will only consider the finite difference case. Consider the scalar ad
problem,

ut + aux + buy = 0, (x, y) ∈ Ω (8)

with a, b > 0 and initial data and boundary data atx = −1, y = 0 such that the exact solution is given byu =
sin(2π(x + y − (a + b)t)). In Fig. 2, the result of a second order and sixth order accurate calculation atT = 1 on
one domain is shown. A uniform mesh with 81× 41 grid points were used. Note the significant difference in e
levels.

We move on to calculations on two domains with an interface atx = 0. In the calculations shown in Fig. 3, w
have used 41× 41 grid point in both the left and right domain. In the calculation in Fig. 4(a) we have used 41× 41
in the left domain and only 11× 41 in the right one. Note that theL2-error are of the same size for all calculation
The major part of the error in Fig. 4(a) is created in the left domain (with the dense mesh and low accura
advected into the right domain (with the coarse mesh and high accuracy). This effect can be seen in Fig. 3

Finally we will illustrate the importance of stability at the interface. If we apply condition (7) to our m
problem (8) we find that it is stable forλL < a/2, λR = λL − a. In the calculation shown in Fig. 4(b) we have us
λL = a. The calculation were done on a mesh with 41× 41 grid point in both the left and right domain. The calc
lation shown in Fig. 4(b) explodes shortly afterT = 0.25. Note the huge error along the interface. A correspon
calculation usingλL = 0 is stable and has Log(L2-error) = −6.20 atT = 1 which corresponds to the error level
Fig. 2(b).



J. Nordström, J. Gong / C. R. Mecanique 333 (2005) 713–718 717

en
re,

to handle
able for
(a) (b)

Fig. 2. One domain, (a) second order results, Log(L2-error) = −1.84; (b) sixth order results, Log(L2-error) = −6.21.

Fig. 2. Un domaine, (a) résultats avec le second ordre, Log(L2-erreur) = −1,84 ; (b) résultats avec le sixième ordre, Log(L2-erreur) = −6,21.

(a) (b)

Fig. 3. Both domains are sixth order iny, (a) left and right domain is second order inx, Log(L2-error) = −2.13, (b) left is second order inx,
right domain is sixth order inx, Log(L2-error) = −2.24.

Fig. 3. Les deux domaines avec le sixième ordre eny, (a) les domaines de gauche et de droite avec le second ordrex,
Log(L2-erreur) = −2,13, (b) le domaine de gauche avec le second ordre enx, le domaine de droite avec le sixième ord
Log(L2-erreur) = −2,24.

4. Conclusions

It has been discussed how to combine the node based unstructured finite volume method widely used
complex geometries and nonlinear phenomena with very efficient high order finite difference methods suit
wave propagation dominated problems.
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Fig. 4. (a) Left domain is second order inx, right domain is sixth order inx, both domains are sixth order iny, Log(L2-error) = −2.22; (b) sixth
order accurate operators with an unstable interface treatment.

Fig. 4. (a) Le domaine de gauche avec le second ordre enx, le domaine de droite avec le sixième ordre, les deux domaines avec le si
ordre eny, Log(L2-erreur) = −2,22 ; (b) opérateurs du sixim̀e ordre avec un traitement de l’interface instable.

The coupling procedure is based on energy estimates and stability can be guaranteed. Numerical exp
using finite difference methods that exemplify the theoretical discussions have been presented.

The calculations show that increased efficiency and accuracy can be obtained using hybrid methods. It
been shown that the key to accurate results are stable interface treatments.
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