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Abstract

We study the evolution of elastic perfectly plastic structures where the elastic coefficients depend on temperature, as they are
subjected to classical loading and given variation of the temperature field. We prove variational theorems for the instantaneous
fields of velocities and stress rates, and establish the generalized differential equation for the evolution of the stfesstield.
thisarticle: B. Halphen, C. R. Mecanique 333 (2005).
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Résumé

Structures élastiques parfaitement plastiques dont les coefficients d'élasticité dépendent de la températutm étudie
I’évolution des structures élastiques parfaitement plastiques dont les coefficients d’élasticité dépendent de la température, lors-
gu’'elles sont soumises a un trajet de chargement mécanique de type classique et a un champ de température donné variable dar
le temps. On établit des théorémes variationnels vérifiés par les champs de vitesse et de taux de contrainte a un instant donné, e
I'équation différentielle généralisée vérifiée par I'évolution du champ de contrfdode.citer cet article: B. Halphen, C. R.
Mecanique 333 (2005).
0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

Industrial structures or their elements sometimes undergo thermo-mechanical loadings where the amplitude of
the temperatures is such that the variation of the elastic moduli with temperature may not be neglected. That is, for
example, the case when one deals with the durability of parts of car or plane engines.

Under these conditions, we are going to investigate whether the time evolution of an elastic plastic system is
similar to when the elastic coefficients are constant, i.e. variational theorems for the velocity and stress rate fields
at a given time, and a generalized differential equation for the evolution of the stress field. We shall then emphasize
the differences relative to the case of constant elastic coefficients.

2. Rate problem
2.1. Formulating the problem

We consider a volumé& occupied by an elastic perfectly plastic standard material, undergoing infinitesimal
transformation, assuming that the elastic coefficients depend on temperature. The thermo-elastic strain tensor o
the material is written as:

e =A0):0+A0) Q)

whereo is the stress tensaf, is the temperatured (9) is the elastic compliance tensor add?) is the thermal
strain tensor; we denote with: the double product.

The plastic potentialf (o, 6), that we, in order to simplify the presentation, suppose to be differentiable, is
convex and depends on temperature; the plastic strain rate is given by:

a . :
dp:)\a—f(a,e), 220, f<0, Af=0andiff=0, Af=0 2
o

The loading of volumeV is a classical one (given stress vectors and velocities on the sarfaeg any time,
and given mass forces, that may depend on tim&,)iand a varying field of temperatures is given.

We want to determine the velocity and stress rate fields in voluraga given instant.

2.2. Variational theorem for the velocity field

We investigate now how can we formulate the problem of determination of the velocity and strain rate fields in
V at every moment.

At every time, and at a point in volumié, the total strain ratd is the sum of the thermo-elastic stain rate and
of the plastic strain rate, which, following Egs. (1) and (2), can be written as:

af
o0

As A andA depend only on temperature, whose evolution is given, and as the stress state is known at the instant
considered, we can introduce:

d°nH=A:0+A “)
d°() is known at the considered moment, and therefore plays the role of an ‘initial’ strain rate.

Reasoning similarly to the case when the elastic coefficients are constant, we now show that the stress rate
can be derived from the potential functiéfid) defined by:

1 B 1(af /00 : A~1(0) : (d — d°) + (31 /96)6)2
Ud)==d—-d%:A720):d—-d% —Y(f)=
(d) 2( ) ®):( ) (f)2 3/ /o0 - A-16) 9/ /a0

d=d°+d°=A:6+A:0 +A+1="(0,0) withconditions (2) onf, f, (3)

(6)




B. Halphen / C. R. Mecanique 333 (2005) 617-621 619

whereY (f)=0if f <0etY(f)=1if f =0, and(x) is the positive part of:

(X)=%(X+IXI)

It is easy to show that this potential function is convex, but not strictly convex. As in the case when the elastic
coefficients are independent of temperature, we obtain the following minimum theorem for the velocity field at
every given time:

Theorem 2.1.Among all the velocity fields* that are kinematically admissible at instantn actual velocity field
minimizes the functional

/U(d*)dV —(F9 v%) (6)

14

where(F9Y, v*) is the power of the applied forces at instant
2.3. Variational theorem for the stress rate field

Definition 2.2. Knowing the present stress and temperature fields in volimee say that a stress rate figids
plastically admissiblat timez if:
V64 Y4¢

vxeV, if f(6,0)=0, ——: <0 7
xeV, if f(o,0) 55 % T 35 (7)

Then the following minimum theorem can be proved:

Theorem 2.3.Among all stress rate fields statically admissible with the given traction rates at instargnd
plastically admissible at this instant, the actual stress rate field minimizes the functional

/(%a CA0):6+6 :do) dv — (@n)v) ®)
Vv

where((&n)vd) is the power of the traction rates at the surfacé/ofgainst the field of given velocities.

This minimum theorem for stress rates can be established as the dual form of the preceding one for velocities,
or we can build a direct proof, rather similar to the one that is used when elastic coefficients do not depend on
temperature, and which rests specifically on the following property:

for a given state of stress and temperaturegldte a stress rate plastically admissible at timend d® the
associated plastic strain rate; &ebe another stress rate plastically admissible at the same time; then:

vxeV, (6—-06):d°P>0 9)

As the elastic compliance tensor is positive definite, the functional (8) is strictly convex with respect to the field
The minimum that is looked for is uniqu€&he solution for the stress rate is unique at a given time

We see that, owing to the presenceddfin the functional (8), and due to its form (4), the variational problem
with respect to the stress rate field differs noticeably from the classical result of Greenberg [1].

Nevertheless, we can show that the minimization of the functional (8) is equivalent to the minimization of
another, which can, as in the classical situation [2], be used to build numerical algorithms.

Let us define the fictitious elastic strain and stress rate figflandé E at timer as the solution of the following
elasticity problem:
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(@) dE and6E are respectively kinematically and statically admissible with the given velocities and force rates;
(b) dF andéF are locally linked by the fictitious elastic law:
d¥=A0):65+d° (10)

wheref is the temperature at timeandd® is associated with the evolution of the real fields in the volume
following Eq. (4).

Then we prove the following theorem:

Theorem 2.4.Among all stress rate fields statically admissible with the given traction rates at instaratnd
plastically admissible at this instant, the actual stress rate field minimizes the functional

1. .
/5(6—6E):A(9):(&—&E)dv (11)
Notice that (11) is the square value of the normsof 6 E defined through a reduced elastic energy at time

3. Evolution of the stress field

The volumeV is still subjected to a classical loading and a given temperature field which varies with time.
Given some initial conditions, let(z), (), €P(z), d () be the stress, strain, plastic strain, strain rate responses,
respectively, of volumé’. We denote by E(r), eE(r) the purely elastic response of volurieat timer, that is,
the stress and strain fields in volurileunder the thermo-mechanical loading at timiéits behavior was purely
elastic. In particular, at any point &f at timez:

eF=A0):065+A0) (12)

Then, leté (r) be a statically and plastically admissible stress field at tim@hich means that it satisfies the
plasticity criterion at any point of the volume and the conditions of equilibrium under the given forces at time
From the virtual power principle, we obtain:

/(a—&):ddV:/(a—&):éEdV (13)
|4
Using the constitutive law of the material and Eq. (12), we can write:
/(a—a) ( (A®): a)—i—dp)dV /(0—0) d(A(e) oF)dv (14)
Now from the flow rule (2) we can conclude that:
/(a —6): A(e) o) /(a —6): A(e) oF)dv (15)

Let us define the scalar product of two second order tensor field#shon

(a,b):/a:bdv (16)

1%
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As the temperature field is given as a function of time, and a&sany statically and plastically admissible field at
time ¢, inequality (15) leads to the following evolution equation for the stress field:

d d
—E(A(t) 10) € Yk (0) — E(A(t) 1o F) 17)

where 8y (o) denotes the subgradient at pownt with respect to the scalar product (16), of the indicator
functiony g ) of the convex sekK (r) of statically and plastically admissible fields at time
Introducing the residual stress fieddr) = o (1) — o (1), the evolution problem (17) can be written as:

2402 00)) € 050 (00) (18)
wherek 9(1) = K (r) — 0 E(¢) is the convex set of self-stress fiesissuch thap + o E(¢) is statically and plastically
admissible at time.

We see that the form of the evolution problem differs from the one obtained when the elastic coefficients do
not depend on temperature [2,3]. The two modifications are that the scalar product which is used is not defined by
the elastic energy, and that the elastic compliance appears in Eq. (17). As it could be foreseen with the variational
theorems related to the rate problem, Eq. (17) shows that the numerical algorithms that work in the classical case
do not work any more when elastic coefficients depend on temperature.

From Eq. (18) we also deduce that we cannot use the same arguments of convexity and convergence as in the
classical case to prove uniqueness of the solution or to study the asymptotic behavior of the solution when time
tends to infinity, although at least one attempt has been made in the literature [4].

Concerning the asymptotic behavior, we proposed a sufficient condition for shakedown as conjecture and we
could check it on elementary numerical examples [5].

4. Conclusion

We have been able to establish results concerning the evolution of an elastic-plastic structure when its elastic
coefficients depend on temperature. Having shown how the problem is posed, we leave the question open about the
general properties of the stress field providing the solution of the problem.
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