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Abstract

The two-dimensional problem of steady waves on water of finite depth is considered without assumptions about periodicity
and symmetry of waves. A new form of Bernoulli’s equation is derived, and it involves a new bifurcation parameter which is the
product of the Froude numbgrand the rate of floww. The main result obtained from this equation is the absence of waves, having
sufficiently small amplitude, providediw| > 1. To cite this article: V. Kozlov, N. Kuzetsov, C. R. Mecanique 333 (2005).

0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Le probleme bidimensionelle d’ondes de surface stationnaires en profondeur finie : le régime sans ondes de petite ampli-
tude. Nous étudions le probléme bidimensionnel d’ondes stationnaires sur la surface des eaux de profondeur finie sans hypothés
préalable concernant leur symétrie ou périodicité. Une nouvelle forme d’équations de Bernoulli est dérivée avec I'introduction d'un
nouveau parametre de bifurcation qui est le produit du nombre de Froatde débit fluidew. Il résulte de cette équation que
les ondes de petite amplitude n’existent pas pour| > 1. Pour citer cet article: V. Kozlov, N. Kuznetsov, C. R. Mecanique 333
(2005).
0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Statement of the problem and formulation of the result

In its simplest form the surface-wave problem concerns two-dimensional motion of an inviscid, incompressible,
heavy fluid, say water, bounded above by a free surface and below by a rigid horizontal bottom. The water motion
is assumed to be irrotational, and so there exists a velocity potentwehose gradient gives the velocity field. The
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present Note is concerned with steady waves, in which case the free-surface profile (assumed to be the graph of
unknownCL@-function ) and the velocity field are both stationary with respect to a frame of reference in uniform
horizontal motion. In appropriate Cartesian coordinétes), gravity acts in the negative-direction and the bottom'’s
equation isy = —1 (the dimensionless coordinates, unknowiis, y) andn(x), and parameters are used in the paper,
whereas the dimensional depih> 0, phase velocity, and the acceleration due to gravigy> 0 are applied for
obtaining dimensionless quantities). Furthermore, we assume that the free surface is confined to a certain horizon
strip of finite width and the origin is placed on this surface so thaktaais coincides with the horizontal surface of

the unperturbed flow. More precisely, we suppose that for our choice of the origin, implying@at 0, there exist
constantgn_ andm suchthat-1 <m_ <m, and

m_<nx)<my forallxeR 1)

Mathematicallyy andn must satisfy the following free-boundary problem in the water donfiaia {—oco < x <
400, —1l<y<nx)}:

Dxx +¢yy:0v (x,y)eD 2
¢y=0 xeR, y=-1 3)
¢y =n:pr, xR, y=n(x) (4)
VoI +2u 2 n=k% xeR, y=n() (5)

Hereu = y/c?/(gd) > 0 andk are constants known as the Froude number and the Bernoulli constant, respectively. It
is clear that problem (1)—(5) always hasigial solutionrepresenting the uniform flow; the correspondinganishes
identically andp = const inD.

Mathematically rigorous studies of problem (1)—(5) were initiated by Nekrasov in 1921, when he derived an integral
equation now called after him. Since then, this equation for waves on deep water and its analogue for water of finit
depth were investigated in detail (see, for instance, [1] and [2], respectively). The points of bifurcation from the
uniform flow were found and the families of non-trivial solutions that arise at these points were investigated. These
solutions describe the so-called Stokes waves which are periodic, have exactly one crest per period, and are symme
about the vertical line through the crest. Other analytical approaches to Stokes waves can be found in [3-7] (see al
references cited therein). Besides, significant numerical evidence about the existence of steady waves that distingu
from Stokes waves had appeared during the past 25 years. Secondary branches of sub-harmonic bifurcations
deep water were first computed in [8]. In [7], a different method was applied for obtaining similar numerical results
for finite depth. Taking into account these and other computations demonstrating the existence of various types ¢
permanent, travelling waves (see references cited in [3] and [7]), it is of interest to develop a technique applicable t
problem (1)—(5) without additional assumptions on the shape of the free surface like those for Stokes waves.

In this Note, we make a step in this direction and announce a result (it describes regimes for which no waves exis
obtained by means of a new approach that involves averaging of the velocity potential over vertical cross-sections ¢
water having finite depth. An advantage of this averaging procedure lies in the fact that the dimensionless paramet
arising in the transformed Bernoulli's equation (see the coefficient iat the left-hand side of (8) below) has a
transparent hydrodynamic meaning. Namely, this parameter is equal to the product of the Froudeinambére
so-calledrate of floww defined as follows:

n(x)
w = f o (x,y)dy
-1
It is easy to show thab is a non-zero constant for non-trivial solutions of (1)-(5). Now we are in a position to
formulate our main theorem.

Theorem 1.1.Let (¢, n) be a solution of problenfl)—(5) and let |uw| > 1. If n € CY*(R), 0 < o < 1, and
70l crew) <6 for a sufficiently smals > 0 which depends opw, then this solution is trivial.

Our proof of this theorem is based on Theorems 3.1 and 4.1 formulated below. It must be also emphasized that tt
form (8) of Bernoulli's equation plays an essential role in the proof as well as formula (11) concerning the solution of
the linearized problem.
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2. The rate of flow and Bernoulli's equation

In this section, we give another expressiondoand apply it for transforming the Bernoulli’s equation (5) into a
form that is suitable for proving Theorem 1.1. First, we introduce the following function

n(x)
u(x)=[1+n(X)]7lf¢(x,y)dy
-1

which is defined for alkk € R as follows from (1). This functiom will be referred to as theertical averageof the
velocity potential. The difference(x, y) = ¢ (x, y) — u(x) will be called they-dependent componeaot the velocity
potential. An important property af is that it satisfies the following orthogonality condition:

n(x)
/v(x,y)dy:O forallx e R (6)
“1

Proposition 2.1.Let ¢ andn satisfy equationf2)—(4), thenw = [1+ n(x)]u, (x) — 0y (x)v(x, n(x)).

According to (1), this result can be written as follows:

_ o+ nc()vlx, nx))
uy(x) = 15700 forallx eR @)

Substituting this into (5) and using the boundary condition (4), we get

(K/@)? =1 nZ z(v +nxV—n)_nxV+nz_1+n§<V +nxV—n>2
X X

2
4V = T

[(ee)™ = 2]+ Vi 2 2 1+7 1+ 2 1+

y=n), xeR (8)

whereV = v/w; note that only linear terms appear in the left-hand side. As we shall see in the next Séciimhy
may be considered as images obtained by applying some nonlinear operatoiiharefore, Eq. (8) is a nonlinear
equation form involving (uw)? as a bifurcation parameter.

3. The nonlinear operatory — V

We introduce a weak formulation of the boundary value problem for the fun&tidfor this purpose we consider
a setZ(D) of smooth trial functiong (x, y) that satisfy the following conditions: (§ has a compact support i;
(ii) the orthogonality condition (6) holds far. By L%C(D), W,ﬁ’cz(D), etc. we denote the spaces of functions belonging
to L2(K), WH2(K), etc. for every bounded open subset- D. Similar definitions are applicable for the stip=
{—o0 <x < 400, 0< z < 1} instead ofD.
The standard procedure based on the divergence theorem and using the Laplace equation, the boundary conditior
the orthogonality condition (6), and formula (7) leads to the weak formulation.

Problem Py. FindV € WI%)’CZ(D) satisfying (6) for a.ex € R and such that the following integral identity

+00

/V;-Vdedy:/{(x,fl(x))

D —00

Nx ()[4 nx () V (x, n(x))]
1+ nx)

dx 9)

holds for every; € Z(D).

A drawback of problem P is that (9) involves the unknown water domdinin the left-hand side. Therefore, it is
convenient to introduce a new vertical coordinate

z=0+D/[1+n(x)]el0,1] forallxeR
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and to putw(x, z) = V(x, y(x, z)) in S. In order to give a weak formulation of the boundary value problenufare
redefine the set of trial functions as follows: {i)has a compact support in the closed s&ijdii) the orthogonality
condition

1
/;(x, z)dz =0 holds for allx e R (20)
0

Such a set of trial functions will be denot&dS), andz (x, y) = h(x)costmz, m=1,2,..., whereh is an arbitrary
cut-off function, delivers an example of function belongingzts). Now the weak formulation of the problem far
is similar to problem .

Problem Py,. Findw € Wlé'CZ(S) satisfying (10) for a.ex € R and such that the integral identity

+00
/[(zx—ﬂézxwx ol Z>+ s ](1+ ) dv dy = / (r, 1y O OwE DT
S —00

— w
1+n 1+n (1+n)? 1+nx)
holds for every; € Z(S).
For this problem we claim the following theorem.

Theorem 3.1.Let n € C1%(R) be such that|nllc1e gy < & for a sufficiently smalb > 0. Then problem P has a
solutionw € C(5) such that|w| c1.e(5) < Clinellcoagg)- This solution is unique i (5).

Our proof of this theorem is based on the results formulated in Section 5. Theorem 3.1 shows, in particar, that
andV, in the right-hand side of (8) are images obtained by applying some nonlinear operators to

4. An asymptotic representation forw

Since the operatof — w is nonlinear, it is important to find the leading term with respeci to the asymptotic
representation aiy. For this purpose we introduce the following linear problem.

Problem Py. Find w® e W,é’cz(S) satisfying (10) for a.ex € R and such that the integral identity
+00
/(;xwff) +cw!P)dedy = / ¢(x, Dne(x)dx  holds for every € Z(S)
S —00

The orthogonality condition (10) allows us to find an explicit expression for the Fourier trana/f@l?r(rr, 7) =
[T e yw® (x, z) dx. Namely,

—00
coshrz 1)

sinht T

w®(z,7) = iﬁ(r)(

Then the inverse Fourier transform leads to a representatianf®®fin the form of a pseudo-differential operator
applied ton. Moreover, we have that

w® (. 1) = —i(z)(z cothr — 1) (11)

which is a consequence of the previous formula and plays an important role in the proof of Theorem 1.1.

The latter proof also involves an estimate of the difference between solutions of the nonlinear and linear prob:
lems R, and R, respectively. For estimating — w® we note that this difference satisfies the following integral
identity:
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+00
Sf [2e(w—w®), + ¢ (w —w®) | = S[ RGwdrdi s [ ety AR D =0 g,

12)
wherez is an arbitrary function fron (S) and
n —%n?
1+n

Hence the right-hand side in (12) is nonlinear with respeab tand . For problem (12) we claim the following
theorem.

R(&, w) = zny (G;wx + Lrwz) — néxwy + Crw;

Theorem 4.1.Lety € C1%(R) be such that|nllc1e g, < 8 for a sufficiently smal > 0. Then the following estimate

holds [lw — w®llcracg) < CUML I Zou gy + 15l cour 11 cour))-

The meaning of this theorem is twofold: (i) it shows thelf’ is the required leading term in asymptoticsuof
(ii) it provides an estimate for the discrepancy. Moreover, Theorem 4.1 combined with formula (11) and fixed point
arguments provides the proof of Theorem 1.1.
5. A sketch of proofs of Theorems 3.1 and 4.1

In order to handle problem,Pand the problem fow — w'®, involving the integral identity (12), we need a model
linear problem.

Problem P,. Let p,q,r € L2 (S) and letH € L2 (R). FindU € Wz2(S) satisfying (10) for a.ex € R and such that

+00
/(chx + .U, drdy =/<cp+¢xq +orydedz + / ¢(x. D H de (13)
S S —00

holds for every; € Z(S).

Let H satisfy more strong assumption than admitted in problgrar®l belong tcLl’(’)C(R) for somep > 2. This
allows us to define the function

N(x)= ”P(x» ) ||L2(0,1) + ”(I(X, ')“LZ(O’]_) + ||r(x, ) ||L2(0,1) + ”H”Lf’(x,x-i-l)

for a.e.x € R. Then we claim the following lemma.

Lemma 5.1.Letff;° e "IN (x) dx < oo, then problem P has a solution such that

+o00
JUG ) 20m <€ / &¢I N (&) de (14)
Moreover, if
UG, )] 200 =0(€™)  a@S|x] > 00 (15)

(this is true wher{14) holdg, then this solution is unique.

0,
loc

0,
loc

Now we suppose that, g, € C2%(S), 0<a <1, H € C;2¢ (R), and put

Ne (&) = [Pl coa(m,) + 19l coa(m,) + 17l coam,y + 1 H | cow e g1

where T = SN {§ < x <& + 1}. Then Lemma 5.1 along with the results on local regularity of solutions to the
boundary value problems for the Laplace equation imply the following
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0,«

Proposition 5.2.Let p,q,r € C2(S) and letH € C22

exists a weak solutioty of problem E,.. Moreover,U € C

R),0<a <1 If fj;o e "IN, (x) dx < oo, then there

|t’g(§) and the following estimate holds

+o0
Ul ctoqm < C / ey, (&) ds
—00

Finally, this solution is unique in the class defined(h$).
The immediate consequence of Proposition 5.2 is the following

Coroll_ary 5.3. Let p,g,r € C%*(S) and let H € C%*(R). Then the weak solutioty of problem R belongs to
cte(8) and the following estimate holds

”U”Cl.ot(s') < C[”p”CO,a(§) + ”q”COa(S') + ||r||C0,ot(§) + ”H”CO'O‘(R)]' (16)

Since problem P has the form (13) with certaip, ¢, r, and H that depend om, Theorem 3.1 can be derived
from Corollary 5.3 and the Banach’s fixed point theorem.

Now we turn to the integral identity (12) for the differenee— w® between the solutions of the nonlinear and
linear problems R and R, respectively. We note that (12) and (13) coincide when

2.2
D=2 n"wz, and H= X
1+7n 147

Therefore, Theorem 4.1 follows from Corollary 5.3 and Theorem 3.1.

p=0, g=znw; —nwy, r=zncwy+ [y +wx, 1) —nl
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