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Abstract

The two-dimensional problem of steady waves on water of finite depth is considered without assumptions about pe
and symmetry of waves. A new form of Bernoulli’s equation is derived, and it involves a new bifurcation parameter whic
product of the Froude numberµ and the rate of flowω. The main result obtained from this equation is the absence of waves, h
sufficiently small amplitude, provided|µω| > 1. To cite this article: V. Kozlov, N. Kuznetsov, C. R. Mecanique 333 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Le problème bidimensionelle d’ondes de surface stationnaires en profondeur finie : le régime sans ondes de petite am
tude. Nous étudions le problème bidimensionnel d’ondes stationnaires sur la surface des eaux de profondeur finie sans
préalable concernant leur symétrie ou périodicité. Une nouvelle forme d’équations de Bernoulli est dérivée avec l’introduc
nouveau paramètre de bifurcation qui est le produit du nombre de Froudeµ et le débit fluideω. Il résulte de cette équation qu
les ondes de petite amplitude n’existent pas pour|µω| > 1. Pour citer cet article : V. Kozlov, N. Kuznetsov, C. R. Mecanique 333
(2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Statement of the problem and formulation of the result

In its simplest form the surface-wave problem concerns two-dimensional motion of an inviscid, incompre
heavy fluid, say water, bounded above by a free surface and below by a rigid horizontal bottom. The wate
is assumed to be irrotational, and so there exists a velocity potentialφ, whose gradient gives the velocity field. T
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present Note is concerned with steady waves, in which case the free-surface profile (assumed to be the gr
unknownC1,α-functionη) and the velocity field are both stationary with respect to a frame of reference in un
horizontal motion. In appropriate Cartesian coordinates(x, y), gravity acts in the negativey-direction and the bottom’
equation isy = −1 (the dimensionless coordinates, unknownsφ(x, y) andη(x), and parameters are used in the pa
whereas the dimensional depthd > 0, phase velocityc, and the acceleration due to gravityg > 0 are applied for
obtaining dimensionless quantities). Furthermore, we assume that the free surface is confined to a certain
strip of finite width and the origin is placed on this surface so that thex-axis coincides with the horizontal surface
the unperturbed flow. More precisely, we suppose that for our choice of the origin, implying thatη(0) = 0, there exis
constantsm− andm+ such that−1< m− < m+ and

m− � η(x) � m+ for all x ∈ R (1)

Mathematicallyφ andη must satisfy the following free-boundary problem in the water domainD = {−∞ < x <

+∞, −1< y < η(x)}:
φxx + φyy = 0, (x, y) ∈ D (2)

φy = 0, x ∈ R, y = −1 (3)

φy = ηxφx, x ∈ R, y = η(x) (4)

|∇φ|2 + 2µ−2η = κ2, x ∈ R, y = η(x) (5)

Hereµ = √
c2/(gd) > 0 andκ are constants known as the Froude number and the Bernoulli constant, respect

is clear that problem (1)–(5) always has atrivial solution representing the uniform flow; the correspondingη vanishes
identically andφ = const inD.

Mathematically rigorous studies of problem (1)–(5) were initiated by Nekrasov in 1921, when he derived an
equation now called after him. Since then, this equation for waves on deep water and its analogue for water
depth were investigated in detail (see, for instance, [1] and [2], respectively). The points of bifurcation fr
uniform flow were found and the families of non-trivial solutions that arise at these points were investigated
solutions describe the so-called Stokes waves which are periodic, have exactly one crest per period, and are
about the vertical line through the crest. Other analytical approaches to Stokes waves can be found in [3–7]
references cited therein). Besides, significant numerical evidence about the existence of steady waves that d
from Stokes waves had appeared during the past 25 years. Secondary branches of sub-harmonic bifurc
deep water were first computed in [8]. In [7], a different method was applied for obtaining similar numerical
for finite depth. Taking into account these and other computations demonstrating the existence of various
permanent, travelling waves (see references cited in [3] and [7]), it is of interest to develop a technique appl
problem (1)–(5) without additional assumptions on the shape of the free surface like those for Stokes waves

In this Note, we make a step in this direction and announce a result (it describes regimes for which no wav
obtained by means of a new approach that involves averaging of the velocity potential over vertical cross-se
water having finite depth. An advantage of this averaging procedure lies in the fact that the dimensionless p
arising in the transformed Bernoulli’s equation (see the coefficient atη in the left-hand side of (8) below) has
transparent hydrodynamic meaning. Namely, this parameter is equal to the product of the Froude numberµ and the
so-calledrate of flowω defined as follows:

ω =
η(x)∫
−1

φx(x, y)dy

It is easy to show thatω is a non-zero constant for non-trivial solutions of (1)–(5). Now we are in a positio
formulate our main theorem.

Theorem 1.1. Let (φ, η) be a solution of problem(1)–(5), and let |µω| > 1. If η ∈ C1,α(R), 0 < α < 1, and
‖η‖C1,α(R) < δ for a sufficiently smallδ > 0 which depends onµω, then this solution is trivial.

Our proof of this theorem is based on Theorems 3.1 and 4.1 formulated below. It must be also emphasize
form (8) of Bernoulli’s equation plays an essential role in the proof as well as formula (11) concerning the solu
the linearized problem.
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2. The rate of flow and Bernoulli’s equation

In this section, we give another expression forω and apply it for transforming the Bernoulli’s equation (5) into
form that is suitable for proving Theorem 1.1. First, we introduce the following function

u(x) = [
1+ η(x)

]−1

η(x)∫
−1

φ(x, y)dy

which is defined for allx ∈ R as follows from (1). This functionu will be referred to as thevertical averageof the
velocity potential. The differencev(x, y) = φ(x, y) − u(x) will be called they-dependent componentof the velocity
potential. An important property ofv is that it satisfies the following orthogonality condition:

η(x)∫
−1

v(x, y)dy = 0 for all x ∈ R (6)

Proposition 2.1.Letφ andη satisfy equations(2)–(4), thenω = [1+ η(x)]ux(x) − ηx(x)v(x, η(x)).

According to (1), this result can be written as follows:

ux(x) = ω + ηx(x)v(x, η(x))

1+ η(x)
for all x ∈ R (7)

Substituting this into (5) and using the boundary condition (4), we get

[
(µω)−2 − 1

]
η + Vx = (κ/ω)2 − 1

2
− η2

x

2
− η2

x

(
Vx + ηxV − η

1+ η

)
− ηxV + η2

1+ η
− 1+ η2

x

2

(
Vx + ηxV − η

1+ η

)2

y = η(x), x ∈ R (8)

whereV = v/ω; note that only linear terms appear in the left-hand side. As we shall see in the next section,V andVx

may be considered as images obtained by applying some nonlinear operators toη. Therefore, Eq. (8) is a nonlinea
equation forη involving (µω)2 as a bifurcation parameter.

3. The nonlinear operatorη �→ V

We introduce a weak formulation of the boundary value problem for the functionV . For this purpose we consid
a setZ(D) of smooth trial functionsζ(x, y) that satisfy the following conditions: (i)ζ has a compact support inD;
(ii) the orthogonality condition (6) holds forζ . By L2

loc(D), W1,2
loc (D), etc. we denote the spaces of functions belong

to L2(K), W1,2(K), etc. for every bounded open subsetK ⊂ D. Similar definitions are applicable for the stripS =
{−∞ < x < +∞, 0� z � 1} instead ofD.

The standard procedure based on the divergence theorem and using the Laplace equation, the boundary
the orthogonality condition (6), and formula (7) leads to the weak formulation.

Problem PV . FindV ∈ W
1,2
loc (D) satisfying (6) for a.e.x ∈ R and such that the following integral identity

∫
D

∇ζ · ∇V dx dy =
+∞∫

−∞
ζ
(
x,η(x)

)ηx(x)[1+ ηx(x)V (x, η(x))]
1+ η(x)

dx (9)

holds for everyζ ∈ Z(D).

A drawback of problem PV is that (9) involves the unknown water domainD in the left-hand side. Therefore, it
convenient to introduce a new vertical coordinate

z = (y + 1)/
[
1+ η(x)

] ∈ [0,1] for all x ∈ R
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and to putw(x, z) = V (x, y(x, z)) in S. In order to give a weak formulation of the boundary value problem forw we
redefine the set of trial functions as follows: (i)ζ has a compact support in the closed stripS; (ii) the orthogonality
condition

1∫
0

ζ(x, z)dz = 0 holds for allx ∈ R (10)

Such a set of trial functions will be denotedZ(S), andζ(x, y) = h(x)cosπmz, m = 1,2, . . . , whereh is an arbitrary
cut-off function, delivers an example of function belonging toZ(S). Now the weak formulation of the problem forw

is similar to problem PV .

Problem Pw. Findw ∈ W
1,2
loc (S) satisfying (10) for a.e.x ∈ R and such that the integral identity

∫
S

[(
ζx − zηx

1+ η
ζz

)(
wx − zηx

1+ η
wz

)
+ ζzwz

(1+ η)2

]
(1+ η)dx dy =

+∞∫
−∞

ζ(x,1)
ηx(x)[1+ ηx(x)w(x,1)]

1+ η(x)
dx

holds for everyζ ∈ Z(S).

For this problem we claim the following theorem.

Theorem 3.1.Let η ∈ C1,α(R) be such that‖η‖C1,α(R) < δ for a sufficiently smallδ > 0. Then problem Pw has a

solutionw ∈ C1,α(S) such that‖w‖C1,α(S) � C‖ηx‖C0,α(R). This solution is unique inC1,α(S).

Our proof of this theorem is based on the results formulated in Section 5. Theorem 3.1 shows, in particulaV

andVx in the right-hand side of (8) are images obtained by applying some nonlinear operators toη.

4. An asymptotic representation forw

Since the operatorη �→ w is nonlinear, it is important to find the leading term with respect toη in the asymptotic
representation ofw. For this purpose we introduce the following linear problem.

Problem P�. Findw(	) ∈ W
1,2
loc (S) satisfying (10) for a.e.x ∈ R and such that the integral identity

∫
S

(
ζxw

(	)
x + ζzw

(	)
z

)
dx dy =

+∞∫
−∞

ζ(x,1)ηx(x)dx holds for everyζ ∈ Z
(
S

)

The orthogonality condition (10) allows us to find an explicit expression for the Fourier transformŵ(	)(τ, z) =∫ +∞
−∞ e−iτxw(	)(x, z)dx. Namely,

ŵ(	)(τ, z) = iη̂(τ )

(
coshτz

sinhτ
− 1

τ

)

Then the inverse Fourier transform leads to a representation ofw(	) in the form of a pseudo-differential operat
applied toη. Moreover, we have that

ŵ
(	)
x (τ,1) = −η̂(τ )(τ cothτ − 1) (11)

which is a consequence of the previous formula and plays an important role in the proof of Theorem 1.1.
The latter proof also involves an estimate of the difference between solutions of the nonlinear and line

lems Pw and P	, respectively. For estimatingw − w(	) we note that this difference satisfies the following integ
identity:
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∫
S

[
ζx

(
w − w(	)

)
x

+ ζz

(
w − w(	)

)
z

]
dx dz =

∫
S

R(ζ,w)dx dz +
+∞∫

−∞
ζ(x,1)

ηx(x)[ηx(x)w(x,1) − η(x)]
1+ η(x)

dx

(12)

whereζ is an arbitrary function fromZ(S) and

R(ζ,w) = zηx (ζzwx + ζxwz) − ηζxwx + η − z2η2
x

1+ η
ζzwz

Hence the right-hand side in (12) is nonlinear with respect tow andη. For problem (12) we claim the followin
theorem.

Theorem 4.1.Letη ∈ C1,α(R) be such that‖η‖C1,α(R) < δ for a sufficiently smallδ > 0. Then the following estimat
holds: ‖w − w(	)‖C1,α(S) � C(‖ηx‖2

C0,α(R)
+ ‖ηx‖C0,α(R)‖η‖C0,α(R)).

The meaning of this theorem is twofold: (i) it shows thatw(	) is the required leading term in asymptotics ofw;
(ii) it provides an estimate for the discrepancy. Moreover, Theorem 4.1 combined with formula (11) and fixe
arguments provides the proof of Theorem 1.1.

5. A sketch of proofs of Theorems 3.1 and 4.1

In order to handle problem Pw and the problem forw − w(	), involving the integral identity (12), we need a mod
linear problem.

Problem Pa . Let p,q, r ∈ L2
loc(S) and letH ∈ L2

loc(R). FindU ∈ W
1,2
loc (S) satisfying (10) for a.e.x ∈ R and such tha

∫
S

(ζxUx + ζzUz)dx dy =
∫
S

(ζp + ζxq + ζzr)dx dz +
+∞∫

−∞
ζ(x,1)H dx (13)

holds for everyζ ∈ Z(S).

Let H satisfy more strong assumption than admitted in problem Pa and belong toLp

loc(R) for somep > 2. This
allows us to define the function

N(x) = ∥∥p(x, ·)∥∥
L2(0,1)

+ ∥∥q(x, ·)∥∥
L2(0,1)

+ ∥∥r(x, ·)∥∥
L2(0,1)

+ ‖H‖Lp(x,x+1)

for a.e.x ∈ R. Then we claim the following lemma.

Lemma 5.1.Let
∫ +∞
−∞ e−π |x|N(x)dx < ∞, then problem Pa has a solution such that

∥∥U(x, ·)∥∥
L2(0,1)

� C

+∞∫
−∞

e−π |x−ξ |N(ξ)dξ (14)

Moreover, if∥∥U(x, ·)∥∥
L2(0,1)

= o
(
eπ |x|) as|x| → ∞ (15)

(this is true when(14)holds), then this solution is unique.

Now we suppose thatp,q, r ∈ C
0,α
loc (S), 0< α < 1, H ∈ C

0,α
loc (R), and put

Nα(ξ) = ‖p‖C0,α(Πξ ) + ‖q‖C0,α(Πξ ) + ‖r‖C0,α(Πξ ) + ‖H‖C0,α([ξ,ξ+1])

whereΠξ = S ∩ {ξ � x � ξ + 1}. Then Lemma 5.1 along with the results on local regularity of solutions to
boundary value problems for the Laplace equation imply the following
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Proposition 5.2.Let p,q, r ∈ C
0,α
loc (S) and letH ∈ C

0,α
loc (R), 0 < α < 1. If

∫ +∞
−∞ e−π |x|Nα(x)dx < ∞, then there

exists a weak solutionU of problem Pa . Moreover,U ∈ C
1,α
loc (S) and the following estimate holds:

‖U‖C1,α(Πx) � C

+∞∫
−∞

e−π |x−ξ |Nα(ξ)dξ

Finally, this solution is unique in the class defined by(15).

The immediate consequence of Proposition 5.2 is the following

Corollary 5.3. Let p,q, r ∈ C0,α(S) and let H ∈ C0,α(R). Then the weak solutionU of problem Pa belongs to
C1,α(S) and the following estimate holds:

‖U‖C1,α(S) � C
[‖p‖C0,α(S) + ‖q‖C0,α(S) + ‖r‖C0,α(S) + ‖H‖C0,α(R)

]
. (16)

Since problem PV has the form (13) with certainp, q, r , andH that depend onη, Theorem 3.1 can be derive
from Corollary 5.3 and the Banach’s fixed point theorem.

Now we turn to the integral identity (12) for the differencew − w(	) between the solutions of the nonlinear a
linear problems Pw and P	, respectively. We note that (12) and (13) coincide when

p = 0, q = zηxwz − ηwx, r = zηxwx + η − z2η2
x

1+ η
wz, and H = ηx

1+ η
[ηx + w(x,1) − η]

Therefore, Theorem 4.1 follows from Corollary 5.3 and Theorem 3.1.
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