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Abstract

A systematic methodology for the evaluation of the linearization procedures sustaining mean field homogenization the
nonlinear composite materials is proposed and applied as an illustration to various recently proposed ‘affine’ and ‘seco
formulations for nonlinear elasticity. It relies on the analysis of composites for which both the exact nonlinear homoge
problem and the homogenization problem associated with the ‘linear comparison material’ defined by the linearization p
can be solved numerically with the same accuracy and for the same microstructure. The comparison of the results then
rigorous evaluation of the effects of the sole linearization method.To cite this article: A. Rekik et al., C. R. Mecanique 333 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Une méthodologie pour l’évaluation précise des procédures de linéarisation en homogénéisation non linéaire en champs
moyens. Une méthodologie systématique pour l’évaluation des procédures de linéarisation sur lesquelles s’appuient le
d’homogénéisation en champs moyens pour les composites non linéaires est présentée et appliquée à titre d’illustr
l’élasticité non linéaire aux différentes variantes des formulations « affine » et « au second ordre » récemment proposées.
sur l’analyse de composites pour lesquels on résout numériquement avec la même précision et pour la même microstru
bien le problème d’homogénéisation non linéaire complet que le problème d’homogénéisation linéaire relatif au « milieu
de comparaison » défini par la procédure de linéarisation. La comparaison des résultats permet ainsi d’évaluer rigoureu
seuls effets de la méthode de linéarisation.Pour citer cet article : A. Rekik et al., C. R. Mecanique 333 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

Most homogenization theories for nonlinear heterogeneous random materials (for a review, refer to [1])
itly or implicitly rely on a two-stage formulation. The first stage amounts to replacing the nonlinear equation
some linear or affine relations through a so-called linearization procedure. The nonlinearities generally st
the material behavior and sometimes from the kinematics when a large strain framework is used. The linear
relations depend on parameters which are constant per phase and evolve with the overall load. The system o
affine equations derived from the linearization procedure corresponds to a homogenization problem associ
a fictitious elastic or thermoelastic composite, usually referred to as the linear comparison composite (LC
second stage consists in solving these linear equations by means of an upscaling model, appropriate for th
microstructure of the LCC. If, at each stage, the derivation ensures that the result is a bound for the effective
ties [2], the derived global estimate is also a bound. Unfortunately, such a bound often does not provide a su
accurate approximation of the real effective behavior. Some recent linearization procedures, like the affine a
[3], the second-order procedure [4,5], and some of their variants [6–8] seem to be more efficient. Neverthele
relevance and their relative performance need to be more precisely assessed.

To this end, the prediction of these formulations may be compared, either with the few efficient and stringen
available for some particular cases [9], or with the expansions exact to second order in the contrast available fo
inhomogeneous nonlinear composites [10]. For more general morphologies or in situations where the contras
the phases is not small, the comparison with full field numerical solutions of the initial nonlinear homogen
problem is the only possible way to evaluate the accuracy of the predictions of mean fields theories. To this
different approaches may be considered. The first consists in carrying out numerical simulations on large win
simulated microstructures [11] supposed to mimic the random microstructures addressed by the mean field
used for the homogenization of the LCC. With such an approach, one has to face computational difficulties d
large size of the numerical system to work out, as well as questions relative to the statistical representativen
generated microstructures, the appropriate averaging of the results and the choice of particular boundary c
[12]. Due to current computer power limitations, this first approach is often restricted either to two-dimen
problems or, when three-dimensional simulations are required, to a restricted number of comparisons which
allow us to exhaustively explore all combinations of the parameters of the particular problem under consider
the second approach, predictions of nonlinear mean field theories are compared to numerical simulations o
periodic microstructures, for which the computational expense or the control of the numerical accuracy of th
are no longer an issue [13,7]. However, in such a case, the comparison between the numerical solution and a
mean field theory based on a linear model for a random LCC is strongly altered by the fact that both approa
not describe the same microstructure.

In both situations, the comparisons are also distorted by the fact that the mean field models often rely on t
linear closed form estimates to evaluate the behavior of the LCC, which are, in general, not exact results. Su
estimates might not be sufficiently accurate, especially in the case of complex microstructures and high
Accordingly, the conclusions may be potentially ambiguous because of the addition of both approximations,
first by the linearization procedure itself and second by the linear homogenization scheme, which may be cu
or compensating.

2. Proposed methodology

The methodology and the numerical tool which are proposed in this paper enable a systematic and accur
ation of the linearization procedures which is not restricted by the aforementioned limitations. To this end, we
a problem where the nonlinear exact solution, regarded as the reference solution, may be computed numeri
high accuracy at a low computational expense. Moreover, the homogenization of the LCC, which retains
crostructure of the nonlinear composite, is carried out by the same numerical tool as the one handling the n
composite. Thereby, the difficulties related to the numerical approximations, to the change of microstructure a
to the approximations induced by the linear estimates of the LCC are avoided. The effect of the sole lineariza
cedure may be assessed without any ambiguity. In concrete terms, the chosen microstructure is periodic an
finite element techniques associated with periodic homogenization are used to solve both the initial nonlinear
and the linear one associated with the LCC. Although the proposed methodology is not completely exha
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allows us to handle large classes of problems, whatever the choices of the local constitutive laws, the morph
the periodic microstructure and the type of solicitation.

To illustrate the proposed methodology, we consider the particular case of composites for which the con
behavior of the individual constituents is elastic and governed by a single potential or strain energy funct
the classical small strain framework is used. This situation is formally similar to the rate problem for a no
viscoplastic composite. For the sake of simplicity, the studied material reduces to a two-phase composite, com
identical isotropic linear elastic spherical inclusions embedded in a nonlinear isotropic matrix, the constitutive
of which relates the stressσ to the strainε according toσ = ∂ωm

∂ε
(ε) = f m(ε), whereωm is the strain potential of th

matrix. In addition, the matrix is classically assumed to behave nonlinearly only in its deviatoric part:

σm = 3kmεm and σeq= ∂ωm
eq

∂ε
= f m

eq(εeq) (1)

whereσeq =
√

3
2σKσ andεeq =

√
2
3εKε are the von Mises equivalents of the stress and strain tensors,σm = 1

3i : σ

andεm = 1
3i : ε are their spherical parts. In these relations,i is the second-order identity tensor andK = I − J with I

the fourth-order identity tensor andJ = 1
3i ⊗ i. Note that, unlike many previous studies, the behavior is compres

(the bulk moduluskm is finite).
The spherical inclusions are distributed according to a hexagonal network in the transverse plane and ar

along the third direction, such that a cylinder with a hexagonal basis with a single spherical inclusion can be
unit cell. The loading conditions that will be considered are axial symmetric along the third direction. In a fi
classical approximation [14], this hexagonal cell can be replaced by a cylinder with a circular basis, making th
unit cell problem fully invariant with respect to any rotation along this direction. This 3D homogenization pr
then reduces to a 2D axial symmetrical problem which can be solved at a low numerical cost. The unit cell
addition symmetric with respect to the transverse plane, only one fourth of the cross section of the cylinder ne
meshed. Symmetry conditions are prescribed on the transverse plane and along the symmetry axis and hom
longitudinal or radial displacements are imposed on the upper or lateral face, respectively.

In the ensuing calculations, the unit cell is submitted to a monotonic uniaxial purely deviatoric extension al
symmetry axis, such that the overall deformation isε̄ = ε̄eqê with ê = e3 ⊗ e3 − 1

2(e2 ⊗ e2 + e1 ⊗ e1). For symmetry
reasons, the overall stress is thenσ̄ = 2

3σ̄eqê + σ̄mi. We focus our attention on the effective deviatoric respo

σ̄eq = f̃ (ε̄eq). Note that, as a consequence of rotational invariance of the problem, the only non zero com
of the overall stress and strain tensors are the diagonal ones, with component 11 equal to component 2
σ̄eq= |σ̄33 − σ̄11| andε̄eq= 2

3|ε̄33 − ε̄11|.
The nonlinear solution referred to asNL is obtained through finite element calculations carried out with the fi

element code Cast3M. The linearization procedures which are described in Section 3 are implemented in
tines. The effective properties and the local responses of the LCC are derived by means of additional finite
calculations based on the same mesh and the same symmetry and periodicity conditions. They are obta
Cast3M as well, which has been appropriately interfaced with the C++ programs.

3. Nonlinear formulations

For all formulations, the inclusions of the LCC behave like the linear elastic inclusions of the nonlinear com
Let Lp be their tensor of elastic moduli andf p their volume fraction. The matrix of the LCC follows a thermoelas
constitutive lawσ = Lmε + τm, with a uniform tensor of moduliLm and a polarization stressτm. These quantitie
are determined by equations which are invariant with respect to any rotation along the third axis. AccordinglLm is
at least transversely isotropic with respect to this axis; it is even isotropic for specific formulations. As a conse
the tensorL̃ of effective moduli of the LCC is transversely isotropic and can be cast in the following form:

L̃ = α̃EL + β̃JT + γ̃ F + γ̃ ′ tF + δ̃KT + δ̃′KL (2)

where the fourth-order tensorsF, EL, JT , KT andKL, introduced by Walpole [15], are defined in [16]. Finite eleme
calculations performed for two independent axial symmetric loadings (uniaxial tension and transverse compre
instance) providẽα, β̃ andγ̃ = γ̃ ′. The moduliδ̃ andδ̃′ can be derived from a Fourier analysis in mode 1 (longitud
shear) and 2 (transverse shear) but are not necessary in the present study. The spherical part ofτm being always zero
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this tensor is proportional tôe. The classical Levin relations for two-phase thermoelastic composites provid
effective polarizatioñτ .

The constitutive law of the LCC is derived from the nonlinear constitutive law of the matrix (1), from the
averagēεm = 〈ε〉m inside the matrix of the LCC and, for some formulations, from the covariance tensorCm

ε = 〈(ε −
ε̄m) ⊗ (ε − ε̄m)〉m = 〈ε ⊗ ε〉m − ε̄m ⊗ ε̄m which characterizes the strain field fluctuations inside the matrix. Whe
LCC is linear elastic (τm = 0), the localization relationε(x) = A(x)ε̄ yields the matrix average strain〈ε〉m = 〈A〉mε̄ =
Amε̄. The localization tensorAm is transversely isotropic but not symmetric and admits a decomposition similar
It can be directly derived from̃L, Lp, Lm andf p. Alternatively, it can also be identified by direct integrations o
the matrix of the computed local solutions used to determineL̃. The second-order moment of the strain in the ma

can be computed [13] by derivating the effective energy with respect to the local moduli〈ε ⊗ ε〉m = 1
1−f p ε̄ ∂L̃

∂Lm ε̄.
However, the computational expense of such an operation is high; in the present case a direct numerical in
of the local strain fields provided by the finite element calculations is a more efficient procedure. Note that〈ε ⊗ ε〉m
is a fourth-order transversely isotropic symmetric tensor; three of its five constants defined by (2) are requ
the implementation of the considered nonlinear extensions. For a thermoelastic LCC, the local strain field is
Levin’s relation:

ε(x) = A(x)ε̄ + (
A(x) − I

)
(Lm − Lp)−1τm (3)

A simple averaging of this equation provides the required average strain in the matrix, as well as its seco
moment. The obtained expressions, which are not detailed here, give these quantities as functions of their co
in the purely elastic case.

The full effective stress-strain curve is constructed pointwise for several prescribed overall deformations.
step, a classical fixed point iterative procedure is used to solve the nonlinear equations which describe t
An initial approximation of the matrix behavior is set, such as for instance the initial linear elastic behavior
solution at previous step. Then, the first and second moments of the matrix local fields are computed and p
new approximation of the matrix thermoelastic behavior according to the linearization procedures described h
The procedure is repeated until convergence.

3.1. Variational formulation (VAR)

For this approach also referred to as the modified secant extension [1], the LCC is elastic (τm = 0). The modu-
lus Lm is defined as the isotropic secant modulus evaluated at the second order moment of the matrix str

Lm = 3kmJ + 2µm
sct(

¯̄εm
)K, with µm

sct(εeq) = σeq(εeq)/3εeq and ¯̄εm =
√

〈ε2
eq〉m =

√
2
3〈ε ⊗ ε〉m :: K. For the variationa

formulation, the local solution of the nonlinear composite is approximated by the solution of the LCC. Theref
macroscopic stress can be determined byσ̄ = L̃ : ε̄. It is noteworthy that this formulation provides an upper bound
the effective energy.

3.2. Affine formulations

According to the original affine approachAFF-ANI, the linear thermoelastic behavior of the matrix in the LCC

given by the tangent to its nonlinear matrix at the matrix average strain [3]:Lm = Lm
tgt(ε̄

m) = ∂2wm

∂ε2 (ε̄m) andτm =
∂wm

∂ε
(ε̄m) − Lm : ε̄m. Unlike the variational approach, the tensorLm is transversely isotropic and can be writt

as 3kmJ + 2µm
sct(ε̄

m
eq)F + 2µm

tgt(ε̄
m
eq)E, whereµm

tgt(εeq) = dσeq
3dεeq

(εeq) is the tangent shear modulus,E = 2
3 ê ⊗ ê and

F = K − E are the classical fourth-order projectors [1] relative to the directions parallel and perpendicular
overall load. Like the variational approach, the local solution of the nonlinear composite is approximated
solution of the LCC and the macroscopic stress is similarly derived byσ̄ = L̃ : ε̄ + τ̃ . Due to the anisotropy ofLm,
the affine formulation is more difficult to apply to practical situations than the variational formulation. To get
this drawback, two simplified isotropic versions are proposed. In the first variant referred to asAFF-ISOT, theLm

modulus tensor is defined asLm = 3kmJ + 2µm
tgt(ε̄

m
eq)K as proposed in [7]. In the second variantAFF-ISOI, the tensor

of moduli is defined as the projection of the actual transversely isotropic tangent tensor on the subspace of

tensors:Lm = 3kmJ + 2µm (ε̄m
eq)K with µm = 4µm

sct+µm
tgt .
inv inv 5
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3.3. Second-order formulations

The initial second-order estimate, referred to asSOE-1, is based on a second-order Taylor expansion [4] of
strain potentialwr in each phaser (r = 1,2) around a reference strain̄εr equal to the strain average over t
considered phase. While the derived LCC is exactly the same as the one of the affine formulation, the
to evaluate the effective response is different and relies on the construction of an effective potential estim
w̃(ε̄) ≈ ∑

r fr (w
r(ε̄r ) + 1

2
∂w
∂ε

(ε̄r ) : (ε̄ − ε̄r )), from which the effective stress derives according toσ̄ = ∂w̃
∂ε̄

(ε̄). As
pointed out in Section 2, we only need to calculateσ̄eq = ∂w̃

∂ε̄eq
(ε̄eq). This derivation is performed numerically. Th

discrepancies between the affine and initial second-order formulations are associated with the intra-phase flu
of the local fields [5]. The estimated local strain fields are the same in both formulations, but the definition
local stress field in theSOE-1 formulation remains ambiguous. However, an estimate of the local stress field c
rigorously defined from the dual version of theSOE-1 formulation which relies on a stress (instead of strain) ene
function [4].

In the new improved second-order formulationSOE-2, based on stationarity conditions related to the evalu
effective energy [6],Lm is defined by means of a generalized secant relation∂wm

∂ε
(ε̂m) − ∂wm

∂ε
(ε̄m) = Lm : (ε̂m −

ε̄m). The tensorLm is still expressed as a combination of tensorsJ, E and F. The additional reference strain̂εm

used to characterize intraphase strain fluctuations can be split into two components according to the relatε̂m =
ε̂m‖ ê + ε̂m⊥ . Each component can be assessed from the covariance tensorCm

ε by means of the following relation

ε̂m‖ = ε̄m
eq +

√
2
3E :: Cm

ε and ε̂m⊥eq =
√

2
3F :: Cm

ε . Unlike the aforementioned formulationsAFF-ANI andSOE-1, the
SOE-2 procedure explicitly accounts for the intra-phase strain field fluctuations in the definition of the LCC. A
it is worth-noting that a dual version of the second-order procedures based on the stress potentialu(σ ) – i.e., the
Legendre transform of the strain potentialw(ε) – is available in [4,6]. In the sequel, for the sake of simplicity, we w
only consider the second-order procedures based on the strain potentialw(ε).

3.4. Lahellec–Suquet formulation (LS)

This new formulation [8] retains the energetic framework of the initial second order estimate and modifi
such a way that the field formulation (σ̄ = 〈σ 〉) is in precise agreement with the energetic formulation (σ̄ = ∂w̃

∂ε̄
). To

this end, the matrix strain potentialwm is approximated by a third order Taylor expansion estimated atε̄m = 〈ε〉m.
Then, the cubic term is itself approximated by a linear term which allows for the local strain field fluctuation
LCC moduli can then be expressed:

Lm = Lm
tgt(ε̄

m) and τm = ∂wm

∂ε
(ε̄m) − Lm : ε̄m + 1

2
Nm(ε̄m) :: Cm

ε whereNm(ε) = ∂3wm

∂ε3
(ε) (4)

The main difference between this new approach and theAFF-ANI andSOE-1 approaches lies in the polarizationτm

which generates a ‘softer’ LCC in theLS formulation. As in the affine approach, the local fields of the nonlin
composite are approximated by the local fields of the LCC.

4. Results, comments and perspectives

The present methodology is carried out on a two-phase reinforced composite the material parameters of w
identical to those defined in [7]. The matrix follows a Ramberg–Osgood type constitutive law, with a threshold
initial isotropic elastic behavior:

εeq= σeq

3µm
+ ε0

(
P(σeq− σy)

σ0

)n

(5)

wherem = 1/n is the strain-hardening parameter (n is the nonlinearity exponent) such that 0� m � 1, σ0 is the flow
stress,σy is the threshold stress,ε0 is an auxiliary strain andP(a) is the positive part ofa. The nonlinear part of th
matrix constitutive law is taken into account as soon asσy = 3µmεref whereεref denotes one of the considered r
erence strains. The macroscopic responsesσ̄eq = f̃ (ε̄eq) obtained with the formulations depicted above are repo
in Fig. 1. TheAFF-ANI approach associated with the matrix strain average is too stiff as already noticed in [
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Fig. 1. Macroscopic tensile curves of a two-phase composite for different linearization procedures. Inclusion volume fractionfp = 30%, inclu-
sion elastic properties:Ep = 400 GPa,νp = 0.2. Matrix elastic properties:Em = 75 GPa,νm = 0.3; matrix power-law properties:m = 0.3895,
ε0 = 100%,σ0 = 416 MPa, with a threshold stressσy = 75 MPa. Full curves (a) and zoom (b).

Fig. 1. Courbes macroscopiques de traction des différentes procédures de linéarisation d’un composite biphasé. Fraction volumique
fp = 30%, propriétés de l’inclusion élastique :Ep = 400 GPa,νp = 0,2. Propriétés de la matrice : modules d’élasticité :Em = 75 GPa,νm = 0,3 ;
loi puissance de la matrice :m = 0,3895,ε0 = 100%,σ0 = 416 MPa, avec une contrainte seuilσy = 75 MPa (a) zoom (b).

is noteworthy that a too hasty comparison based on two different microstructures could have led to a more o
evaluation: when the affine linearization procedure is associated with the generalized self consistent linear sch
– known to provide a good estimate for a microstructure described by Hashin’s composite spheres assemb
corresponding estimate referred to asAFF-ANI-GSC leads to a macroscopic response which is softer and better
theAFF-ANI estimate. The variational approach [2,13] predicts a slightly softer response. Again, the accurate
ison between theVAR approach and the exact solution shows a larger discrepancy than the one reported in [13
the microstructures are different. This illustrates clearly the bias introduced in the comparisons, either by the
of microstructure, or by the approximation induced by the linear homogenization scheme. The simplifiedAFF-ISOT
formulation, based on an isotropic approximation of the tangent modulus, softens the macroscopic respon
ever, this softening is so strong that the macroscopic response is significantly below the reference nonlinear
This result qualifies the conclusions of [7] where again the comparisons rely on different microstructures: a
nonlinear solution and a Mori Tanaka linear modeling approach for the LCC. The main advantage to appr
the phases behavior of the LCC by isotropic constitutive laws lies in the fact that the homogenization proc
much more simple to put into practice. The other isotropic version of the affine approachAFF-ISOI provides a far too
stiff response. Both former results suggest however the possibility to define an intermediate linearization p
between theAFF-ISOT and theAFF-ISOI formulations which would be more efficient and still easy to implement.
two variants of the second order formulation turn out to be closer to the exact solution,SOE-1 being still too stiff but
SOE-2 too soft. This confirms the great improvement due to the integration of local field fluctuations in these th
with the price of a higher complexity. However, these results suggest also that the modifications introduce
newer formulation might still not be optimal, since the softening they induce is too strong: in terms of accura
SOE-2 formulation does not seem significantly to improve on the initialSOE-1, at least in this particular case. TheLS
formulation provides a macroscopic response which is nearly the same as the one derived by the initial seco
approach. This probably results from the similarity of the additional term for the polarization introduced in theLS ap-
proach and the expression of the difference between the affine and theSOE-1 estimates for the overall stress (see [3
It is noteworthy that theLS andSOE-1 formulations are very close to the exact solution and give the best resu
this particular case, an additional advantage of the LS formulation being its unambiguous definition of the loc
field. At last, let us note that other calculations carried out with different values ofm ranging from 0.05 to 1 showed
the same general trends.
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In conclusion, note that the obtained results focused the evaluation on the macroscopic stress-strain curve
of comparing the respective performances of the different linearization procedures more thoroughly, it is ne
to enrich the present methodology and to take into account other informations such as the local mechanic
For instance, the local distributions of the strain and the stress fields deriving from the different aforeme
linearization schemes may be compared to the local reference fields [18]. Moreover, we expect these com
on the local scale to be helpful to define a criterion for the choice of an ‘optimized’ linearization procedu
last, the present methodology can also be applied to other loading conditions, to some other microstructure
porous media and to some other classes of constitutive behavior such as elasto-plasticity or elasto-visco-pla
which no bound giving an efficient reference information on the exact solution is still available. These extens
currently under progress.
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