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Abstract

The creeping motion of a porous sphere at the instant it passes the center of a spherical container has been investigated. Tt
Brinkman’s model for the flow inside the porous sphere and the Stokes equation for the flow in the spherical container were used
to study the motion. The stream function (and thus the velocity) and pressure (both for the flow inside the porous sphere and
inside the spherical container) are calculated. The drag force experienced by the porous spherical particle and wall correctior
factor is determinedTlo cite thisarticle: D. Srinivasacharya, C. R. Mecanique 333 (2005).
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Résumé

Mouvement d'unesphéreporeuseal’intérieur d’ un récipient sphérique. Nous considérons le mouvement rampant d’'une
sphére poreuse a l'instant ou elle traverse le centre d'un récipient sphérique. L'étude du mouvement a été faite en utilisant
le modele de Brinkman d'un écoulement a l'intérieur d’une sphére poreuse et I'équation de Stokes décrivant I'écoulement
dans un récipient sphérique. La fonction de courant (et ainsi la vitesse) et la pression (pour I'écoulement a l'intérieur de
la sphere poreuse et a l'intérieur du récipient sphérique) Ont été calculées. La force de résistance au mouvement éprouvé
par une particule poreuse sphérique et le facteur de correction di a I'effet de la paroi sont aussi deteomiroésr cet
article: D. Srinivasacharya, C. R. Mecanique 333 (2005).
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1. Introduction

The problems of the motion of a particle at the instant it passes the centre of the spherical container serves
as a model of interaction in multi-particle systems. This class of problems is important because it provides some

E-mail address: dsc@nitw.ernet.in (D. Srinivasacharya).

1631-0721/$ — see front mattét 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
doi:10.1016/j.crme.2005.07.017



D. Sinivasacharya / C. R. Mecanique 333 (2005) 612616 613

information on wall effects. A number of researchers have considered the creeping motion of rigid or fluid sphere
in a spherical or spheroidal container. Cunnigham [1] and Williams [2], independently, considered the motion of
a solid sphere in a spherical container. Haberman and Sayre [3] have made an analogous study for the motion
of an inner Newtonian fluid sphere. Ramkissoon and Rahaman investigated the motion of inner non-Newtonian
(Reiner—Revlin) fluid sphere in a spherical container [4] and a solid spherical particle in a spheroidal container [5].

Itis well known that problems of fluid flow around porous particles are encountered in many important engineer-
ing applications such as flows of fluids through porous beds (fixed or fluidized), sedimentation of fine particulate
suspensions, modeling of polymer macromolecule coils in solvent, catalytic reactions where porous pallets are
used, folc settling process etc. A survey of literature regarding the fluid flows past and within porous bodies indi-
cates that while abundant information is available for flows in an infinite expanse of fluid, very little information is
available for flows in enclosures.

In this Note, we consider the creeping motion of a porous sphere in a spherical container. We have used the
Brinkman’s model for the flow inside the porous particle and Stokes model for the flow within the spherical con-
tainer. The stream function and the pressure for both the flows inside porous particle and within the spherical
container are calculated. The drag experienced by the porous particle is calculated and its variation is studied
numerically.

2. Formulation of the problem

Consider a porous spherical particle of radiugassing the center of a spherical vessel of raéliuentaining
an incompressible Newtonian viscous fluid. This is equivalent to the inner particle at rest while the outer spherical
container moves with a constant velodifyin the negativeZ direction. We assume that the flow within the spherical
container is Stokesian, and Brinkman'’s law [6] governs the flow inside the porous spherical particle.

The equations of motion for the region within the spherical container are

divg®Y =0 (1)
gradp™® + pcurleurlg® =0 2

whereg ™ is the velocity,u is the coefficient of viscosity ang® is the pressure.
For the region inside the porous sphere, the equations of motion are:

divg® =0 (3)

gradp® + %é(z) + pceurleurlg® =0 (4)

whereg @ is the velocity,p® is the pressurey is viscosity and is the permeability of the porous medium.

Let (r, 0, ¢) denote a spherical polar co-ordinate system with the origin at the centre of the sphere ofiradius
and diameter coinciding with the line of motion of the inner sphere as the initial line. Since the flow of the fluid is
in the meridian plane and the flow is axially symmetric, all the physical quantities are independehtarfce, we
assume that

gV =[u" 0 +v008], i=1,2 (5)

where(é,, ¢y, ¢4) are unit base vectors amd = 1, hp = r andhz = r sind are the corresponding scale factors in
the spherical polar coordinate system.
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3. Solution of the problem

Introducing the stream functions® (r, 0), i = 1, 2, through
1 ay® S L ay®

u—_ =
r2sing 96

’

= =12 6
rsing or ’ ! ’ ®6)

in Egs. (1)—(4) and eliminating the pressure from the resulting equations, we get the following dimensionless
equations fory @, i =1, 2,

Bty =0 )
and
EX(E?—a®y@ =0 8

wherea? = a2/ k and E2 denotes the Stokes stream function operator given by

2 2
The boundary conditions are:
— The normal velocity component is continuous at the boundary of the sphere i.e.,
U 0)=u®@r,0) onr=a (20)
— The tangential velocity component is continuous at the boundary of the sphere i.e.,
v, 0)=v?r,6) onr=a (11)
— Continuity of tangential stresses components at the boundary of the sphere i.e.,
2,0 =12 (,6) onr=a (12)
— Continuity of the pressure distributions at the boundary of the sphere i.e.,
PV, 0)=p@r,60) onr=a (13)
On the outer sphere, the condition of impenetrability leads to
u®r0)=Ucosv and vV (r,0)=-Usind onr=>b (14)
and the condition that velocity and pressure must have no singularities anywhere in the flow field.
The boundary conditions (10)—(14) in terms of the stream function are
v D, 0) = %rzsinze, v (r,0)=rsirfd onr=1/y (15)

and

v 0) =y 0), vV0.0)=yv?@,0)
VPO =920.0). pPe.0)=p?0.0) onr=1 (16)
wheren =a/b.
The solutions of (7) and (8), which are nonsingular everywhere in the flow region, are

oo
YO =3 "[Awr" + By ™" 4 Cur™ 2 4 Dy ]0,(0) 17)
n=2
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and

o
Y@ = [Enr" + Fu/rIn-1/2(r) |04 (0) (18)

n=2

whereA,, B,, C,, Dy, E,, andF,, are arbitrary constants$, 1,>(ar) denote the modified Bessel function of the

first kind and®, (¢) is the Gegenbauer function of the first and second kind of orderd degree-1/2.

Using (17) in (2) and integrating the resulting equations, we get the pressure distripttioithin the spherical
container as

00 n—1 _
JCIN Z[(“” At S Dnr‘”} Pu_1() (19)

n—1 n
n=2

Similarly, the pressure distribution® within the porous sphere is given by
o0
@ _,2 E "t p 20
P anX_; n}’l—lnl({) (20)

Using the boundary conditions (15) and (16), the constants appearing in the solutions of the problem are seen
to be

Az = {[(~90° +5r° + 4)a® + (~126° + 307° + 6)a® — 270 cosh(e)

+3[907* + 5*(3n? — 1)n® + 20%(36n° — 5n° — 1)] sinh(@)}/ X1 (21)
By = —20%{a[157% + (n* — 1)a? — 6] cosha) + 3[—5n% + &?(1 — 2¢°) + 2] sinh(@) } / X1 (22)
C2 = 3a?n*{a[6n + (n®? — De®] coshe) + [@*(1 — 3n?) — 6n?] sinha) }/ X1 (23)
D, = 60?{a[157° + (n° — De?] coshe) + [e?(1 — 6n°) — 15p°] sinha) }/ X1 (24)
Ez = —6{a[457° + (61° — 5p° — Da?] coshe) + [w?(1 + 51° — 21n°) — 457°] sinh(a) } / X1 (25)
Fy=—3V2ra"?[3n° —5n° + 2]/ X1 (26)
where
X1=a[{-2700° + a*(n — D*@n? + T + 4) + 62(10n® — 210> + 10p* + 1)} coshia)
—3{-90n° + a*(n — 1)38n® + 9 + )1 + 20%(10n® — 361n° + 107> + 1)} sinh(e)] (27)
and
A,=B,=C,=D,=E,=F,=0 forn>3 (28)

4. Drag on thebody and wall effects

The drag experienced by the inner spherical particle is given by [7]

i 2
F:Mn/we’i(E f)rd@ (29)
ar
0

w

wherew = r sind. On carrying out the integration, it is found to be
Drag = 24umaUa®{a[15)° + (1° — Da?] coshia) + [¢?(1 — 61°) — 157°] sinh(a) } / X1 (30)
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Fig. 1. The variation of drag coefficient witf? for various values  Fig. 2. The variation of wall correction factor withfor various values
of . of 2.

The variation of drag coefficierdy = Drag/(24umalU) with respect tax? for various values ofy is shown in
Fig. 1. It can be observed from the figure that, as the inner porous particle;direreases, the drag coefficient
decreases and this is expected. The drag coefficient is decreasing as the permeability pafamieteneasing.

As b — oo, we get the drag on a porous sphere in the case of streaming in an unbounded medium,

127 pUaa? {—a coshe) + sinh(a)}
(3 + 202) cosha) — 3sinha)
which agrees with the drag on the porous sphere case derived Brinkman [6], Neale et al. [8].
The wall correction factoW.,. is defined as the ratio of the actual drag experienced by the particle in the enclosure
and the drag on a particle in an infinite expanse of fluid. With the aid of Egs. (30) and (31) this becomes
We = 2{a[157° + (n° — Der?] coshar) + [@*(1 — 67°) — 15p°] sinh(e)}
x {e(3+ 20%) coshia) — 3sinhe)} /{—a coshie) + sinh(@) } X1 (32)
The variation ofW, againsty for various values oé? is shown in Fig. 2. It can be observed from the figure

that, as; increases, the wall correction factor increases. The wall correction factor is increasing as the permeability
parametety? is increasing.

(31
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