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Abstract

One of the major problems in computational aero-acoustics is the disparity in length scales between the flow
the acoustic field. As a result, a mapping function is normally used to achieve a non-uniform grid distribution. In t
per, a B-spline collocation method with an arbitrary grid placement capability is proposed. This capability not only
an optimum grid distribution but also avoids the numerical complexities associated with the mapping function. The B
collocation method is applied to the case of spinning co-rotating vortices. The result agrees well with the matched as
solution.To cite this article: R. Widjaja et al., C. R. Mecanique 333 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Collocation par B-spline appliquée aux simulations numériques en aéroacoustique.Un problème rencontré dans le
simulations numériques en aéroacoustique est la disparité des échelles de longueur sur lesquelles sont résolus le
vitesse de l’écoulement fluide et le champ de pression acoustique. Habituellement une fonction de transformation e
pour générer un maillage non-uniforme. Dans cet article une méthode de collocation par B-spline est proposée. Cett
permet un maillage optimum du domaine et évite les complexités numériques associées avec les fonctions de trans
Le champ acoustique généré par une paire de tourbillons co-rotatifs est simulé en utilisant cette méthode. Les résulta
simulation numérique sont en accord avec la solution asymptotique associée.Pour citer cet article : R. Widjaja et al., C. R.
Mecanique 333 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

Computational Aero-Acoustics (CAA) emerges from the success of Computational Fluid Dynamics (C
solving many physical problems. Nevertheless, Tam [1] pointed out that there are some issues that are
CAA. These issues include the long-propagation distance and life of acoustic waves; and the disparity i
scales between the flow field and acoustic field. The former provides enough time for any dissipation and di
errors to grow and contaminate the acoustic field. The latter requires both a dense mesh and a large com
domain, causing a uniform mesh to be impractical in CAA.

To overcome the first issue, many studies have been conducted to improve the numerical schemes c
used in CFD. Tam and Webb [2] developed a Dispersion-Relation-Preserving (DRP) scheme. This DRP
is an optimised finite difference scheme where the order of accuracy of the numerical scheme has been
for a much better resolution at high wave number. This considerably reduces the dispersion error. Anot
of optimised scheme is the compact difference scheme with spectral-like resolution developed by Lele [
scheme was further enhanced by Kim and Lee [4] using different optimisation constraints to ensure a m
dispersion error over a certain range of wave number.

Unfortunately, all the above numerical schemes were developed by assuming uniform mesh. A mapping
is commonly used to extend the schemes for non-uniform mesh. The use of a mapping function usually r
more grid points than necessary and in some cases may lead to numerical instabilities. In this paper, an a
approach using a B-spline collocation method is proposed. The B-spline collocation method is a collocation
using B-splines as the trial functions. Due to the flexibility of B-splines in the local representation, the B
collocation method allows the mesh points to be placed arbitrarily. This capability not only allows an optimu
distribution but also avoids the numerical complexities associated with the use of a mapping function. Furth
a uniformCk−1 continuity throughout a B-spline element of orderk gives the B-spline collocation method a hig
resolution property.

2. Numerical formulations

The properties of the B-spline collocation method depend very much on the trial functions. A B-spline o
k is made up of a polynomial of orderk and has a compact support consisting ofk + 1 knot points. Knot points
are a set of points on which B-splines are defined. The distribution of these knot points determines the sh
distribution of the B-splines and consequently the resolution of the mesh.

Following the formulation by Morinishi, Tamano and Nakabayashi [5], the knot points[t−k, t−k+1, . . . , tN−1, tN ]
are related to the mesh points[x1, x2, . . . , xN−1, xN ] by

tj =




x1 for − k � j � 0
1
2(xj+k/2 + xj+k/2+1 for 0< j < (N − k), evenk

xj+(k+1)/2 for 0< j < (N − k), oddk

xN for (N − k) � j � N

The correspondingN numbers of B-splines of orderk can be computed using the following recursive formula

Bk
j (x) = x − tj

tj+k − tj
Bk−1

j (x) + tj+k+1 − x

tj+k+1 − tj+1
Bk−1

j+1(x) (1)

where the zeroth order B-spline is defined by

B0
j (x) =

{
1 for tj � x � tj+1
0 otherwise

(2)
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Fig. 1. Distributions of B-splines ( ); knot points (�); and mesh points (�) for (a) uniform mesh and (b) non-uniform mesh with loc
stretching factor of 0.1.

Fig. 1. Distribution des courbes B-splines ( ) ; noeuds (�) ; et mailles (�) du réseau pour (a) un maillage uniforme et (b) un maillage
uniforme avec un coefficient local d’étirement de 0.1.

The expressions for the first and second derivatives (i.e.d
dx

Bk
j (x) and d2

dx2 Bk
j (x)) can be obtained by differentiatin

Eqs. (1) and (2) with respect tox.
To show a typical distribution of B-splines, consider a domainx ∈ [0,1] discretized into 15 intervals wit

uniform and non-uniform grid spacings. The non-uniform mesh is constructed using a constant local st
factor of lsf = 0.1 where the local stretching factor is defined aslsf = xi+2−xi+1

xi+1−xi
− 1. The profiles of fourth orde

B-splines,B4
j (x), for both meshes are plotted in Fig. 1. Squares and diamonds represent the knot and mes

respectively. The distribution of B-splines is clearly seen to follow the distribution of the knot points and th
stretching is found to alter the shapes of the B-splines.

In solving differential equations, the computational variable (e.g.φ(x)) and its derivatives are represented b
linear combination of B-spline trial functions as

φ(x) =
N∑

j=1

αjB
k
j (x),

d

dx
φ(x) =

N∑
j=1

αj

d

dx
Bk

j (x), and
d2

dx2
φ(x) =

N∑
j=1

αj

d2

dx2
Bk

j (x)

In matrix form, these equations can be written as

{φ} = [M]{α},
{

dφ

dx

}
= [D]{α} and

{
d2φ

dx2

}
= [V ]{α}

whereMij = Bk
j (xi), Dij = d

dx
Bk

j (xi) andVij = d2

dx2 Bk
j (xi). These[M], [D] and[V ] matrices are in fact band

diagonal matrices where the elements of the matrices are non-zero only along the few diagonal lines ad
the main diagonal. As a result, conventional fast algorithms for band-diagonal matrices can be utilized to m
the computational time.

3. Modified wave number analysis

The modified wave number analysis is commonly used to determine the resolution property of a nu
scheme. For the B-spline collocation method, the modified wave number for the first and second der
κ ′ andκ ′′, can be expressed analytically as (see Kravchenko and Moin [6] for derivations)
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Fig. 2. Modified wave numbers for (a) the first derivative and (b) the second derivative for spectral (); FD4 (- - -); FD6 (-·-·-); CD4 (– – –);
CD6 ( ); BSC4 (-··-··-); and BSC6 ( ) methods.

Fig. 2. Nombres d’onde modifiés pour (a) la premiére dérivée et (b) la deuxiéme dérivée pour les méthodes spectral () ; FD4 (- - -) ;
FD6 (-·-·-) ; CD4 (– – –) ; CD6 ( ) ; BSC4 (-··-··-) ; et BSC6 ( ).

κ ′(κ) = −∑I
i=1 2Dij sin(iκ)

M0j + ∑I
i=1 2Mij cos(iκ)

and
(
κ ′′(κ)

)2 = −∑I
i=1 2Vij (1− cos(iκ))

M0j + ∑I
i=1 2Mij cos(iκ)

whereI is the half bandwidth size of the[M], [D] and[V ] matrices. The subscriptj is chosen such that the me
pointxi = 0 is located at the peak ofj th B-spline.

The modified wave numbers of 4th and 6th order B-spline collocation methods (BSC4, BSC6) are co
to those of 4th and 6th order finite difference (FD4, FD6) and compact difference (CD4, CD6) schemes in
The B-spline collocation method is shown to be capable of correctly representing the waves up to a high
number than the other schemes of the same order. The unique convergence ofκ ′′ of the B-spline collocation metho
at higher wave numbers demonstrates its superiority in resolution for high wave number waves. This red
number of grid points required in the computation.

4. Acoustic field from a spinning co-rotating vortex pair

To demonstrate the application of the B-spline collocation method, the acoustic field from a spinning co-
vortex pair is simulated. As shown in Fig. 3, the vortices whose strengths areΓ = π are separated at a distan
of 2R = 10 between the cores. They rotate about their mid point with a rotation rate ofΩ = Γ

4πR2 = 0.01 and

a rotating Mach number ofMr = Γ
4πRc0

= 0.05 wherec0 is the speed of sound. The profiles of the vortices
modelled using Gaussian vortex which vorticity distribution is given by

ωz = Γ

π
exp

(−r2).
The corresponding velocity field can be obtained by solving the streamfunction Poisson equation,

∇2ψ = −ωz

where�u = ∇ × (ψk̂), andk̂ is the unit vector normal to the plane of rotation.
In the acoustic calculation, Powell’s acoustic analogy is used to simulate the production and radiatio

acoustic waves. The governing equation is

1

c2

∂2p

∂t2
− ∇2p = ρ0∇ · ( �ω × �u) (3)
0
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Fig. 3. Schematic diagram of flow configuration.

Fig. 3. Diagramme schématique de la configuration
de l’écoulement.

Fig. 4. Radial grid spacings using B-splines ( ); and mapping func-
tion ( · · ).

Fig. 4. Espacement radial du réseau de points en utilisant les courbe
B-splines ( ) ; et une fonction de mapping (· · ).

wherep is the acoustic pressure fluctuation,�ω is the vorticity andρ0 is the fluid density. The right-hand sid
of Eq. (3) is called the acoustic source and is computed using the incompressible flow parameters. The
field is simulated using a polar coordinate system. At the computational boundary (rboundary= 1241.5), a radiation
boundary condition based on Tam [7] is applied to convect the acoustic waves out of the domain. The
derivatives are calculated using the 6th order B-spline collocation method and a Fourier Galerkin method.

The domain discretization uses 192× 64 grid points in the radial and azimuthal directions respectively.
radial mesh is non-uniform while the azimuthal mesh is uniform. The radial discretization involves three r
a uniform fine mesh (�rnear= 0.2) in the near field, a uniform coarser mesh (�rfar = 15) in the far field and a
stretched mesh (lsf = 0.05) connecting the two meshes. A plot of grid spacing at different radial position is
in Fig. 4. The discontinuity in the slope at the intersections of the regions, which is a problem when using a m
function, does not deteriorate the accuracy of the B-spline collocation method. This flexibility allows the g
be distributed optimally. For a comparison, a continuous hyperbolic tangent mapping function is also plo
Fig. 4. The mapping function results in 242 grid points, which is 26% more than that using B-splines.

Furthermore, the acoustic field is time marched using a 4th order Runge–Kutta scheme with a time step�t =
0.125. This results in a maximum CFL number of 0.625. The effect of the initial acoustic transient is min
by employing a ramping function and a numerical filter proposed by S.K. Lele [3].

Fig. 5(a) shows the acoustic field att = 3700 whereby the acoustic field has reached its steady periodic
The vortices are located close to the center of the domain. They generate a pair of positive and a pair of n
spikes in the near field as they rotate. This spike pattern denotes a quadrupole source for the acoustic
The radiated acoustic waves have a wavelength ofλ = 314. Its amplitude decays asr−1/2 in the far field, which
is in agreement with 2D wave propagation theory. The acoustic field can be further validated against the
asymptotic solution which is given by

p(r, θ, t) = −ρ0Γ
4

64π3R4c2
0

[
J2

(
2Ωr

c0

)
sin(2θ − 2Ωt) + Y2

(
2Ωr

c0

)
cos(2θ − 2Ωt)

]
(4)

whereJ2(
2Ωr
c0

) andY2(
2Ωr
c0

) are second order Bessel functions of the first and second kinds.
Shown in Fig. 5(b) is the radial cut of the acoustic field atθ = 0◦. The far field acoustic signal agrees ve

well with Eq. (4). In the near field however, there are some discrepancies atr < 20. This is due to the fact that th
analytical solution based on matched asymptotic expansions is derived assuming point vortices where the
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Fig. 5. (a) Acoustic field from the spinning co-rotating vortices att = 3700 and (b) comparison of radial cut of acoustic field atθ = 0◦ (◦) to
the matched asymptotic solution ( ).

Fig. 5. (a) Champ acoustique généré par la rotation de tourbillons co-rotatifs àt = 3700 et (b) comparaison du champ acoustique sur une c
radiale àθ = 0◦ (◦) avec la solution asymtotique correspondante ().

is concentrated at a single point at the vortex core. These discrepancies in the near field were also obs
Slimon, Soteriou and Davis [8].

5. Conclusion

A collocation method based on B-splines as the trial functions is proposed. Its unique arbitrary grid pla
capability is shown to be efficient in resolving the flow and acoustic length scales with 26% fewer grid poin
that using a hyperbolic mapping function. Moreover, the resolution property of the B-spline collocation me
found to be superior to finite difference and compact difference schemes. Along with its robust formulation
features make the B-spline collocation method be a suitable method for computational aero-acoustics.
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