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Abstract

The creeping motion of a porous sphere at the instant it passes the center of a spherical container has been invest
Brinkman’s model for the flow inside the porous sphere and the Stokes equation for the flow in the spherical container w
to study the motion. The stream function (and thus the velocity) and pressure (both for the flow inside the porous sp
inside the spherical container) are calculated. The drag force experienced by the porous spherical particle and wall
factor is determined.To cite this article: D. Srinivasacharya, C. R. Mecanique 333 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Mouvement d’une sphère poreuse à l’intérieur d’un récipient sphérique. Nous considérons le mouvement rampant d’u
sphère poreuse à l’instant où elle traverse le centre d’un récipient sphérique. L’étude du mouvement a été faite e
le modèle de Brinkman d’un écoulement à l’intérieur d’une sphère poreuse et l’équation de Stokes décrivant l’éco
dans un récipient sphérique. La fonction de courant (et ainsi la vitesse) et la pression (pour l’écoulement à l’inté
la sphère poreuse et à l’intérieur du récipient sphérique) Ont été calculées. La force de résistance au mouvemen
par une particule poreuse sphérique et le facteur de correction dû à l’effet de la paroi sont aussi determinés.Pour citer cet
article : D. Srinivasacharya, C. R. Mecanique 333 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

The problems of the motion of a particle at the instant it passes the centre of the spherical containe
as a model of interaction in multi-particle systems. This class of problems is important because it provide
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information on wall effects. A number of researchers have considered the creeping motion of rigid or fluid
in a spherical or spheroidal container. Cunnigham [1] and Williams [2], independently, considered the mo
a solid sphere in a spherical container. Haberman and Sayre [3] have made an analogous study for th
of an inner Newtonian fluid sphere. Ramkissoon and Rahaman investigated the motion of inner non-Ne
(Reiner–Revlin) fluid sphere in a spherical container [4] and a solid spherical particle in a spheroidal conta

It is well known that problems of fluid flow around porous particles are encountered in many important en
ing applications such as flows of fluids through porous beds (fixed or fluidized), sedimentation of fine par
suspensions, modeling of polymer macromolecule coils in solvent, catalytic reactions where porous pa
used, folc settling process etc. A survey of literature regarding the fluid flows past and within porous bodi
cates that while abundant information is available for flows in an infinite expanse of fluid, very little informa
available for flows in enclosures.

In this Note, we consider the creeping motion of a porous sphere in a spherical container. We have
Brinkman’s model for the flow inside the porous particle and Stokes model for the flow within the spherica
tainer. The stream function and the pressure for both the flows inside porous particle and within the s
container are calculated. The drag experienced by the porous particle is calculated and its variation is
numerically.

2. Formulation of the problem

Consider a porous spherical particle of radiusa passing the center of a spherical vessel of radiusb containing
an incompressible Newtonian viscous fluid. This is equivalent to the inner particle at rest while the outer s
container moves with a constant velocityU in the negativeZ direction. We assume that the flow within the spher
container is Stokesian, and Brinkman’s law [6] governs the flow inside the porous spherical particle.

The equations of motion for the region within the spherical container are

div �q(1) = 0 (1)

gradp(1) + µcurl curl�q(1) = 0 (2)

where�q(1) is the velocity,µ is the coefficient of viscosity andp(1) is the pressure.
For the region inside the porous sphere, the equations of motion are:

div �q(2) = 0 (3)

gradp(2) + µ

k
�q(2) + µcurl curl�q(2) = 0 (4)

where�q(2) is the velocity,p(2) is the pressure,µ is viscosity andk is the permeability of the porous medium.
Let (r, θ,φ) denote a spherical polar co-ordinate system with the origin at the centre of the sphere of ra

and diameter coinciding with the line of motion of the inner sphere as the initial line. Since the flow of the fl
in the meridian plane and the flow is axially symmetric, all the physical quantities are independent ofφ. Hence, we
assume that

�q(i) = [
u(i)(r, θ)�er + v(i)(r, θ)�eθ

]
, i = 1,2 (5)

where(�er , �eθ , �eφ) are unit base vectors andh1 = 1, h2 = r andh3 = r sinθ are the corresponding scale factors
the spherical polar coordinate system.



614 D. Srinivasacharya / C. R. Mecanique 333 (2005) 612–616

ionless
3. Solution of the problem

Introducing the stream functionsψ(i)(r, θ), i = 1,2, through

u(i) = − 1

r2 sinθ

∂ψ(i)

∂θ
, v(i) = 1

r sinθ

∂ψ(i)

∂r
, i = 1,2 (6)

in Eqs. (1)–(4) and eliminating the pressure from the resulting equations, we get the following dimens
equations forψ(i), i = 1,2,

E4ψ(1) = 0 (7)

and

E2(E2 − α2)ψ(2) = 0 (8)

whereα2 = a2/k andE2 denotes the Stokes stream function operator given by

E2 =
[

∂2

∂r2
+ 1

r2

∂2

∂θ2
− cotθ

r2

∂

∂θ

]
(9)

The boundary conditions are:

– The normal velocity component is continuous at the boundary of the sphere i.e.,

u(1)(r, θ) = u(2)(r, θ) on r = a (10)

– The tangential velocity component is continuous at the boundary of the sphere i.e.,

v(1)(r, θ) = v(2)(r, θ) on r = a (11)

– Continuity of tangential stresses components at the boundary of the sphere i.e.,

τ
(1)
rθ (r, θ) = τ

(2)
rθ (r, θ) on r = a (12)

– Continuity of the pressure distributions at the boundary of the sphere i.e.,

p(1)(r, θ) = p(2)(r, θ) on r = a (13)

On the outer sphere, the condition of impenetrability leads to

u(1)(r, θ) = U cosθ and v(1)(r, θ) = −U sinθ on r = b (14)

and the condition that velocity and pressure must have no singularities anywhere in the flow field.
The boundary conditions (10)–(14) in terms of the stream function are

ψ(1)(r, θ) = 1

2
r2 sin2 θ, ψ(1)

r (r, θ) = r sin2 θ on r = 1/η (15)

and

ψ(1)(r, θ) = ψ(2)(r, θ), ψ(1)
r (r, θ) = ψ(2)

r (r, θ)

ψ(1)
rr (r, θ) = ψ(2)

rr (r, θ), p(1)(r, θ) = p(2)(r, θ) on r = 1 (16)

whereη = a/b.
The solutions of (7) and (8), which are nonsingular everywhere in the flow region, are

ψ(1) =
∞∑[

Anr
n + Bnr

1−n + Cnr
n+2 + Dnr

3−n
]
ϑn(ζ ) (17)
n=2
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ψ(2) =
∞∑

n=2

[
Enr

n + Fn

√
rIn−1/2(αr)

]
ϑn(ζ ) (18)

whereAn, Bn, Cn, Dn, En, andFn, are arbitrary constants,In−1/2(αr) denote the modified Bessel function of t
first kind andϑn(ζ ) is the Gegenbauer function of the first and second kind of ordern and degree−1/2.

Using (17) in (2) and integrating the resulting equations, we get the pressure distributionp(1) within the spherica
container as

p(1) = −
∞∑

n=2

[
(4n + 2)rn−1

n − 1
Cn − 6− 4n

n
Dnr

−n

]
Pn−1(ζ ) (19)

Similarly, the pressure distributionp(2) within the porous sphere is given by

p(2) = α2
∞∑

n=2

En
rn−1

n − 1
Pn−1(ζ ) (20)

Using the boundary conditions (15) and (16), the constants appearing in the solutions of the problem
to be

A2 = {[
(−9η5 + 5η3 + 4)α5 + (−126η5 + 30η3 + 6)α3 − 270η5α

]
cosh(α)

+ 3
[
90η4 + 5α4(3η2 − 1)η3 + 2α2(36η5 − 5η3 − 1)

]
sinh(α)

}
/X1 (21)

B2 = −2α2{α[
15η3 + (η3 − 1)α2 − 6

]
cosh(α) + 3

[−5η3 + α2(1− 2η3) + 2
]
sinh(α)

}
/X1 (22)

C2 = 3α2η3{α[
6η2 + (η2 − 1)α2]cosh(α) + [

α2(1− 3η2) − 6η2]sinh(α)
}
/X1 (23)

D2 = 6α2{α[
15η5 + (η5 − 1)α2]cosh(α) + [

α2(1− 6η3) − 15η5]sinh(α)
}
/X1 (24)

E2 = −6
{
α
[
45η5 + (6η5 − 5η3 − 1)α2]cosh(α) + [

α2(1+ 5η3 − 21η5) − 45η5]sinh(α)
}
/X1 (25)

F2 = −3
√

2πα7/2[3η5 − 5η3 + 2]/X1 (26)

where

X1 = α
[{−270η5 + α4(η − 1)4(4η2 + 7η + 4) + 6α2(10η6 − 21η5 + 10η3 + 1)

}
cosh(α)

− 3
{−90η5 + α4(η − 1)3(8η2 + 9η + 3)η + 2α2(10η6 − 36η5 + 10η3 + 1)

}
sinh(α)

]
(27)

and

An = Bn = Cn = Dn = En = Fn = 0 for n � 3 (28)

4. Drag on the body and wall effects

The drag experienced by the inner spherical particle is given by [7]

F = µπ

π∫
0

� 3 ∂

∂r

(
E2ψ

� 2

)
r dθ (29)

where� = r sinθ . On carrying out the integration, it is found to be

Drag = 24µπaUα2{α[
15η5 + (η5 − 1)α2]cosh(α) + [

α2(1− 6η3) − 15η5]sinh(α)
}
/X1 (30)
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Fig. 1. The variation of drag coefficient withα2 for various values
of η.

Fig. 2. The variation of wall correction factor withη for various values
of α2.

The variation of drag coefficientDN = Drag/(24µπaU) with respect toα2 for various values ofη is shown in
Fig. 1. It can be observed from the figure that, as the inner porous particle size (η) increases, the drag coefficie
decreases and this is expected. The drag coefficient is decreasing as the permeability parameterα2 is increasing.

As b → ∞, we get the drag on a porous sphere in the case of streaming in an unbounded medium,

12πµUaα2 {−α cosh(α) + sinh(α)}
α(3+ 2α2)cosh(α) − 3 sinh(α)

(31)

which agrees with the drag on the porous sphere case derived Brinkman [6], Neale et al. [8].
The wall correction factorWc is defined as the ratio of the actual drag experienced by the particle in the enc

and the drag on a particle in an infinite expanse of fluid. With the aid of Eqs. (30) and (31) this becomes

Wc = 2
{
α
[
15η5 + (η5 − 1)α2]cosh(α) + [

α2(1− 6η3) − 15η5]sinh(α)
}

× {
α(3+ 2α2)cosh(α) − 3 sinh(α)

}/{−α cosh(α) + sinh(α)
}
X1 (32)

The variation ofWc againstη for various values ofα2 is shown in Fig. 2. It can be observed from the figu
that, asη increases, the wall correction factor increases. The wall correction factor is increasing as the perm
parameterα2 is increasing.
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