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Abstract

The use of high-order centered finite difference to solve the Euler equations commonly requires a stabilization proce
present work is a theoretical analysis of these stabilization methods that make the whole algorithm (i) still consistent
continuous problem and (ii) able to run long time simulations. In the present study, a theoretical analysis of the three co
used methods resorting to the application of high-order filters is performed. An extension to non-periodic boundary co
is studied to avoid numerical reflection and numerical instabilities due to the use of specific boundary schemes.To cite this
article: R. Guénanff, M. Terracol, C. R. Mecanique 333 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Étude de méthodes de stabilisation en aéroacoustique numérique.La discrétisation des équations d’Euler par des di
rences finies centrées d’ordre élevé nécessite le recours à une procédure de stabilisation rendant l’algorithme discret
consistant avec le problème continu et (ii) stable sur de longs temps de simulation. Cette étude propose une analyse
de trois méthodes de stabilisation recourant à l’application d’un filtre spatial d’ordre élevé sur la solution. Une exten
conditions aux limites non-périodiques est étudiée pour éviter la réflection numérique et les instabilités numériques év
dues à l’utilisation de schémas spécifiques aux limites du domaine de calcul.Pour citer cet article : R. Guénanff, M. Terracol,
C. R. Mecanique 333 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

The finite-difference method is widely used to simulate acoustic wave propagation in flows. However, th
ition of (i) stable and low-dispersive schemes and (ii) nonreflecting boundary conditions, remains an open p
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An important point, which sustains the present work, is that the accuracy and efficiency of the global met
pend on those of each element (numerical scheme, time integration method, boundary condition), but als
way they interact. Another point is that, if industrial use is wanted, the method must be as general and as s
possible.

A major drawback is the possible appearance and growth of high-frequency spurious modes when pe
numerical simulations with this method. A way to prevent the growth of these modes is to resort to an ad
step or an additional term in the numerical scheme that relies on adding numerical dissipation in the sche
procedure must take into account the discretization parameters. Among the usual approaches, we will
artificial selective damping method [1] – or penalization method – and the application of a linear filter at t
of the time step [2].

2. Discretization of the linearized Euler equations

The perturbation Euler equations are generally used as mathematical model to describe acoustic waves
tion. The global unsteady fieldU = [ρ,ρu,E]T is splitted as the sum of a mean fieldU0 = [ρ0, ρ0u0,E0]T, and a
fluctuating fieldUp = U − U0 = [ρp, (ρu)p,Ep]T, whereρ denotes density,u the velocity vector, andE the total
energy. If we consider the hypothesis of some small perturbations around a steady mean flow|Up| = O(ε)|U0|,
ε � 1, then we obtain the Linearized Euler Equations (LEE) e.g.((ρu)p = ρu − ρ0u0 ≈ ρ0up + ρpu0).

Under the assumption of a mean field verifying the Euler equations, the evolution equations of the fluc
field are reduced to:

∂Up

∂t
+ ∇ · (F(U0 + Up) − F(U0)

) = 0 (1)

whereF(U) is the convective flux vector:

F(U) =



ρu

ρu ⊗ u + p Id

(ρE + p)u


 (2)

with p the pressure and Id the identity matrix. The perfect gaz state-law makes it possible to close the sys
To obtain the Linearized Euler Equations, only terms in O(1) and O(ε) are kept.
From a numerical point-of-view, the sixth-order accurate centered finite-difference scheme is one of th

commonly used schemes in Computational AeroAcoustics (CAA) to discretize the spatial derivatives presF.
This schemes can be expressed:

∂f

∂x
≈ 1

�x

3∑
j=−3

ajf (x + j�x) (3)

where the coefficientsaj are obtained by a high-order Taylor series expansion.
By applying the spatial Fourier transform, it becomes:

ikf̂ (k) ≈ 1

�x

3∑
j=−3

aj ejk�xf̂ (k) (4)

In order to perform a theoretical study of the use of these schemes, we will consider the simplified
the linear advection case with periodicity boundary conditions. The semi-discrete mono-dimensional ad
problem at velocityc verifies, for the Fourier modek:

∂ûk

∂t
= − c

�x
i ·

(
3∑

aj sin(jk�x)

)
ûk = − c

�x
k̄(k)ûk (5)
j=1
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Fig. 1. Left, location of the eigenvalues of the Fourier modes: RK3 stability limit (dashed),�Ω(k) = c�tk̄(k) with CFL = 0.8 model 1 (solid)
model 2χ = 1

�t
(dotted)χ = 3.2

�t
(long dash). Right, amplification factor of the model: stability limit (dashed) basic model (-·-), model 1 (-··-),

model 2χ = 1
�t (dotted),χ = 3.2

�t (long dash), model 3 (solid).

Fig. 1. A gauche, localisation des valeurs propres des modes de Fourier : limite de stabilité du schéma RK3 (trait discontinu),�Ω(k) = c�tk̄(k)

avecCFL = 0,8 modèl 1 (trait plein), modèle 2χ = 1
�t (pointillés), χ = 3,2

�t (trait discontinu long). A droite, facteur d’amplification d
modèle : limite de stabilité (trait discontinu), schéma de base (-·-), modèle 3 (trait plein).

The eigenvalue linked to this mode is purely imaginary for anyk. The method is stable if and only if all th
eigenvalues corresponding to the modek from the grid lie in the stability domain of the temporal method. In t
study, the explicit three-step third-order accurate Runge–Kutta scheme – with a rather large stability doma
be considered.

For this algorithm, the location of the eigenvalues is the imaginary axis. The theoretical stability lim
thus to be taken on this axis and is equal to

√
3/(k̄(kmax)) wherekmax leads to the maximum value ofk̄(k) =

i
∑3

j=1 aj sin(jk�x), k ∈ [0,π/�x]. The extension to waves propagation in two or three dimensions in a me

at rest is then straightforward. For instance, in two dimensions, we have:k2D(kx, ky) = ±ic0(k̄(kx)
2 + k̄(ky)

2)1/2

wherec0 denotes sound velocity. The complex numberk2D thus remains purely imaginary, and the limit of stabil
is given by the maximum of|k2D|.

High frequency modes are thus not damped and can lead to numerical instabilities. It is seen on Fig. 1
(Oy) axis is a limit of stability of the Runge–Kutta scheme.

3. Stabilization procedures

The following stabilization procedures both use a high-order spatial average operatorF that cancel two points
per wavelength modes [2,3]. They differ by the location of the filter application in the numerical algorithm:

– Model 1:

∂Ui

∂t
= −F

( ∑
j=1,3

Dj · Fj (Ui)

)

– Model 2:
∂Ui

∂t
= −

∑
j=1,3

Dj · Fj (Ui) − χ(F − Id)(Ui)
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– Model 3:


∂Ui

∂t
= −

( ∑
j=1,3

Dj · Fj (Ui)

)

Un+1 = FUn+1

with Dj , the discrete derivation operator in thej direction andFj , thej th column of the flux matrix.

We consider the particular framework of the mono-dimensional advection equation with speedc and periodic
boundary conditions. The location of eigenvalues from both algorithms are to be compared with the on
classical algorithm, that is the imaginary axis (Fig. 1). This analysis is not possible for model 3 in whic
discretization is involved.

The results in Fig. 1 show that model 1 only allows one to work at a slightly larger CFL, because the ma
of the k̄ function is lower than that of the classical algorithm. However, this model does not damp high-freq
spurious modes.

In model 2, a parameterχ is introduced that must be fixed as a function of the space-time discretization.
χ = 0, the model is equivalent to the basic model. For a stable time integration, this parameter must be b
A nonzero real part appears in the eigenvalues obtained with this model. The stability of this procedure also
on the stability limit of the temporal method on the real axis that is approximately(−2.5) (Fig. 1). If we denote
χ = α

�x
, then one can write 0< α�t

�x
= χ�t < 2.5, orχ < 2.5

�t
. For a convenient value ofχ , this method does thu

damp high-frequency spurious modes (Fig. 1) .
The analysis of the amplification factor of the third-order Runge–Kutta method allows one to classify th

models. In Fig. 1, it is clear that model 2 withχ = 1
�t

is stable while the valueχ = 3.2
�t

leads to an unstabl
numerical scheme. Model 3, where the filtering is applied at the end of the iteration, does not exhibit this dr
(Fig. 1). With this model, the amplification factor of the numerical scheme is zero for the mode with two poi
wavelength and vanishes for high-frequencies. Model 3 is retained for the following tests.

4. Extension to nonreflecting boundary conditions

The Fourier analysis is no longer valid for boundary conditions modelling waves leaving the comput
domain. One can thus resort to matrix analysis [4]. This method analyses the effect of both spatial nu
scheme and boundary conditions thanks to the construction of a closed system of linear differential equati
hypothesis of an exact temporal integration makes the reconstruction of the solution possible via the eig
and eigenvectors of the system.

The exit boundary condition studied here consists in the decrease of the spatial operators order – d
and filtering – in a sponge zone adjacent to the boundary [5]. The use of noncentered operators, that ca
numerical instabilities, is thus avoided.

The order of the spatial filter decrease from ten to two in the five ghost points – introducing a strong diss
for outgoing waves – and the order of the differentiation operator from six to two – leading to a strong dis
for outgoing waves. At the last ghost point, a homogeneous Dirichlet boundary condition is applied. The
ghost points constitute a layer which absorbs the energy. The following remarks relative to the analysi
eigenvalues and the eigenvectors of the system can be made. The location of the eigenvalues (not prese
proves that the model is stable. Two types of eigenvectors appear (Fig. 2): (i) spurious eigenvectors w
frequencies contributions corresponding to eigenvalues with a strongly negative real part – fast decaying
– and (ii) eigenvectors with a zero contribution inside of the domain corresponding to eigenvalues with a r
close to zero that make the waves leave the computational domain. As a consequence, the method is reve
stable and nonreflecting.
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Fig. 2. Matrix analysis of model 3 with exit waves boundary conditions. Examples of some eigenmodes with a real part correspo
sustained modes (left), Re(λi ) ≈ 0 and fast decaying modes Re(λi ) � 0 (right).

Fig. 2. Analyse matricielle du modèle 3 avec des conditions aux limites de sortie des ondes. Exemples de modes propres avec une
correspondant à un mode soutenu (gauche), Re(λi ) ≈ 0, et modes à décroissance rapide Re(λi ) � 0 (droite).

5. Conclusion

The numerical analysis of stabilization methods for central finite difference schemes performed in this w
shown its major effect on the global numerical method. A bound for the relaxation parameter of the pena
method was derived corresponding to a new stability limit characteristic of the time integration method. The
which consists in the application of a linear filter at the end of the time step appears to be the most app
for the stabilization, with a stability limit driven only by the CFL number. An extension of this method for
periodic cases has been studied. The method is revealed to be stable and nonreflecting. Additional simula
presented here for sake of briefness, were successfully performed [6], simulating the exit of mono-dimensi
bidimensional acoustic waves.
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