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Abstract

We discuss how to combine the node based unstructured finite volume method widely used to handle complex geometries
and nonlinear phenomena with very efficient high order finite difference methods suitable for wave propagation dominated
problems. This fully coupled numerical procedure reflects the coupled character of the sound generation and propagation prob-
lem. The coupling procedure is based on energy estimates and stability can be guaranteed. Numerical experiments using finite
difference methods that shed light on the theoretical results are perfofimede this article: J. Nordstrém, J. Gong, C. R.

Mecanique 333 (2005).
0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Une méthode hybride, stable et efficace pour la génération et la propagation acoustiqugous discutons de la fagcon

de combiner une méthode de volumes finis en maillage non structuré, largement utilisé pour les géométries complexes et les
phénomeénes non linéaires, avec une méthode trés performante de différences finies d’ordre élevé adapté pour les probleme:
dominés par la propagation acoustique. Cette procédure numérique fortement couplée rend compte du caractére couplé de:
phénomeénes de génération et de propagation acoustique. La procédure de couplage est basée sur des estimations de I'énerg
et la stabilité peut étre alors garantie. Les expériences numériques utilisant les méthodes de différences finies, en regard des
résultats théoriques, sont réaliséeaur citer cet article: J. Nordstrom, J. Gong, C. R. Mecanique 333 (2005).
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1. Introduction

The computation of aeroacoustic sound can in many applications be divided into two parts: (i) The computation
of the source in the near field by solving the nonlinear fluid flow equations; (ii) the calculation of sound propagation
to the far field by solving linear equations. Sometimes the coupled character of the problem, i.e. the fact that the
sound source influence the sound propagation and that the sound propagation influence the nature of the source,
important. In those cases, the coupling must be kept in the computational procedure for a correct result.

In computational fluid dynamics, node based unstructured finite volume methods are widely used to handle
complex geometries and nonlinear phenomena. It is also clear that high order finite difference methods are very
efficient for wave propagation dominated problems such as computational aeroacoustics and computational elec
tromagnetics.

In this paper we will discuss how to combine the finite volume method described and analyzed in [1] with
the finite difference methods considered in [2—4]. In real life calculations, the finite volume method will mainly be
used close to the sound source where complex geometries and nonlinear phenomena are important while the highl
efficient finite difference method are ideally suited for the pure sound propagation part in the far field.

Both these methods employ so-called summation by parts (SBP) operators and impose the boundary condition:
weakly. This specific character of the methods enables us to couple these different methods together in a stable
way. Moreover, it can be shown that a strictly stable procedure which is important for long time calculations on
realistic meshes can be obtained, see [1-4].

In a forthcoming paper we will show in detail how to combine the finite volume method with the finite difference
method in a truly stable way. Here we will indicate how to obtain those results and exemplify the whole procedure
by using finite difference methods.

2. Analysis

The continuous problem we are interested in is of the general form:
U+ Auy + Buy =0, (x,y) € 2 CR? 1)

with suitable boundary and initial conditions. In (1),is the vector of unknowns and and B are constant,
symmetric, square matrices withh rows and columns. For aeroacoustic applications we can consider (1) to be the
symmetrized Euler equations. The energy method applied to (1) gives

d . A oA
E||u||?z=—y§uT<Ax+By>u~nds )
a0
with the use of Greens formula and the symmetryiafnd B. In (2), ||u||? = i u?dx dy, 7 is the outward pointing
unit normal t0d£2, x andy are the unit vectors in the- and y-directions and dis the infinitesimal arc length
element counted counter clockwise around
The number of boundary conditions at any point on the boundary is equal to the number of negative eigenvalues

of (Ax + By) - n. When referring to the problem (1), it is assumed that the boundary conditions are such that this
is true.

2.1. Thetwo different numerical approximation methods

Let » denote a grid function and, its exact derivative projected onto the same grid. We bat P~1Q an
(n 4+ 1)th order accurate approximation of the first derivative operator if

Du=u, +[OW",...,00%",...,00"] 3)
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Fig. 1. (a) The unstructured grid (solid line) and the dual grid (dashed line); (b) a hybrid grid with an interface.
Fig. 1. (a) Maillage non structuré (trait plein) et maillage dual (tiretet) ; (b) maillage hybride avec une interface.

where 2n > n. The operato) = P~1Q is an SBP operator if (i) the matriR is symmetric and positive definite
and defines a scalar produet, v)p = u' Pv and a norm||u||% = (u, u)p and (i) the matrixQ is nearly skew-
symmetric andQ + Q" = B, whereB is diagonal such thak = diag—1,0, ..., 0, 1]. These properties yield,

(u, Du) = u' PDu = uTQu = u,zv — u% — (Du, u)

which completely mimics integration by partszth order accuracy in (3) require= 2m — 1 and aP which have
blocks at the upper left and lower right corners. With a purely diagénale can obtain an SBP operatonit m
which leads tam + 1)th order accuracy.

We can couple one type of finite difference method to another but also to a node based finite volume methods if
we use diagonal norms in the finite difference method. We consider finite volume approximations of the difference
operators such that

Dy=P'Q,, Dy=P'Q,, 0.+0]=Y. 0,+0]=X (4)

where P is a diagonal matrix with the control volumes from the dual grid, see Fig. 1(a), on the diagonal. The
non-zero elements i, X are Ay;, —Ax; respectively and correspond to the boundary points. Eq. (4) shows that
also the finite volume scheme is on SBP form since

(u, Dyu) = uTPDxu = uTqu =u'Yu— (Dyu,u)

The unstructured finite volume method is at most second order accurate.

Both the finite difference and finite volume scheme described above require a particular boundary treatment in
order to obtain stability. There are various techniques but we will use the so-called SAT method developed in [5].
The SAT technique is a penalty procedure that can be used to specify outer boundary conditions as well as treating
block interfaces, see Fig. 1(b). For details we refer the reader to [1-5].

2.2. Sableinterface treatment

We will discretise (1) on2: —1 < x <1, 0< y < 1 using 2 blocks with an interface at= 0. We consider finite
difference methods in both blocks and discretize the domaingaatid! points and in the-direction andk points
in the y-direction and denote thekm x 1, lkm x 1 vectorsu andv, respectively. Note that the grid points at the
interface match. The difference operators in thend y-direction might be different in the left and right domain
and are denote®d’, DX, D}L, and Df. Further we introduce the following simplification, = I, ® Iy ® I,
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Ir=L®LQ®L,, E1=1,9;® X, andEr = [, ® I; ® X. The notation® stands for the Kronecker product.
By using these notations, the semi-discrete system becomes,

Iug+ (DE@ Ik ® A)u+ (I, ® DE® B)u = (PH ™ @ Ik ® In) Z1 (e ® (uy — o)) + SAT,, (5)
Irvi+ (Df @ L@ A)jv+ (L ® DY ® B)v = (P ® Ik ® In) Zr(e0 ® (vo — un)) + AT (6)

where the right-hand sides are the penalty tetFysand X, arem x m matrices that are determined by stability.

Note that we have a penalty ary — vg which is the difference between the solution along the interface. The
term SAT, and SAT g denotes the penalty terms at the outer boundaries. These are scaled to precisely cancel the
boundary termseg = (1,0,...,0)T andey = (0, ...,0,1)T arel x 1 andn x 1 vectors, respectively.

In [6], it was shown that the scheme above is stable and conservafifef P} and

S . . .

)JL<E, AMp=2L — ! 7
wherei = 1,...,m. In (7), A! is theith eigenvalue of the symmetric matrik= X AX" whereX contains the
eigenvectors ofi. We have also assumed thef = X A; X" and Xz = X Ag X ". The first condition in (7) is the
stability condition and the second condition is the conservation condition, see for example [2].

It has now been indicated how to couple two different blocks together in a stable way using finite difference
methods of SBP type. Note that the computational blocks have to share the points constituting the internal bound-
aries at each block interface and that the norm along the interface has to be the same at both sides, i.e. we nee
PyL = Pf. In a forthcoming paper we will show in detail how to couple the building blocks (the finite volume
method and the finite difference method) of the final hybrid method, see Fig. 1(b), in a stable way. The stability
proof proceeds essentially along the lines described above.

3. Numerical experiments

Numerical experiments that support the basic idea in this paper, namely that it is worthwhile to couple a robust
low order method with an efficient high order method in a stable way will be shown. Examples that highlight the
stability issues will also be given. We will only consider the finite difference case. Consider the scalar advection
problem,

us+au, +buy =0, (x,y)ef (8)

with a, b > 0 and initial data and boundary dataxat —1, y = 0 such that the exact solution is given by=
sin(2r (x + y — (a + b)1t)). In Fig. 2, the result of a second order and sixth order accurate calculatioa-dt on
one domain is shown. A uniform mesh with 8141 grid points were used. Note the significant difference in error
levels.
We move on to calculations on two domains with an interface=at0. In the calculations shown in Fig. 3, we
have used 4% 41 grid point in both the left and right domain. In the calculation in Fig. 4(a) we have usedid1
in the left domain and only 1% 41 in the right one. Note that thiey-error are of the same size for all calculations.
The major part of the error in Fig. 4(a) is created in the left domain (with the dense mesh and low accuracy) and
advected into the right domain (with the coarse mesh and high accuracy). This effect can be seen in Fig. 3(b) also.
Finally we will illustrate the importance of stability at the interface. If we apply condition (7) to our model
problem (8) we find that it is stable far;, < a/2, A = A1 —a. In the calculation shown in Fig. 4(b) we have used
AL = a. The calculation were done on a mesh withxd41 grid point in both the left and right domain. The calcu-
lation shown in Fig. 4(b) explodes shortly affér= 0.25. Note the huge error along the interface. A corresponding
calculation using.; = 0 is stable and has Légj»-error) = —6.20 atT = 1 which corresponds to the error level in
Fig. 2(b).
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Fig. 2. One domain, (a) second order results, (Logerron) = —1.84; (b) sixth order results, Lad»-erron = —6.21.
Fig. 2. Un domaine, (a) résultats avec le second ordre(L2grreuy = —1,84 ; (b) résultats avec le sixieme ordre, l(h@-erreuy = —6,21.
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Fig. 3. Both domains are sixth order jn (a) left and right domain is second orderdnLog(L»-erron) = —2.13, (b) left is second order in,
right domain is sixth order in, Log(Ly-erron = —2.24.

Fig. 3. Les deux domaines avec le sixieme ordre yen(a) les domaines de gauche et de droite avec le second ordre, en
Log(L2-erreuy = —2,13, (b) le domaine de gauche avec le second ordrexgre domaine de droite avec le sixieme ordre,
Log(L2-erreuy = —2,24.

4. Conclusions

It has been discussed how to combine the node based unstructured finite volume method widely used to handle
complex geometries and nonlinear phenomena with very efficient high order finite difference methods suitable for
wave propagation dominated problems.
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Fig. 4. (a) Left domain is second ordeninright domain is sixth order in, both domains are sixth order jn Log(L,-erron = —2.22; (b) sixth
order accurate operators with an unstable interface treatment.

Fig. 4. (a) Le domaine de gauche avec le second ordre &mdomaine de droite avec le sixieme ordre, les deux domaines avec le sixieme
ordre eny, Log(Ly-erreuy = —2,22 ; (b) opérateurs du sixie ordre avec un traitement de I'interface instable.

The coupling procedure is based on energy estimates and stability can be guaranteed. Numerical experiment
using finite difference methods that exemplify the theoretical discussions have been presented.

The calculations show that increased efficiency and accuracy can be obtained using hybrid methods. It has alsc
been shown that the key to accurate results are stable interface treatments.
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