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Abstract

This article deals with a review and critical analysis of first order hydrodynamic models of vehicular traffic flow obtained by the
closure of the mass conservation equation. The closure is obtained by phenomenological models suitable to relate the local mea
velocity to local density profiles. Various models are described and critically analyzed in the deterministic and stochastic case.
The analysis is developed in view of applications of the models to traffic flow simulations for networks of roads. Some research
perspectives are derived from the above analysis and proposed in the last part of thd@afierthis article: N. Bellomo,

V. Coscia, C. R. Mecanique 333 (2005).
0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Modeéles du premier ordre et fermeture de I'équation de conservation de masse dans la théorie mathématique du trafic
routier. Ce article propose une revue et une analyse critique des modeles hydrodynamiques du trafic routier obtenus par fermetur
de I'équation de conservation de la masse. La fermeture est obtenue a partir de modéles phénoménologiques reliant les profi
des densités locales a la vitesse moyenne locale. Différents modéles sont décrits et discutés aussi bien dans le cas détermini
gue stochastique. L'analyse est développée en vue d’applications aux simulations des modéles de trafic pour les réseaux ro
tiers. Des perspectives de recherche, basées sur notre analyse, sont proposées dans la derniere partie de@ge ditvaikt
article: N. Bellomo, V. Coscia, C. R. Mecanique 333 (2005).
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1. Introduction

Mathematical modelling of vehicular traffic flow can be developed by different approaches corresponding to dif-
ferent scales of observation and representation of the system. Specifically, microscopic modelling corresponds to thi
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dynamics of each single vehicle under the action of the surrounding vehicles; a statistical description, in a framewor
close to the one of the kinetic theory of gases, consists in the derivation of an evolution equation for the probability
distribution function on the position and velocity of the vehicles along the road; while the macroscopic description,
analogous to that of fluid dynamics, refers to the derivation of evolution equations for the mass density, linear mo.
mentum and energy, which are regarded as macroscopic observable quantities of the flow of vehicles assumed to
continuous. Conservation equations are closed by phenomenological models related to the material behavior of t
mechanical system regarded as a continuum.

Despite the great complexity of the system which is well documented in various papers by Kerner and co-
workers [1-3], the need for designing models valid to reproduce at least a part of the variety of phenomena related 1
traffic flow is motivated by the fast growing number of vehicles on networks of roads, either highways or urban streets
and the related economical and social implications, e.g. pollution and energy control, prevention of car crashes, et
The review papers [4—7] provide a detailed account of the various research contribution available in the literature
corresponding to all above modelling scales.

Modelling traffic flow phenomena by macroscopic hydrodynamic equations has to be regarded as an approxime
tion of physical reality, however, useful for the applications. Certainly this type of representation can be criticized
considering that the mean distances among vehicles are large enough to be in contrast with the paradigms of cc
tinuum mechanics [8]. On the other hand, at least for some particular applications, relatively simple models catr
be effectively useful, also considering that all models are somehow characterized by parameters to be identified k
suitable comparisons between theory and experiments. The above mentioned identification is necessary toward
effective use of the model, while it appears to be possible, as documented in [9], only in the case of very simple
ones.

Indeed, this is the case of models obtained by the equation of conservation of mass closed by a phenomenologic
relation suitable to link the local mean velocity to the local density profiles. It is a problem of closure of the mass
conservation equation proposed as an alternative to the use of both mass and momentum equations. This alternat
skips over the technical difficulty of closing momentum equation by phenomenological models which describe the
acceleration applied to the vehicles in the elementary volume by all surrounding vehicles.

The closure of mass conservation equation leads to first order models, which may provide a relatively less accura
description of physical reality with respect to second order models. On the other hand, this relatively simpler class o
models appears to be useful in the analysis of complex traffic flow conditions, such as those related to variable roa
conditions [10], or to network of roads [11-13].

This article deals with a review and critical analysis of the various models available in the literature concerning
first order models and indicates some research perspective ideas. The main difficulty consists in attempting to tal
into account the very particular feature of the system: the vehicle is not simply a mechanical system, but it has to b
thought of as a driver-vehicle system, where the ability of the driver to organize the dynamics cannot be neglectec
The contents are organized through four more sections which follow this introduction. Section 2 describes the gener:
mathematical setting, Section 3 deals with the mass closure problem and with the derivation of evolution equation
for the density, Section 4 develops the same analysis for the flux, and finally Section 5 develops a critical analysi
with special attention to research perspectives.

2. Mathematical setting

This section provides the mathematical setting related to the hydrodynamic modelling of a one-lane flow of vehicles
on aroad. The conservation equations will be given, following [7], in terms of dimensionless variables:

t =1,/ T is the dimensionless time variable referred to the characteristicEiménerez, is the real time;

x = x, /€ is the dimensionless space variable referred to the characteristic length of thé wlagrex, is the
real dimensional space;

u = n/ny is the dimensionless density referred to the maximum dengjtpf vehicles corresponding to bump-
to-bump traffic jam;

e v =uvg/vy isthe dimensionless velocity referred to the maximum mean velogjitwherevy, is the real velocity
of the single vehicle;

q is the dimensionless linear mean flux referred to the maximum admissible mea,flex vy, .
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In what follows the characteristic tinié will be assumed according to the conditionp T = ¢, that means thaf
is the time necessary to cover the whole road length at the maximum mean velocity.

Macroscopic models are obtained by conservation equations corresponding to mass and linear momentum, refe
ring, for each lane, to the variables=u(z, x) € [0, 1], andv = v (¢, x) € [0, 1]. Still referring to [7], the mathematical
framework is the one concerning conservation of mass, and linear momentum

T =0

Bt + 8x (uv) (1)
ov n dv — 1 |

o Uax JHY

where f defines the acceleration referred to the vehicles in the elementary volume. The word acceleration is used,
when dealing with traffic flow models, to avoid the use of the term force for a system where the mass cannot be
properly defined.

The analysis developed in what follows takes advantage of the experimental information delivered by the analysis
of steady uniform flow conditions. The phenomenological behavior of the system shows that the mean velocity of the
car decays with increasing density from the maximum valeel whenu = 0 to v = 0 whenu = 1. Experiments
are visualized in the so-called velocity diagram wheie related tas, in steady uniform flow, or in the fundamental
diagram, where the flux is related again ta. The following fit of experimental data:

v:ve(u)zexp{—ozli }, o >0 Cle(u)=uve(“)=”eXp{_a1i } @

u u

was proposed in [9], where is a parameter related to the specific features of the road and environmental conditions.
Comparisons with experimental data show the following range of variability of the above parametdr:3], where
relatively larger values of denote strong decay of the mean velocity with local density and hence relatively less
favorable road—weather conditions. The above results can be used, as we shall see, to close the mass conservati
equation.

Other models have been proposed in the literature to simulate experimental data by simple mathematical equation:
A well known model, reported in [4], is the following:

g=ul—u*H  d>0 (3)

which needs, however, two constants. Model (2) only needs one parameter which allows, as shown in [9], a non
ambiguous identification. Occasionally, simply for practical purposes, the following model is adopted:

ve=1—u, ge =u(l—u) 4)

which has the advantage of generating, as we shall see, relatively simpler first order hydrodynamic models.
It is worth mentioning that paper [9] also introduces an additional parameter: the critical densitgh that for
u < u. the flow is freew = 1, while foru > u. the decay of the velocity with the density is that shown by Eq. (2).

3. On the closure of mass conservation

The problem of the closure of the mass conservation equation consists in looking for a phenomenological model to
link the mean velocity to the density profiles by a suitable analytic or functional equation. This results in avoid-
ing the use of the momentum equation and the difficult task of identifying, at a practical level, the acceleration
term.

Various models are available in the literature, based on different interpretation of the phenomenology of the system.
A survey and a critical analysis of the above model is proposed in this section, while some developments are propose
in the next one. Technical calculations are developed not only for the variabla also for the flux;. Indeed, the
statement of mathematical problems is relatively more efficient if the flux is involved since technical measurements
of flux are relatively more accurate than those of the velocity.
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3.1. Closure by velocity diagram

The closure of the mass conservation equation simply means substituting the expressidelieéred by the
velocity diagram into the mass conservation equation. Using the model given by Eg. (2) yields:

3 3 1-(2 2
W rd Z0, wheref(uy= 1 et v (5)
ot ax 1—u —u

If the relatively simpler relation (4) is adopted, then the following model is obtained:
au ou
—+@1-2u)—=0 6
5y T =20 (6)

The above hyperbolic model shows unrealistic shock wave phenomena which are not experimentally observed. Th
inconsistency is due to the fact that conditions which correspond to steady uniform flow conditions are instantaneousl|
imposed in unsteady conditions. Indeed, no driver is effectively, and luckily, able to adapt the vehicle to the steady
flow conditions.

3.2. Linear and nonlinear diffusion models

Various authors suggested a closure based on the addition of a small diffusion term related to the assumption th
the mean velocity is given by a small diffusion velocity related to local gradients which is added to the one given by
the velocity diagram.

In general:

Q=qe(u)+61d(u,ux)=uexp{—a " }—gk(u)a_u @
1 ax

A linear closure was proposed by Lightill, Payne and Witham [14,15], with = 1, which generates the following
model:
ou ou 9%u

o P50 =62 ®
where f = f(u) was defined in Eq. (5).

Later De Angelis [16] remarked that the assumption of linear diffusion may be reasonable in the case of smal
density gradients, while whenspans in the whole rang#é, 1] the diffusion phenomenon dependswand should
tend to zero whemn goes to 0 and to 1. A natural model is the following:

k=kw)=u*A-w)*?, a,b>0 (9)

while in general the model is as follows:

ou ou u 2 92u
TS + f(M)a = 5ku(”)<a> + sk(u)ﬁ (10)

wherek, denotes the partial derivative bfwith respect ta:. For instance, if the phenomenological model (9) is taken
with ¢ = 1 andb = 0, thenk, takes the expressicy = u(2 — 3u).

Of course, different, hopefully more realistic, diffusion models can be proposed on the basis of experimenta
data which are not easy to recover. Nonlinear diffusion models provide a partial answer to the criticisms raised b
Daganzo [17], but not yet to those in the paper by Aw and Rascle [18], where consistency of hyperbolic models is
correctly claimed in contrast with the parabolic structure of the above models. Indeed, perturbations in traffic flow
have a finite speed. Possibly a deeper analysis of diffusion coefficients related to porous media behavior may improy
the above mathematical description.

3.3. Apparent density models

An additional phenomenological model to be taken into account was proposed in the paper by De Angelis [16].
technically modified by Bonzani [19], which introduces the interesting concept of apparent local density related to
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the fact that the driver does not measure exactly the local density, but simply feels it. Specifically, the driver feels a
densityu® which is larger than the real one if the local density gradient is positive (trend to jam conditions), while it
is smaller than the real one if the gradient is negative (trend to vacuum). In addition, the above multiplicative effect
increases with decreasing density. A conceivable expression of the apparent density is the following:

u*:u*(u,ux)=u|:1+ n(l—u)g—z] (11)

wheren is a positive parameter. This means that the equilibrium velocity which is felt by the driver is obtained
substituting in (2)u with u*: v, = v (u*(u, uy)) and g, = g.(u*(u, u,)). Using the phenomenological model (4)
yields

ot
which shows a remarkable analogy with the nonlinear diffusion model. The apparent density (11) generates a nonlinea
diffusion model corresponding (i) = u?(1 — u).
On the other hand, the use of models (2) and (11) generates the following evolution equation:

2
8_u+(1 2u)——nu (1—u)—+nu(2 3u)<8u> (12)

ou ou 92u

§=g(u,ux)5+p(u,ux)ﬁ (13)
where

aull+ 01— 20)u [1+ 2u* (u, uy)] — [1— u*(u, uy))? .

gu,uy) = AT vy (0 (u, uy)) (14)

and
1—
pu,uy) =a%qc( (1, uy)) (15)

whereu* is given by Eq. (11) and}, ¢} by Eq. (2), wherea: is replaced by:*. Still the structure of second order
terms is the one of parabolic equations.

3.4. Delay models

All models described in the previous subsections are based on the assumption that the driver instantaneously adag
the velocity of his vehicle to a certain velocity obtained through suitable phenomenological models such as those
reported above. These models depend on the local density and density gradients. On the other hand it is reasonak
to assume that the driver’s reaction time is finite, so that the velocity at which car travels is appropriate to the density
earlier in time, as:

v(ﬁ):v(u(x,t—r)) (16)

wherer is a parameter small with respect to one, that corresponds to a relatively large time, thus introducing a retardec
adaptation of the driver to the actual traffic conditions.

This type of modelling was proposed in [20], where a qualitative analysis on the stability of solutions was proposed,
too. Indeed, some interesting features of the latter model can be exploited using relation (16) to close the continuity
equation in (1) in case of small retardation time. We find:

u 0

5 +a ()——ra(uv( )—) (17)
where:

q' () =v(u) + uv'(u) (18)

and wheres without a bar means the density evaluated iat time¢. In the case of nearly uniform traffic flow, the
densityu can be considered ‘almost’ constamtx, r) = U + w(x, t). Substituting back into (18) and retaining terms
up to the first order inv, we have that the density ‘perturbations’ obey the following linearized equation:

w 3w
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The above equation admits solutions in the form of normal madesr) = Wek*+e’ with the growth-rate parameter
o depending on the perturbation wavelength as:

—ikq' (U
= % (20)
For small values of the retardation parametéhe functionw () can be approximated as:
w=—ikq'(U)+kK*Uq (UW (U)r, fort<«1 (21)
Finally, the absolute value of perturbations goes as:
lw(x, )] = | W explik(x — g/ (U)) | Vd @V O] |y |PUa @' @)t (22)

While the quantitie&? andU are certainly positive, we must consider the sign of the progi(ét)v’(U). The term
v/(U) is always less than zero. On the other hand, it is easy to verify, assuming the velocity diagram (2), that the
quantityq’(U) = v(U) + Uv'(U) is negative whe/ > Umax, Where:

UmaX=}(2+a—\/oz(4+a)) (23)

2
is the value of density at which the flux attains its maximum. This means that, in case of heavy traffic, the expo-
nential term in Eq. (23) grows for large As a consequence, uniform flows are (linearly, and then also nonlinearly)
exponentially unstable, that is, small density perturbations increase in time, possibly leading to one of the observe
instabilities of congested traffic flow such as ghost queues and ‘stop and go’ phenomena. These phenomena, whi
are documented and analyzed in [1,2], are described by this model in terms of instability.

4. Evolution equations for the flux

The various models presented in the preceding section refer to the local density of vehicles as dependent variab!
The related statement of initial-boundary value problems needs the measurements of the densitieaatx = 1
to implement the boundary conditions. On the other hand it is well known [9] that the measurement of the flux is rela-
tively more precise than the density. Therefore it is convenient to develop simulations by solution of the mathematica
problems deriving equations for the flux following some technical indications already given in [21].

Consider the various models reported in Sections 3.1-3.3 based on closures derived by local flow properties. F
all of them the flux can be regarded as a function of the local density and density graglienjsu, u, ). Therefore
derivingg with respect to time provides the following formal expression:

u d

3 Ty =
x ) (24)

9 A, 1 B, )24

%9 _ a4 B2

ot s D52

where
9 9
Aw.q)="L  Bu.q) =2 (25)

ou Juy

and where the argument. does not appear id and B as it has been technically expressed in terms ahd g
through the phenomenological models (2), (4), (6), (12). The general structure (25) can be particularized for each c
the above models. In particular, model (2) generates the following equation:

ou g
3  ox
M puny -
g _ -2
ot 0x
The linear diffusion model can be rewritten as follows:
du  dq
gé " dg | 09%q @7)
a = T T
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The nonlinear diffusion model can be rewritten as follows:

du _ 9

a  ox 28)
g aq ky (u) u aq 2 9%g

o T % T W [exp{ —“1_u}‘4(a—x) MR

De Angelis’ model [16] can be regarded, as above, as a particular case of the diffusion model. If model (4) is adopted,
then the apparent-density model can be written in term of flux as follows:

ou  9dq
ar  ox

dq |9g 9%
= |:(1 2u) + nu(2 — 3u) 8x:| o + nu(l—u) o2
Again the above model can be regarded as a nonlinear diffusion model corresponding to an appropriate choice of th
diffusion coefficient, wheré (1) = u2(1 — u).
The above models are based on the assumption that the driver adapts instantaneously the mean velocity to the spe
v, as it is defined by the various models we have seen in Section 2. On the other hand, the driver can only attempt tc
reach the above velocity. Therefore, following the reasoning suggested in [22], the model below is obtained:
ou aq
ot dax (30)
2 = p[ge) —q]
at
whereu is a positive constant. An interesting problem consists in analyzing the qualitative behavior of the solution to
the above model in comparison with those of the delay model.
The model introduced in Section 3.4 relates the flux to the density earlier in time, so that the correspondent closure
relation is expressed as follows:

q=<p(12)=uv(u(x,t—t)):uexp{—alu _} (32)
—Uu
wherei = u(x, t — 7). When the retardation parameter is small, from Eq. (31) we find:
a 1 d
(i) =uv(u) — ruv/(u)a—l: = u(1+ Tama—Ltt) exp{ —ag Z - }, u= (i), _, (32)
ast — 0.
Computing the time derivative @f(iz) for smallz, we finally get the following model:
8_q _ ou
ax ot
dq (33)

60" 1 i 9 ()
= u)— T u T u —_—
ot 0x 0tox 0x

where

®(u) = —ex “ ¥(u) = Y ex “
®)=- p{‘“l_u}’ W==T=u2 P{‘“l_u}

and

Fuy=-——2 24 2 Jexpl —a-t
W= (1—u)3 1—u P al—u '
5. Research perspectives

First order models have the great advantage of being relatively simple, and then applicable to implement complex
traffic situations such as urban environments and road networks [24]. In addition, they rely on a firm basis, that is, the
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equation of mass conservation suitably ‘closed’ with a velocity—density (or flux—density) relation that plays the role of
a constitutive law of classical continuum mechanics. Such a closure relation, on its own, is derived through a suitabl
analysis of experimental traffic data, leading to different models, as analyzed in the previous section. On the othe
hand, one of the most interesting features of the traffic flow is the arising of collective phenomena such as stop-and-
waves and phantom queues. It appears that a necessary condition for a macroscopic model to allow for such situatic
is a kind of instability of the flow at high density, as described in Section 3.4. A key point in the search for a ‘good’
first order model should be the possibility to describe at least qualitatively all known features of traffic flow and in the
meanwhile to contain only few parameters, intuitive and easy to measure, to be theoretically consistent and, last bl
not least, to allow for a fast numerical simulation. In this section we mention some possible pathways to improve the
above mentioned closures of the mass conservation equation in order to possibly include more traffic aspects witho
loosing analytic robustness. We limit ourselves to simply sketch the ideas, inasmuch at present time they need deey
mathematical analysis.

A possible model is obtained by adding a space dislocation in the velocity—density closure relation, in a way similat
to that exploited in Section 3.4, where a time dislocation (delay) was used. Specifically, we assume the velocity at poir
x and at time is related to the density at an earlier time t and in a spatial neighborhoad— |§|:

(i) = v(u(x — 18], — 7)) (34)

where, in principle, the parametersand|s| can be assumed to be independent each other. Working as in Section 3.4,
we suppose the dislocation parameters to be ‘small’, in such a way that the mass conservation equation together w
Eq. (34) can be expressed:

ou 4l )814 181’ () ou 2+ 8%u o) ou du n 3%u (35)
—_— Uu)— = v (U — u
ar Wy ax ax2 ox ot oxor

ast, |8| — 0, whereg’(u) is the same as in Eqg. (18). It is worth to check the effect of the space dislocation with respect
to long time behavior of perturbations(x, ¢) to a uniform traffic flowU . Limiting ourselves to small perturbations’
norms, from Eq. (35) we get the linear evolution equation for the perturbations:

Jw

52 52
g = (U)<|6| 7+ —“’) (36)

dx dt
A Fourier transformation of Eq. (36) shows that it has solutions in the form of modes) = We** ! provided:
w=—ikq'(U) + ¢ (U)UV (U)k*t — Uv' (U)k?|5| (37)

ast, |§| — 0. It clearly appears that the presence of a space dislocati@vmeas a destabilizing effect, irrespectively

to the density value. The combined effect of the space and the time dislocations result in a decrease of the critic
density for linear (and a fortiori nonlinear) instability of steady uniform traffic flows. The values of the additional
parameter$s| andt can be found matching the above computations with the experimental data, in particular with the
threshold for the onset of congested flow. To summarize, some kind of dislocation appears to be a keynote for a fir:
order model to allow for the instability phenomena characteristic of high density flow.

All different types of closure which have been reported in this paper are based on a deterministic approach at th
macroscopic scale. On the other hand, while the equation of mass conservation is deterministic, fluctuations of tf
velocity at the microscopic scale are observed [1,2]. A conceivable way to model the above phenomena consists
attempting a stochastic closure by considering the veld¢ity V (w) in a suitable probability spade?, w, o).

Suppose that experiments in uniform equilibrium conditions are able not only to identify the mean velocity
as given by Eq. (2), but also a suitable probability densgity= P.(V; u), overV, parameterized with respect to the
densityu, such that

Yu € [0, 1] /Pe(V;u)del, /VPE(V;u)deve(u) (38)

Then, the closure is stated by the following system:

ou V)=
o T —( (39)

Pe—Pe(V’u)
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Dealing with the above equations means sampling the solutions to obtain suitable moments of the density along time
and space. Of course, technical developments are possible. For inBtaaocebe parameterized, as in Section 3, with
respect ta* instead ofu. Or, following the model (30) it can take into account the attempt of the driver to reach the
equilibrium distribution:

ou d

— 4+ —wV)=0

ot 0x 40
P (40)
E = pe(Pe — P)

Suitable experiments may possibly lead to a reliable choice of the above density functions, so that such a stochasti
closure will significantly enrich the descriptive properties of the resulting model, especially in congested flow where
highly correlated collective phenomena are particularly relevant [23]. On the other hand, a direct modelling of an
evolution equation foP, for instance following [24], may lead to a relatively more accurate description of the complex
system we are dealing with. The idea of averaging dynamical systems, i.e. models at the microscopic scale, wa:
introduced by Darbha and Rajagopal [25,26]. Recent developments of this idea are proposed in the already citec

paper [8].
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