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Abstract

Theoretical investigations have shown that there is a three-dimensional alternative to the Blasius solution for laminar boundar
layer flow past a semi-infinite flat plate at zero incident. In this Note we show numerically that there exists a class of three-
dimensional solutions confined to almost zero incident condititmsite this article: A. Ridha, C. R. Mecanique 333 (2005).
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Résumé

Sur I'alternative tri-dimensionnelle a la solution de couche limite de Blasius. Des investigations théoriques ont montré
qu’une alternative tridimensionnelle a la solution de Blasius existe pour I'écoulement en couche limite laminaire sur une plaque
plane semi-infinie a incidence nulle. Dans cette Note, on montre numériqguement gu'il existe une classe des solutions tridimer
sionnelles confinée au cas correspondant a une plaque plane presque a incidenBeurutiéer cet article: A. Ridha, C. R.
Mecanique 333 (2005).
0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

External flows in practical applications are generally three-dimensional in nature. Yet in view of the difficulties
they present we are usually inclined to make approximations enabling us to reduce the problem to a two-dimension
one. One of the best known examples is that of a laminar boundary-layer flow on a flat plate at zero incident whict
leads to the well celebrated Blasius profile; the plate is finite in its dimensions but often considered to be semi-infinite
and so attention is mainly focused on regions sufficiently far from its sides edges. However, as shown first by Ridh:
[1-3] and later by Dhanak and Duck [4], there exists a three-dimensional alternative (a similarity-type boundary-layel
solution) to the two-dimensional Blasius solution. This occurs under the same external flow conditions when a cross
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Fig. 1. Flow configuration and coordinates system frame.

Fig. 1. Shématisation de I'écoulement avec le systéeme des coordonnées.

flow component growing linearly in the cross-flow direction is allowed for while the other two components remaining
independent of this direction.

A further twist steps into this picture due to the existence of streamwise vortices (see Ridha, [5]) originating at
the apex of the side-edge of ‘quarter-infinite’ flat plates (see Fig. 1). To these two aspects one may add of course th
effect of the wind tunnel side-walls (on experiments involvfirgte flat plates). One or more of these factors may
be considered ‘adequate’ to raise the question that (in experiments) secondary flow motion may well persist suffi-
ciently far from the side edges and need, therefore, be taken into account. It is this question that constitute the origir
of this Note in which we consider boundary-layer solutions for the viscous flow near the plane of symmetry of a
finite flat plate at ‘almost’ zero-incident. The external flow is assumed of the (d&mV,) = Uso (x/1)™ (1, Az/x),

(Uso, 1) representing velocity and length scales withbeing an arbitrary constant. In this frame work, boundary-
layer solutions are sought in ttemissiblespace ofm when A(m), assumed as a function ef, is taken close

to zero. This enables us to find (numerically) three-dimensional solutions confined to narrow bands in the admis-
sible space ofn. In some cases such a band is so narrow that in practice one would be tempted to assume it
pertaining to the external conditions of a two-dimensional flow past a flat plate at zero incident. That is why it is
believed that such results deserve communicating, particularly for experimental investigations of instability questions
where the base state solutions could very well be non-parallel under conditions usually believed to lead to parallel
flows.

2. Boundary-layer equations

We consider boundary layer flow (specifically in the vicinity of the symmetry plan) past a finite flat plate in the
spanwise direction but semi-infinite in the streamwise direction. The flow configuration and the Coordinate system
are as shown in Fig. 1, the plate being defined by 0 and the leading edge by= 0. Then the inviscid flow velocity
vector in the vicinity of the symmetry plaa & 0) can be written [3] in the following form

(Vx, V2) = Uoo (x/ D)™ (1, A2/ x) 1)
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Under these conditions we can look for steady laminar incompressible boundary-layer flow in the form

Velx, vy, 7)) =u(x, y) +Z2M1(x, y) 4.
Vy(x,y,2) =v(x,y) + 22v1(x, y) + - -
Vo(x,y,2) = zw(x, y) + 22wi(x, y) + - -- 2)

1
p(x,y,2) = polx, y) + Ezzpz(x, y) 4o

wherep is the fluid’s pressure. Applying the usual boundary-layer approximations to the continuity and Navier—Stokes
equations the following governing equations are found

du v

47 =0 3
8x+8y+w 3)
3 3 19 32

u_u+v_u:__ﬂ+v_u (4)
ax ay p 0x 9y?2

a.

Pi_ow), i=02... (5)
dy

dw  w o, 1 3w

- - =_= ek 6
M8x+v3y+w ppz—i-uayz (6)

wherep andv designate the density and kinematic viscosity of the fluid, assumed constant.
3. Similarity solutions

Egs. (3)—(6) admit similarity solutions which can be found by introducing two stream-like-funafionsy) and
X (x, y) together with the following definitions

o oy

u

oy’ Ty’ dx

20U [ X (m+1)/2 20Ux /1 [ x (m=1)/2

= —_ ) == - h
v Tom <l> f, x p— ] (1) ) (7)
_ 1+mU x\ b2 f 2m
T=V o e\ YPE LT

which after substituting into the boundary-layer equations and using the outer flow conditions yield
" [@=Bh+ f1f +BIL- f21=0 ®)
W' +[@2-Bh+ fln"+[20-B)f —(2—Ph'|h =r[21—B) — 12— B)] 9)

Here a prime denotes differentiation with respechtdote that the pressure term has been determined in the usual
manner upon using the outer flow boundary conditions. These equations are to be solved subject to

fn=0=h(n=0=f'n=0="(n=0=0
ffn=00)=1 h(n=o00)=Axr

In order to look for solutions in the vicinity of zero streamwise pressure gradient we look for solutions of (8)—(10) for
A-forms satisfying a Taylor-series

(10)

di 1 ,d%°

20+ =822 0y +--- 11
dﬁ()+2ﬂ dp 0) + (11)

This enables us to recover the outer flow conditions of the Blasius solution upon segtfirg 0) = 0. We have
found that for a wide range ofigdg (8 = 0), d?x/dB2(8 = 0) and higher order derivatives (for example/dg (8 =

0) = +0.001, £0.01, 1 /dB2(0) = 1, 10, 1000) theg admissible space turns out to lie within a very narrow band:
-1« B « 1. Typical examples of wall shear stress evolution with the streamwise pressure gradient pagameter

A(B) =10+ 8
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Fig. 2. Wall shear stress variation with the pressure gradient paraghedetid line solutions are associated with the zero pressure gragien0j
three-dimensional alternative state and the dotted line ones are associated with Blasius solution otftaing@d at

Fig. 2. Evolution de contraintes pariétales suivant le paramétre de gradient de prgskies solutions en lignes continues sont associées a
I'alternative tri-dimensionnelle obtenue lorsgéie= 0 et celles en lignes pointillées sont associées a la solution de Blasius (obtenugggu@id

are given in Fig. 2. Examples of velocity profiles are also depicted in Fig. 3. Observe how such a state of solutions
could lead to three-dimensional alternative state with streamwise velocity profile close to the Blasius solution. These
solutions are generally associated to cross flows having jet like profiles close to the wall as illustrated, oriented either
towards or away from the plan of symmetry.
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Fig. 3. Primary velocityf’ profiles and secondary flow profilééwhenx = (58 — 0.2). Dotted lines designate solutions associated to the Blasius

solution and solid lines to the three-dimensional alternative solutions. Solutions at extreme va@w@e igiven by the dashed lines. Curves 1-6
correspond tg = —0.025625 —0.02, 0.0, 0.02, 0.05, 0.055075.

Fig. 3. Profils de vitesse de I'écoulement princigaket de I'écoulement secondaitélorsquei = B(58 — 0,2) ; les lignes continues désignent les
solutions associées a I'alternative tridimensionnelle, celles en pointillées indiquent les solutions associées a la solution de Blasersteaitelles
discontinus désignent les solutions aux valeurs extrém@sldes courbes 1-6 corresponderft & —0,025625 —0,02; 0,0; 0,02, 0,05; 0,055075.

What these results tell us is that it is plausible to have three-dimensional flows arising under conditions seemingl
leading ‘uniquely’ to two dimensional flows; measurements pertaining to the three-dimensional alternative flow state
could (perhaps wrongly by inadvertence) be assumed to belong to a Blasius-profile or a Falkner—Skan base flow sta
Note also that the smallness in the variation of the pressure gradient in these solutions may well be attributed i
practice to experimental errors. Hence, in a study of flow stability this would amount to ‘confusing’ a non-parallel
base flow state with a parallel flow base state. Now given that such three-dimensional solutions are associated
eigen solutions algebraically growing in thedirection [5] as well as in the streamwise direction [6,7], questions
would naturally be raised with regards to the correctness of conclusions in practice and would require further care i
experiments to discern as to which of the above possible base state (parallel or non-parallel) flows arise in practice.
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