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Abstract

A high-order implementation of the Discontinuous Galerkin (DG) method is presented for solving the three-dimensio
Linearized Euler Equations on an unstructured hexahedral grid. The method is based on a quadrature free implemen
the high-order accuracy is obtained by employing higher-degree polynomials as basis functions. The present impleme
up to fourth-order accurate in space. For the time discretization a four-stage Runge–Kutta scheme is used which is fo
accurate. Non-reflecting boundary conditions are implemented at the boundaries of the computational domain.Th
is verified for the case of the convection of a 1D compact acoustic disturbance. The numerical results show that th
convergence of the method is of orderp + 1 in the mesh size, withp the order of the basis functions. This observation is
agreement with analysis presented in the literature.To cite this article: H. Özdemir et al., C. R. Mecanique 333 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Vérification d’une méthode de Galerkine discontinue d’ordre élevé pour des éléments hexaédriques.L’implantation
d’une méthode de Galerkine discontinue d’ordre élevé est présentée pour résoudre les équations d’Euler linéarisée
sionnelles en maillage non structuré avec des éléments hexaédriques. La méthode est basée sur l’utilisation de fo
quadrature non définies à l’avance et l’ordre élevé de la méthode est obtenu en utilisant des polynômes de degré éle
fonctions de base. La technique implantée est précise jusqu’à l’ordre 4 en espace. Pour la discrétisation en temps un
de Runge–Kutta précise à l’ordre 4 est utilisé. Des conditions aux limites non réfléchissantes sont implantées aux fro
domaine de calcul. La méthode est validée sur le cas 1D d’une perturbation acoustique. Les résultats numériques mo
le taux de convergence de la méthode est d’ordrep, p étant l’ordre des fonctions de base. Ce résultat est en accord av
analyses présentées dans la littérature.Pour citer cet article : H. Özdemir et al., C. R. Mecanique 333 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

Compared to computational fluid dynamics the accuracy of numerical methods for aeroacoustics requ
cial attention in the sense that numerical dispersion and dissipation errors are much more critical. A
finite-difference methods could be used to achieve higher-order accuracy, they need special treatments at t
aries and usually require smooth, structured meshes. Especially when the problem of interest involves
geometries this requirement cannot be met. The Discontinuous Galerkin (DG) method [1,2] has some remarkab
advantages with respect to flexibility in discretization of domains with complex geometries. TheDG method is a
highly compact finite-element projection method which provides a practical framework for the developme
higher-order method desired for computational aeroacoustics on non-smooth unstructured grids [3–5]. I
studies it has been shown that the accuracy is of order larger thanp + 1/2, while the spatial dispersion error
of order 2p + 3 and the spatial dissipation error is of order 2p + 2 [6]. The treatment of the boundary conditio
is relatively simple (no special treatment required), and obtaining uniform high-order accuracy at the bou
involving complex geometries is feasible. In the present paper a high-order implementation of theDG method
is presented for solving the three-dimensional Linearized Euler Equations on an unstructured hexahed
The method is based on a quadrature-free implementation and the high-order accuracy is obtained by e
higher-degree polynomials as basis functions.

2. Quadrature free discontinuous Galerkin method

We consider the following three-dimensional Linearized Euler Equations (LEE):

L(u) = ∂u
∂t

+ ∂fi (u)

∂xi

= s, x ∈ Ω, t ∈ It (1)

with initial and boundary conditions and,

fi (u) = Ai(u0)u, Ai ∈ R
5 × R

5

Ai(u0) =


u0i δi1ρ0 δi2ρ0 δi3ρ0 0
0 u0i 0 0 δ1i/ρ0
0 0 u0i 0 δ2i/ρ0
0 0 0 u0i δ3i/ρ0
0 δi1γp0 δi2γp0 δi3γp0 u0i

 , i = 1,2,3 (2)

whereu0 is the reference state vector,s∈ R
5 is the source term,Ω ∈ R

3 is an open domain with boundary∂Ω and
t ∈ It denotes time, whereIt ∈ R

+ \ {0}. Furthermore, the matricesAi , i = 1,2,3, are real and have real eigenv
ues, i.e., the system is hyperbolic. Att = 0 initial conditions are applied. The solution vectoru : Ω × It �→ R

5 is
given byu = (ρ′, u′

1, u
′
2, u

′
3,p

′)T, where the components of the vector denote the dimensionless perturbati
the primitive variables: density, velocities (three directions) and pressure, respectively. Note that the form
presented above is not restricted to isentropic flows and entropy waves are allowed.

We discretize the Linearized Euler equations (LEE) (Eq. (1)) in space, employing the Discontinuous Galer
(DG) method in a regionΩ . We consider a solutionu(·, t) such that for each timet ∈ It , u(·, t) belongs to the
function spaceU of the form u(·, t) ∈ U5, U ≡ L2(Ω), whereL2(Ω) denotes a Hilbert space of all squa
integrable functions onΩ with an associated inner product〈·, ·〉. The weak formulation of theLEE can be written as〈

L
(
u(·, t)),v

〉 = 〈s,v〉, ∀v ∈ U5 (3)

In order to discretize theLEE we divide the solution domainΩ into non-overlapping hexahedral elementsΩj such

that 
Ω = ⋃Ne 
Ωj , whereΩj = Ωj ∪ ∂Ωj is the closure ofΩj and the boundary∂Ωj belongs to at most two
j=1



H. Özdemir et al. / C. R. Mecanique 333 (2005) 719–725 721

imation

r the
e

e

e the

is func-

uous,
vide the
roposed

t of that

e
the
al
d to

als
elements andNe denotes the number of elements. In the semi-discrete formulation we consider the approx
uh(·, t), of the solutionu(·, t) as an expansion onto the basis set{bjk}

uh(x, t) =
Ne∑
j=1

ujk(t)bjk(x) (4)

with, ujk ∈ L2(It ) andbjk ∈ L2(Ω). It is noted that we employ the Einstein summation convention, except fo
index “j ”. The ujk are the solution expansion coefficients of the solution onΩj and functions of time only. Th
functions{bjk} are linearly independent basis functions defined such that

bjk ≡
{

b̄jk(x), x /∈ ∂Ωj ,

0, x ∈ ∂Ωj ,
b̄jk(x) = 0, x /∈ Ωj (5)

The functionsb̄jk andbjk differ only in thatbjk = 0 on the boundary∂Ωj while in general̄bjk �= 0 on the bound-
ary ∂Ωj . The basis functions are continuous inΩj andk = 0,1, . . . ,M is the index of the polynomials where th
upper limit is defined as

M(p,d) = 1

d!
d∏

l=1

(p + l) (6)

with d the number of space dimensions andp the highest degree of the polynomials used. We approximat
weak formulation (Eq. (3)) by〈

L
(
uh(·, t)

)
, bjm

〉 = 〈s, bjm〉, ∀j ∈ (1,2, . . . ,Ne), ∀m ∈ (0,1, . . . ,M) (7)

Using Eqs. (1), upon partial integration and applying Gauss’ theorem we evaluate Eq. (7) for every bas
tion bjm,∫

Ωj

∂ujk

∂t
bjkbjm dΩ −

∫
Ωj

fji

∂bjm

∂xi

dΩ +
∫

∂Ωj

bjmfjinji dS =
∫
Ωj

sbjm dΩ (8)

wherefji ≡ Aiujkbjk . At any interface between two elements, since the solution is allowed to be discontin
there is a left state and a right state leading to a Riemann problem. Solving the Riemann problem will pro
coupling and handle the discontinuity at element interfaces. Various kinds of flux formulas have been p
and used in the literature to approximate the Riemann problem. In this study we employ theLax–Friedrich flux
formula of the form

h(uL,uR,n) = 1

2

{
f(uL) + f(uR) − θ |a|max(uR − uL)

}
, θ � 0 (9)

where,|a|max is the maximum (absolute value) of the eigenvalues of the(5 × 5) matrix Ai , uL anduR are the
values of theujk at the interface calculated using expansion coefficients of the elements at the left and righ
interface.

The basis functions are defined on the ‘master’ or ‘reference’ elementΩ̂ , in the computational space. Th
local coordinates in the master element are given byξ = (ξ, η, ζ )T and the coordinate system has its origin at
centroid of the hexahedron̂Ω ≡ (−1,1)3. The physical coordinates in elementΩj are related to the computation
coordinates in̂Ω by a mapxj (ξ ) and an inverse mapξ j (x). Assuming that the physical elements are restricte

parallelepiped, both maps are linear, but for a constant. OnΩ̂ we define a set of linearly independent polynomi
{bk(ξ, η, ζ )} of degree� p:

{bk} = {
ξk1ηk2ζ k3 | 0� k1 + k2 + k3 � p, ki � 0

}
(10)
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Fig. 1. The solution domain.

Fig. 1. Domaine de solution.

The compactness of the method results in an easy implementation of the boundary conditions. The bound
ditions can be implemented by prescribing the exact external solution (uR) or by reformulating the Lax–Friedrich
flux in terms of the interior solution (uL) and the physical boundary conditions. For the current implement
characteristic-based non-reflecting and symmetry-plane boundary conditions are used as described by A

The time integration is performed by a four-step, low storage Runge–Kutta algorithm [7] which is kno
be fourth-order accurate for linear problems. Lesaint and Raviart [8] made the first analysis of the Discon
Galerkin method and proved a rate of convergence of at leasthp for general triangulations and ofhp+1 for Cartesian
grids employing basis polynomials up to orderp, whereh is a length scale that represents the size of elem
Later, Johnson and Pitkärata [1] proved a rate of convergence of at leasthp+1/2 for general triangulations an
Peterson [9] numerically confirmed that this rate of convergence cannot be improved within the class o
uniform meshes. Richter [10] obtained the optimal rate of convergence ofhp+1 for a semi-uniform triangulation
Hence, when the method is applied to a hexahedral mesh, the analysis of Lesaint and Raviart indicates
method is(p + 1)th-order accurate.

3. Convection of a 1D acoustic disturbance

As a test case Eqs. (1) are solved on a rectangular domain in which a compact 1D acoustic pertur
imposed through the initial condition on the hexahedral grid. The solution domain has dimensionsx ∈ [−5,5],
while in they–z plane it contains only one element, which is sufficient in order to represent the solution
present 1D problem. However, note that the unknown coefficientsujk associated with the basis functions that h
a variation with respect to they- andz-directions are not set to zero, but are computed as part of the sol
The initial acoustic perturbation is centered atx = 0. The simulations have been carried out with a quies
background (p0 = 1, u0 = 0, v0 = 0, w0 = 0, ρ0 = 1) without sources (s= 0) and the initial 1D condition for the
solution vector is given by:

u(x,0) = (
f (x),0,0,0, f (x)

)T
, f (x) = e−βx2

, β = − log(10−6)

2
(11)

3.1. Numerical results

The initial condition has been approximated by a Taylor-series expansion in each element which has t
spatial order of accuracy as the numerical method itself. The simulations have been performed with the pr
method. Symmetry boundary conditions are used iny- andz-directions, while characteristic based non-reflect
boundary conditions are employed at the boundaries inx-direction. In the results presented below the disturba
remains small at the boundariesx ± 5, i.e. the main part of the disturbance has not reached the boundary
solution is presented along the line inx-direction passing through the centroid of the elements.
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Fig. 2. Left: Distribution of pressure perturbation at dimensionless timet = 1 for �x = 0.2, for the analytical and numerical solutions. T
symbols indicate the numerical solutions, the solid line is the analytical result. Right: Reconstruction of the discontinuous solution
sionless timet = 1 and�x = 0.2, for various values ofp. The solid line indicate the discontinuous numerical solutions, the dotted line
analytical result.

Fig. 2. A gauche : Distribution de la perturbation de pression au temps adimensionnét = 1 à �x = 0,2, solution analytique et numériqu
Les symboles représentent la solution numérique, le trait continu le résultat analytique. A droite : Reconstruction de la solution
adimensionnét = 1 à�x = 0,2, pour différentes valeurs dep. Les traits représentent les solutions numériques discontinues, les traits po
le résultat analytique.

The simulations have been carried out on three different hexahedral meshes consisting of 100, 200
elements inx-direction, respectively. We obtained the time-converged solution by performing a time-refin
study. We can approximate the semi-discrete solution by employing Richardson extrapolation as follows:∣∣p′

�t − p′
�t=0

∣∣ = c�tα (12)

where,p′
�t is the fully-discrete solution,p′

�t=0 is the semi-discrete solution,c is a constant,�t is the dimensionles
time step andα is the order of accuracy of the time discretization. Performing simulations for different valu
the dimensionless time step,�t , we can construct the semi-discrete solutionp′

�t=0 for any point with the way
explained above. Employing Eq. (12) at each grid point the order of accuracy of the time discretizatioα, is
obtained which is around 4. The time refinement study confirms that indeed the present implementation
stage low-storage Runge–Kutta scheme is fourth-order accurate in time for the linear problem considered

The left-hand side of Fig. 2 shows a comparison of results for the first, second, third and fourth order a
spatial discretizations, respectively, with the corresponding analytical solution for dimensionless timet = 1. The
simulations have been performed on a relatively coarse mesh (number of elements inx-direction,N = 50) to
clearly demonstrate the accuracy of the method when employing higher-order polynomials. The results s
for the first-order method the pressure perturbation dissipates quickly, while the higher-order methods giv
better results. The right-hand side of Fig. 2 is the reconstruction of the discontinuous solution for various o
accuracy. Here, the solution is evaluated at a large number (100) of points within each element, as a post pr
using the basis functions. When only an element-wise constant basis functions is used (p = 0) the solution can only
be approximated element-wise constant. Increasing the polynomial degree to linear (p = 1) already gives a bette
approximation as can be seen from Fig. 2 qualitatively.
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Fig. 3. Left:L2-norm of error in pressure perturbation, Eq. (13) as function ofN , with �x = L/N , et L = 10, andL = 10, at dimensionles
time t = 1. Right: TheL2-norm of error in pressure perturbation as function ofN , with �x = L/N , with L = 10, at dimensionless timet = 1
where fewer points are used to evaluate theL2-norm.

Fig. 3. A gauche : Erreur en normeL2 de la perturbation de pression, Eq. (13), en fonction deN , avec�x = L/N , et L = 10, au temps
adimensionnét = 1. A droite : Erreur en normeL2 de la perturbation de pression, Eq. (13), en fonction deN , avec�x = L/N , etL = 10, au
temps adimensionnét = 1 où peu de points sont utilisés pour évaluer la normeL2.

Next, a grid convergence study is performed using the time-converged semi-discrete solution. In orde
form this study, the solution is reconstructed on an interrogation mesh with 10 000 common points used
meshes with 100, 200 and 400 elements inx-direction. TheL2-norm employed for each mesh, is of the form:

L2 =
{

1

L

L∫
0

[
p′(x, t) − p′

exact(x, t)
]2 dx

}1/2

∼=
{

1

10 000

10000∑
j=1

[
p′(xj , t) − p′

exact(xj , t)
]2

}1/2

(13)

with xj the points of the interrogation mesh, which gives an accurate approximation of the integral norm.
The left-hand side of Fig. 3 shows theL2-norm of the error in the pressure perturbation as a function o

number of elementsN , with �x = L/N , andL = 10. The results show that the present method is convergin
a rate ofhp+1 for p = 1,2 and 3 and with a rate slightly higher thanhp+1/2 for p = 0, which agrees with the
convergence rates derived in the literature, e.g., [6]. It is remarkable that in the range of�x considered the line o
the orderp method is situated above the one for the order-(p − 1) method for anyp considered.

It is also observed that in case fewer points are used to evaluate theL2-norm, e.g., only the points of the coarse
grid, the rate of convergence forp = 1 is abouth3 (see the right-hand side of Fig. 3) which is one order higher
expected, which might suggest that this specific norm based on some special points in the solution, name
close to the intersection points.

4. Concluding remarks

A study has been carried out with respect to the verification of a method developed to solve the Lineariz
Equations in three dimensions, employing a Discontinuous Galerkin spatial discretization on a hexahed
Performing a time-refinement study it is confirmed that the method is fourth-order accurate in time empl
four-stage low-storage Runge–Kutta scheme. From the grid convergence study it is concluded that the me
a rate of convergencehp+1 for p = 1,2 and 3 and slightly abovehp+1/2 for p = 0.
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