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Abstract

The numerical simulation of the free fall of a solid body in a viscous fluid is a challenging task since it requires computational
domains which usually need to be several order of magnitude larger than the solid body in order to avoid the influence of artificia
boundaries. Toward an optimal mesh design in that context, we propose a method baseeighiteeha posteriori error estimation
of the finite element approximation of the fluid/body motion. A key ingredient for the proposed approach is the reformulation of
the conservation and kinetic equations in the solid frame as well as the implicit treatment of the hydrodynamic forces and torqu
acting on the solid body in the weak formulation. Information given by the solution of an adequate dual problem allows one to
control the discretization error of given functionals. The analysis encompasses the control of the free fall velocity, the orientation o
the body, the hydrodynamic force and torque on the body. Numerical experiments for the two dimensional sedimentation probler
validate the methodlo citethisarticle: V. Heuvelinge, C. R. Mecanique 333 (2005).

0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Une méthode d’éléments finis adaptative pour la simulation de la sédimentation d’un corps solide dans un fluide Newto-
nien. La simulation numérique de la sédimentation d'un corps solide dans un fluide visqueux est un probléme difficile car il exige,
entre autres, I'emploi de domaines de calcul de plusieurs ordres de grandeur plus grands que le corps solide, ceci afin d'évit
l'influence des frontieres artificielles. Dans le but de construire un maillage de calcul optimal, dans ce contexte, nous proposons t
méthode basée sur des estimations d’erreur a posteriori avec poids pour I'approximation par éléments finis utilisée pour simuler
couplage fluide/solide. Un élément clé de I'approche proposée dans cet article est la reformulation des équations de I'écoulement,
du mouvement du corps solide, dans un repere mobile, rigidement attaché au solide ; par ailleurs, via une formulation variationel
bien choisie, nous évitons d’avoir a calculer, explicitement, la résultante et le moment des forces hydrodynamiques que le fluid
exerce sur le solide. Les informations fournies par la solution d’'un probleme dual bien choisi, permettent de contréler I'erreur de
discrétisation pour des fonctionnelles données de la solution (trainée, par exemple). Notre analyse couvre le calcul de la vites
de sédimentation, I'orientation du corps solide, la résultante et le moment des forces que le fluide exerce sur le solide. Des ess,
numériques, concernant la résolution d’'un probléme de sédimentation bi-dimensionnel, valident la méthode Pamposés.
cet article: V. Heuveline, C. R. Mecanique 333 (2005).
0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

Over the last decades, the study of the motion of small particles in viscous liquids has been the object of inten-
sive research activities in fluid mechanics. The investigation topics range from the theoretical mathematical analysis
(existence, uniqueness and stability of solution) (see e.g. [1-5] and references therein) to the numerical simulation o
the liquid-particle interaction (see e.g. [6—13] and references therein). In the present article we focus on the numerica
simulation of the steady free fall of a unique solid body in a viscous flow. Many aspects related to this problem are still
not well understood. In particular, the issue of the stability oftdreninal statesn relation with the body geometry
and orientation needs to be addressed. We propose in that context an a posteriori error estimator in order to control tt
discretization error and to design adequate mesh leading to an economical discretization for computing the physica
quantities of interest. These features are of great importance since the numerical simulation of the free fall of a solid
body in a viscous fluid requires computational domains which are usually several order of magnitude larger than the
solid body.

The considered weighted a posteriori error estimator relies on the solution of an adequate dual problem which
gives localized sensitivity factors with respect to the error measured by means of the quantity of interest. The key
ingredients for the derivation of the proposed error estimators are the reformulation of the conservation and kinetic
equations in the solid body frame as well as the implicit treatment of the hydrodynamic forces and torque acting on
the body in the weak formulation. Our analysis encompasses the control of the free fall velocity, the orientation of the
body, the hydrodynamic force and torque on the body.

The outline of the remainder of this article is as follows. In Section 2, we briefly derive the formulation of the
stationary free fall problem. Special emphasis is put on the different special cases occurring in three and two di-
mensional problems. Section 3 deals with the weak formulation of the equations of the fluid-body motion and its
discretization by means of the finite element method. Section 4 is dedicated to the derivation of the weighted a
posteriori error estimators. In Section 5, numerical experiments for the two dimensional sedimentation problem are
presented.

2. Problem formulation
2.1. General formulation of the fluid/body interaction

We consider the free fall of a solid bodyyc R? (d = 2, 3) in an incompressible liquid filling the whole region
D :=RAS. The solid bodysS is assumed to be a bounded domain and the velocity of its mass ceiftesp. its
angular velocity) are denoted B} (resp.O) in the inertial frameF. The region occupied b§ at timer is denoted
by S(r) and the corresponding attached frame is denote@ @Y. In the inertial frameF the equations of conservation
of momentum and mass @fin their nonconservative form are given by

ov
p5+p(v.v)v:pg+V.T(v,p) for (x,t)eU[Rd\S(t)]x{t} (1)
V.v=0 >0

wherep is the constant density &, v and p are the Eulerian velocity field and pressure associatedithis the
Cauchy stress tensor apdg is the force of gravity which is assumed to be the only external force. We assume further
a Navier—Stokes liquid model for which the Cauchy stress tensor is given by

T(V,p) :=—pl+pu(Vv+ (VV)T) 2)

whereu is the shear viscosity. The boundary conditions are given by

V(x,00=0, lim v(x,r)=0 forxeRN\S(®) (3)

|x]—00

V(x, 1) =Ve(t) + O@) x (x —xc (1)) forxeaS@) 4)
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The fluid/body coupling occurs through the Dirichlet boundary condition (4). It relies on the determination of the
body motion which is obtained by requiring the balance of the linear and angular momentum:

msVe =mgg — / T(V,p)N do

. o 3S(t) ©
%Z‘/@—xew[ﬂvwlda
aS(t)

wheremg is the mass of the bodyy is the unit normal t& S(¢) oriented toward the body anf} the inertia tensor
with respect to the mass centér Further we assumg-(0) =0, O(0) = 0.

The straightforward formulation (1)—(5) has the disadvantage that the region occupied by theCligutame
dependent. This can be avoided by reformulating these equations in the body{am# y denotes the position of
a pointP in the frameR (r) andx is the position of the same point i, we have

x=0@®y+xc(®), QO)=1xc(0)=0, (6)

with Q orthogonal linear transformation. Considering the transformation (6) one can reformulate the system of Eq. (1
in the following form

Jv
p{g +(v=V) - V)v+ox v} =V.-T(,p)+pG) } for (v.1) € [RN\S(0)] x (0, ) )
V.-v=0
where
v(y, 1) = QTV(Qy + xc, 1), p(y, 1) :==p(Qy + xc, 1), G:=0"g

Vy.0):=0"(Ve+O0x(Qy). T p):=0"T(Qv.p)Q, w:=0"0

The additional termw x v in the momentum equatiofY); corresponds to th€oriolis forceinduced by the frame
transformation (6). Correspondingly, system (5) describing the motion of the body is transformed into

msVe +ms(w x Vo) =msG(r) — / T (v, p)yndo
EN
Isw+ o x (Isw) = —/y X [T(v, p)n] do (8)
EN
d—G =G xXw
dr

where
Ve:=0"We, n:=0Q'N, Is:=0"JsQ, 085:=35(0)

In order to keep compatible notations for both the two an three dimensional case, we assdmeZdhatw :=
(0,0, w) and similarlyy x [Tn] = (0,0, —y2(Tn)1 + y1(Tn)2). Ford = 2, Eq. (8) reduces to a scalar equation.

In the body frameR () the direction of the gravitational fora&@ depends on the timeand becomes therefore an
unknown to be resolved. The third additional equation of (8) provides the needed equation describing its variation. It
derivation relies on simple calculus related to the transformation (6). For more details regarding the overall derivatior
of these equations we refer to Galdi [1,14,15].

2.2. Formulation of the stationary free fall problem

The solid bodysS is said to undergo &ee steady faliif the translational and angular velocitys and w are
constant and if the motion of the liquid is stationary in the fram®&(¢). The study of such a configuration is of great
interest since it corresponds to so caltedminate statamotions of sedimenting particle for which many questions
still remain open: e.g. the number of possible terminal states for a given body geometry, the orientation of the solic
body, the stability of the corresponding solution (see [1] and references therein). The free steady fall is thus obtaine
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Table 1
Considered configurations for the free steady fall probléiis;the dimension of the flow region, whileis
the angular velocity. The body/fluid setup is said to be ‘general’ if Eq. (13) has to be included in the model

d 1) Body/fluid setup Formulation Number of
unknowns scalar equations

3 #0 general Problem 1 10 10

2 #0 general not possible due to (14) - -

3 = general overdetermined 9 10

2 =0 general Problem 2 6 6

3 = symmetric Problem 3 5 5

2 =0 symmetric Problem 3 4 4

by requiring thaw, p, V¢, w andG are time independent. Comparing with (7)—(8), this leads to the following system
of equations:

Pl =V)-V)otox ”}:V'T(””’)“G} for y € [RY\5] ©)
V.-v=0

| I‘im v(y)=0 (20)
y|—o0

() =VQH)=Vec+wxy foryedS (12)
ms(w X Vc):msG—/T(v,p)nda (12)

s
wx (Isw) = —/y X [T(v, p)n] do (13)
s
Gxw=0 (14)

The system of Eqgs. (9)—(14) describes different class of free fall regimes and configurations which are outlined in
Table 1. They lead to different problem formulations. For the most general setup, we asstitheDue to Eq. (14),

this configuration can be attained only tbe 3. Furthermore, it impose&s parallel tow. The free steady fall problem

can then be stated as

Problem 1.Assumed = 3. Givenp, T =T (v, p), |G| = |g|, Is andms, find v, p, Ve, o, G whereasG = |g||w| 1w
if w # 0 (see Table 1), such that (9)—(13) holds.

An important subclass of free steady fall problems is given by the @as@), i.e., for the solidS falling with a
purelytranslationalvelocity (see [16]). The problem formulation for this case is subtle since it depends not only on
the dimensioni of the problem but also on the geometrical properties of the solid.

At first, we assume that Eq. (13) has to be enforced and can not be eliminated by means of any special geometrice
properties of the soli& or on the flow configuration. Faf = 3 such a translational problem is overdetermined and
will therefore not be further considered (see Table 1).d~er2 however this problem is well formulated in the sense
that it involves six unknowns associated to six scalar equations. It can be stated as:

Problem Zfssumed =2.Givenp, T =T (v, p), |G| =lgl, Is, ms andw := 0, findv, p, V¢ and the directiorG
of G :=|g|G such that (9)—(13) holds.

From the physical point of view, the reason of the overdetermination of the translational free steadydfal 3or
can be interpreted through the fact that additional geometric properties of the solidSbbaye to prevent him
from rotating (see [16]). Following Galdi [1], we consider now translational free steady fall problems for solid body
with symmetric properties. Lefles, e2, ez} be the canonical basis associated®h Assume that the solid body is
homogeneous and symmetric around the axig-urthermore, the velocity field and the pressurg describing the
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terminal stateof the fluid £ are assumed to be symmetric around the axifOne can show (see [16]) that every
sufficiently smoothy, p satisfies the following properties:

/T(v,p)n:nez, neR (15)
S
/y X [T(v, p)n] =0 (16)
N
V=ayer, ayelR an
Therefore for the symmetric case, Egs. (12), (13) reduce to the following scalar equation
—{/T(v,p)nds} —mslgl=0 (18)
2
s

since comparing Eqgs. (13) with (16) leadsGo= +|g|e2. We choose the orientatioi = —|g|e» for the force of
gravity. Under these symmetry assumptions, the steady free fall problem can be formulated as

Problem 3.Givenp, T =T (v, p), G = —|gle2, Is, ms andw := 0 find v, p, and the scalar quantityy defining
V :=ayep such that (9)—(11) and (18) hold.

Remark 1. Problem 3 is well formulated for both three of two dimensional problems.
3. Galerkin finite element discretization

For a domain2 c R, let L2(£2) denote the Lebesgue space of square-integrable functiofs equipped with
the inner product and norm

1/2
(/90 :=ffgdx, Iflle = (f|f|2dx)
2 2

Analogously,L2(3£2) denotes the space of square integrable functions defined on the boasiafie L2 functions
with generalized (in the sense of distributions) first-order derivativé£{®2) form the Sobolev spacE(s2), while
H3(2) = {v € HX(R2), v]ae =0}.

3.1. Variational formulation

The Galerkin finite element method starts from a variational formulation of the equations to be solved. We first
consider the most general setup of Problem 1, ive#4 0 and the related equations (9)—(13). The key ingredient
for the derivation of a weak form of the equations (9)—(13) is an adequate choice of the velocity space allowing tc
eliminate the explicit formulation of the hydrodynamic force and torque on the solid body needed for the kinematic
equations (12) and (13). This can be obtained by including the no-slip Dirichlet condition (11) in the velocity space:

Hu(D) = {(v,V,w): ve [ngC(D)]d, VeRY weR! v=V+wxyonis} (19)

whereD := R?\S. The pressure is assumed to lie in the space

L3(D) := {q € L2(D): /q = o} (20)
e

which defines it uniquely assumin®’ ¢ D bounded. Foru := {(v, V¢, w), p} € H1(D) x L%(D) and ¢ =
{(@, ¢1, 92),q} € H1(D) x L(Z,(D) we define the semi-linear form
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Ar(u; ¢) = p((v— (Ve + @ x »)) - V)v,9) , + (@ xv,0)p — (p. V- @)D + ZM/ D(v): D(p)
D
— (plgllowl ™ w, @), — p1- [ms(Igllol o —w x V)] + ¢2- [0 x Usw)] = (V-v,9)p  (21)
which is obtained by testing Egs. (9) and (12), (13)by H1(D) x L%(D) and by partial integration of the diffusive
terms and the pressure gradient®:. Above, D(v) denotes the deformation tensor iR(v) := %(Vv + (Vu)h).

A weak form of Problem 1 is given therefore by
Problem V1. Findu := {(v, V¢, ), p} € H1(D) x L3(D) such that
A(u; ) =0, V¢ € Hi(D) x L§(D) (22)

The equation modeling the balance of the linear (resp. angular) momentum (12) (resp. (13)) can obviously be
recovered by testing in (22) with the functiof(®, ¢1, 0), 0} (resp.{(0, 0, ¢2), 0}).

Remark 2. The advantages of the formulation (22) rely on the fact that the force and torque on the solid body do
not need to be computed explicitly. Numerical instabilities arising for the computation of these lower dimensional
integrals can therefore be avoided (see [17,18]).

For the weak formulation of Problems 2 and 3, the formulation (22) simplifies greatly since the free steady fall is
then assumed to be translational. For the velocity field we define
Ha(D) :={(v, V): ve [H(D)], VeR?, v=V onas) (23)
For u := {(v, V¢), p,0} € Ha(D) x L3(D) x R and ¢ := {(¢, ¢1), ¢, ¢2} € Ha(D) x L3(D) x R, we define the
semi-linear form

Ao(u: @) :=p(((v—Ve) - V)v.@), — (p.V-9)p + Z/L/ D(v) : D(p)
D

—(V-v,9)p — (G, 9) —msG - ¢ + /[—yz{T(v, pin}y + 1T @, pin},|¢2do (24)
as

cost

whereG is assumed to b& := |g| (50>

). A weak formulation of Problem 2 reads then as follows

Problem V2. Findu := {(v, V¢), p, 8} € H2(D) x L3(D) x R such that
Ao(u; ¢) =0 Ve € Ha(D) x L3(D) x R (25)
For Problem 3 the direction of the gravitation forGeis not a variable anymore. Furthermore, due to Eq. (17) the
direction of V¢ is known to be colinear te,. For this configuration we therefore define the following space
‘H3(D) := {(v,av): vE [H%C(D)]d, ay €R, v=ayez 0N 8S} (26)

for the velocity field. Fou := {(v, av), p} € H3(D) x L3(D) andg¢ := {(¢, ¢1), ¢} € H3(D) x L3(D), we define the
semi-linear form

As(u; @) :=p(((v —avez) - V)v,9), — (p.V-9)p + 21 / D(): D(p) —(V-v,9)p (27)
D
and the functional

F3(9) = (pG,@)p + mspre2- G (28)
A weak formulation of Problem 3 reads then as follows

Problem V3. Findu := {(v, av), p} € Ha(D) x L3(D) such that
As(u; ¢) = Fa(¢), Yo € Ha(D) x L§(D) (29)
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K

Fig. 1. Bounded domain considered for the finite element Fig. 2. Quadrilateral mesh patch with a ‘hanging node’.
discretization and related notations.

3.2. Finite element discretization

We first consider the general setting of Eq. (22) for the solution of Problem V1. The unbounded dbraalkf’\ S
filled by the liquid£ is replaced by a bounded domainc R?\ S which is chosen to be large enough in order that the
liquid may be assumed to be at restiBrwhich denotes the boundary 6f withoutd S, i.e.,I" = 3£2\9S (see Fig. 1).
In the remainder of this article? is chosen such that the impact of this simplification for the quantities of interest is
smaller than the discretization error. We refer to [19-21] for a detailed discussion on this issue.

The discretization uses a conforming finite element spﬁl}e: H1(£2) x L%(Q) defined from a quasi-uniform
‘triangulation’ 7, = {K'} consisting of quadrilateral or hexahedral cetlscovering the domai2. For the trial and
test space&V{’ C H1(£2) x LS(Q) we consider the standard Hood—Taylor finite element [22] i.e.

Wi = {((v, V, @), p) e {[CE@D] x R x R} x C(2), vl €[Q2]%, plk € 01, vlps=V + o x y}

where Q, describes the space of isoparametric tensor-product polynomials of defjoeea detailed description of

this standard construction process see e.g. [23]). This choice for the trial and test functions has the advantage tt
it guarantees a stable approximation of the pressure since the umBfalboska—Brezanf-sup stability condition is
satisfied uniformly (see [24,25] and references therein). Compared to equal order functions spaces for the presst
and the velocity, no additional stabilization terms are needed.Moreover, in order to facilitate local mesh refinemen
and coarsening, we allow the cells in the refinement zone to have nodes which lie on faces of neighboring cells (se
Fig. 2). The degrees of freedom corresponding to such hanging nodes are eliminated by interpolation enforcing glob:
conformity for the finite element functions. The discrete counterpart of Problem V1 reads as follows:

Problem V1'. Finduy, := W] such that
Av(un; ¢1) =0, Vey € Wi (30)
Analogously, we define for Problems V2 and V3, respectively, the following finite dimensional spaces
wh = {((. V). p.0) € {[C@)]" xR!} x C(2) x R, vlx €[Qa". plx € Q1. vlps = V]

W= {(w.av). p) € {[C(@]" xR} x C(@). vIx €[Q21’. plk € Q1. vlas = aver]
The discrete counterpart of Problem V2 reads as follows

Problem V2'. Finduy, := W4 such that
Aa(up; ) =0, Vo € Wy (31)
Analogously, the discrete counterpart of Problem V3 reads as follows:

Problem V3'. Find u, := W such that

As(up; ¢n) = Fa(dn), Vou € Wh (32)
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4. A posteriori error estimation
4.1. A generic weighted a posteriori estimator

In this section, we outline the concepts related to dual-based error estimation following the general paradigm
introduced in Eriksson et al. [26] and Becker and Rannacher [27]. We refer to Machiels et al. [28], Oden and Prud-
homme [29], and Giles et al. [30,31] for related approaches to goal-oriented error estimation.

Let A(-; -) be a differentiable semi-linear form arft{-) a linear functional defined over some functional spéce
Foru € V the directional derivatives o (u; -) are denoted by’ (u; -, -), i.e.,

1
A'(u; v) () = lim ={A®u +ev; 9) — Au; 9)}
e—0¢€
The second derivative is denoted AY(-; -)(-, -). We seek a solution € V to the variational equation

Aw, ) =F(p), VpeV (33)

This problem is approximated byGalerkin methodising a sequence of finite dimensional subspages V para-
metrized byh. The corresponding discrete problem segke V), satisfying

A(up; on) = F(pn), Yon € Vi (34)

We assume that Egs. (33) and (34) have unique solutions. A key feature of the discrete problem (33alerkin
orthogonalityproperty which reads as follows in the general nonlinear case

Au; op) — A(ups; op) =0, VYo, eV (35)

Suppose that the quantiti(u) has to be computed, wheVe-) is a differentiable functional defined dn. To control
the error with respect to the functionalwe introduce the following dual problem

A'(uny; ) (2) = J'(uup ) (¢), VoeV (36)

where

1
A’(m;@(xm:/A/(su+(1—s)uh;<p,w)ds
0

1

J' (g ) () = / J'(su+ L —s)up; @) ds
0

We assume that Eq. (36) possesses a solution. Based on the dual splatidrdue to the Galerkin orthogonality
property (35), we obtain the following error representation

Ju) — J(up) = A'(aup; e,2) = A 2) — A(up, 2) = A(u; 2 — Zp) — A(un; 2 — Zp)
=FQZ—2Zp) — Aup; 2 —2p) = p(up, 2 — Zpn)

for anyz;, € V, and whereo (uy,, -) = F(-) — A(uy; -) describes therimal residual ana: := u — uy,. In practice, the
previously derived error representation cannot be used directly since the adjoint problem (36) involves the unknown
solutionu. One alternative is to replace the exact solutidoy its approximation;, in the adjoint problem (36). The
resulting adjoint problem reads

Alup; 9)(2) =J (ups ) VoeV (37)
One can show (see [27]) that the following modified error representation holds

Jw) = J(up) =pup,z—2zn) + R (38)
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for anyz; € Vj,, where the remainder ter® depends on the second order derivatived 6f -) andJ(-) and is given
by
1
R= /{A”(uh +se;z2)(e,e) — J"(up +se)(e, e)}sds (39)
0
The remainder term vanishesAf(-; -) andJ (-) are linear.
From now on, we consider procedures based on the error representation (38) for the a posteriori error control wit

respect to the functional. The remainder term is neglected since, in our context, it involves higher order terms with
respect to the discretization parametarhich can be neglected farsmall enough.

4.2. Error control of the free fall velocity and body orientation

Our goal in this section is to derive an a posteriori error estimator to control the accuracy of the velocity of the
falling solid body. At first, in order to avoid an overload of technicalities for the derivation, we consider the setup
of the simplest Problem 3. Far:= {(v, ay), p} € H3(D) x L%(D), the target functional for the control of the fall
velocity of the solid bodysS is assumed to be

Ja(u) :=ay, YueHz(D)x L3(D) (40)
The associated dual problem (resp. its discrete counterpart) is defined as

A(u; 2)(9) = J3u) (@), Yo € Ha(D) x L§(D) (41)

Asuns 1) (@n) = J3wn) (@), Vou € W3 (42)
To the approximate solutiosy, € Wé’ of the discrete Problem V3ve associate the residual

p3(un; ) == Fa(-) — As(up; -) (43)

Proposition 4.1.Let u := {(v,ay), p} € Ha(D) x LE(D) and z := {(z",z%),z"} € Hz(D) x L3(D) be the solu-
tions of respectively29) and (41). Letu;, and z;, be their discrete counterparts, i.e., the solutiong82) and (42),
respectively. We denote=u — uy,, ¢’ :=v — v, ande® :=ay — a(}. We then have

ay — ol = pa(un; 2 — 1) + Ra (44)
where
R3:=p((e"-V)e',2"%) , — pe“((e2- V)e',2") (45)

Proof. The error representation (44) is a direct consequence of Egs. (38), (39). To identify the renRgirtemnote
that

Az(up +se;z)(e,e) =2p(((e” —e%e2) - V)e', 2")
Jé/(uh +se)(e,e) =0
This completes the proof.O0
For the more complex setup of Problems V1 and V2, one can derive an error representation similar to (44). In tha
context, due to the existence of additional nonlinear terms for the description of the gravitatio6 fezdg||w| 1w,

the residual term becomes however much more complicated. In the context of Problem V2, particularly for the stability
analysis of the terminal state, the error control of the orientation of the solid body may be of great interest, i.e.,

Jo(u) =6, Yu:={(@,Vc),p.0} e HaD) x L3(D) xR (46)
The associated dual problem is defined as
A3 2)(p) = JJu) (@), Y € Ha(D) x L3(D) x R (47)
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as well as its discrete counterpart

Ap(uns z) (Pn) = Jo(un) (@n),  Vobu € Wy (48)
To the approximate solutiosy, € Wé’ of the discrete Problem V2ve associate the residual
p2(up; ) = —Az(up; -) (49)

The discretization error on the orientation of the solid b&dyan be estimate by means of the following:

Proposition 4.2.Letu := {(v, V¢), p, 0} € Ha(D) x L3(D) x Randz := {(z¥,z"¢), 2P, 2%} € Ho(D) x LE(D) x R
be the solutions of25) and (47), respectively. Let;, andz; be their discrete counterparts, i.e., the solutiong®f)
and (48), respectively. We denote=u — uj, e’ :=v — vy, "¢ := V¢ — Vé’ ande? := 6 — 6,. We then have

0 — 0 = p2(un; 2 —zn) + R2 (50)

where

Rai=p(((e" =€) - V)e', 2) , + %|g| [p((‘;‘l’rfg)z)]) + ms(@fg) ~zVC>} [ (51)

Proof. The error representation (50) is a direct consequence of Egs. (38), (39). To identify the renkRaingemnote
that
s so
A +ses (e, =20(((e" =) -9 ) olel( (g )< ) et s (G ) <7 ) €
Jé/(uh +se)(e,e) =0

This completes the proof.O
4.3. Error control of the hydrodynamical force and torque

The implicit treatment of the hydrodynamical force and torque acting on the solid $dmyyway of the natural
boundary conditions (see Section 3.1), allows one to derive a specific a posteriori error control strategy. The propose
approach, inspired by the work of Giles et al. [17], takes advantage of the special structure of the free steady fall
problem and of the considered weak formulation leading to a remarkable natural derivation of error bounds for the
hydrodynamical force and torque.

We consider the most general setup of Problem 1 and define:fer{(v, V¢, w), p} € H1(D) x L(Z)(D) the fol-
lowing weighted functional

Jy () == /[T(v, p)n] - do (52)

as

wherey = y1 + Y2 x y € R3with yrq, 2 € R3. Fory =y (resp.y = yr2 x y), the functional/y, («) corresponds
obviously to the weighted hydrodynamical force (resp. hydrodynamical torque) since

Jy () =1 - /[T(v, p)n] do (53)
3
Tizes) =2+ [ 3 [T, pin]do (54)
N

Now, we define the following semi-linear form
Aw; ¢) = p(((v = (Ve + @ x ) - V)v,9) , + (@ x v, 9)p

—(p.V-9)p+ ZM/D(U) : D(p) — (plgllol . 9) , — (V- v.9)p (55)
D
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which, once the boundary termsg and¢, have been deleted, corresponds to the semi-linear form; ¢). Next, we
define the following velocity space

HY (D) :=H1(D) N (v, V,w): V-v=0inQ2, V=11, ® =1} (56)
Then following lemma holds:

Lemma 4.3.Under sufficient regularity assumptions for the solutioaf ProblemV1, we have
Jy ) = A(u; w), Yw e HY (D) x L3(D) (57)

Proof. Eq. (57) is obtained by replacing the stress force in (52) by its components given for the salbtianean
of Eq. (9)1. Applying the standard Green'’s identity leads to the equality (57). This completes the proof.

The discrete counterpart d)if(D) X LS(D) is defined as
Wip’h = W{' ﬁ{((v, V,a)),p): V.v=0in2, V=11, wzwz}
Letuy, € W{‘ be the solution of the discrete Problem’V®ne can easily shows that the functional
Ty up) = AGup; w) Ywe wi" (58)

is well defined sinced(u;,; w) depends uniquely on the boundary valaef w. It is of importance to notice that in
general

Ty (up) # Jy (up)

As shown in [17], the functionaﬁ,, (up), rather than/y (u;) is the appropriate approximation @, (). From now
on, our purpose is then to derive error boundsJp(u,) — fw (up). In order to derive an error representation for the
error Jy (up) — il,, (up) , we define the followindinearized dual problem

Problem 10.Find z := {(z%, "¢, z?), 27} e HY (D) x L3(D) such that
L(u,up;z,¢)=0, V¢ e HITUD) x LE(D) (59)

Here,L(u, uy; z, ¢) is assumed to be a bilinear formirand¢ chosen such that the following equality holds
L(u, up; z,u —up) = A(u; 2) — Ay, 2),  Vz € Hi(D) x L§(D) (60)

whereu (resp.u;) describes the solution of Problem V1 (resp./V1

Due to the special nature of the nonlinear termsdiy; -), L(u, uy; -, -) can be defined explicitly. Considering
u:={(v, Vo, w), p} € H1(D) x L3(D) (respau := {(va, V&, wp), pr} € WI') solution of the Problem V1 (resp. V)1
as well ax := {(z%,2"¢, %), 2P} € H1(D) x L3(D) and¢ := {(¢, ¢1, $2), g} € H1(D) x L3(D), the bilinear form
L(u,uy; -, -) can be formulated as

L(u,up; 2, ¢) = a(z,$) +b(z, ) +b(¢p, 2) + ar(u, up; z, ) + ax(u, up; z, ¢) + az(u, up; z, ) (61)
where
a(z. ) = ZM/D(ZU) :D(y)
2
b(z, ) :=—fq(V-z“)
2

a1, up; 2,8) == —p(((v = (V+ 0 x ) - V)z".0), + p(((¢ — @1+ ¢2 x ) - V)vi.2")

1 1
az(u, up; z, @) = E(cbz x (v+vp),2"),+ 5((60 +on) x9,2"),

-1
. . : 1 1
ag(u, up; 2, ¢) == —pg[l-'- - wh} {( cuzd)2 ot ¢22wh»2”> —<<—+—>¢>2,z”> }
|l wn] lwllwp|  |ollwn] 2 lol — wp Q
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Using these functional we are now able to derive the needed error representakjoi of — fw (up).

Proposition 4.4.Letz be the solution of Probleh0. Further, let/T : H‘l”(D) X L%(D) — Wf”h be some interpolation
operator. We then have

Ty (up) — Jy (up) = ACup, z — Mz) (62)
Proof. First notice that

Au, IT2) — A(up, I2) = Au, 2) — Aup, 2) — (A, z — Hz) — A(up, z — Iz))
= L(u,up, z,u —up) — (A, z — z) — A(up, z — Iz)) due to (60)
= —(A(u,z —1I17) — A(up, z — Hz)) due to (59)

However from the definitions afy, () andJy (us) we have

Jy (up) — Jy (up) = Au, Iz) — Aup, z)
=—(A(u,z— Mz) — A(up, z — z))
=Aup,z—Iz)

The last equality relies on the fact that for the test functien'1 z, which verifies the homogeneous Dirichlet boundary
conditions, the semi-linear form4(u, z — I1z) and A1 (u, z — I1z) are identical. Since is solution of Problem V1,
this implies

A,z —Iz) = A1(u,z — 1z) =0
This completes the proof.O

Remark 3. The error representation (62) allows not only to control separately the hydrodynamical force and torque
but also a weighted combination of both quantities. This can be done by an adequate definition of theyyeaglits

Yo of the traceyr = y1 + ¥ x y in (57) and (58) respectively. The dual solutipdepends onr exclusively through

the enforcement of the Dirichlet boundary conditidiys = .

5. Numerical experiments

We consider the free fall of a rectangular bday0.5, 0.5] x [—0.1, 0.1] with densityps = 10 in a viscous fluid.
The shear viscosity (resp. the density) is assumed 0.1 (resp.o = 1). Our numerical simulations lead to both
horizontal and vertical position as terminal state. The vertical fall is however an instable terminal state (see e.g. [13])
and will not be further considered in the following. The terminal Reynolds number which is based on the length of
the rectangle as characteristic length is equidee- 17.

Table 2 clearly shows that despite a careful treatment of boundary conditions on the outmost part of the compu-
tational domain2 (see [20]) one needs to consider vessels which size are several order of magnitude larger than the

Table 2

Convergence of the relative error on the drag acting on the body assuming a computational domain with digniettre rangg40, 400] (the

body width is assumed to be= 1). The depicted relative error corresponds to the best attainable accuracy for the drag assuming for the outmost
part of 2 the second order accurate artificial boundary conditions described in [20]. The third and fourth columns depict the needed number of
unknowns of the finite element discretization assuming respectively a global refinement and a local refinement based on the error estimator (62)
Note that in order to control the drag we impage= (1, 0)" for the solution of the dual problem (59)

Diameter of$2 Relative error for # Unknowns
the drag Global refinement Local refinement
Do =40 72x 1072 153456 22654
Do =60 13 x 1072 281432 28882
Dg = 100 45x 1073 723524 34432

Dg =400 23x 1074 1140124 54 868




908 V. Heuveline / C. R. Mecanique 333 (2005) 896—-909

Fig. 3. (Left) Streamlines around the falling body for= 0.1; (Right) Zoom on the local refined mesh obtained by means of the error estimator
(62) toward the drag computation on a computational domain of dianieted 00 (to be compared with the width of the bady: 1).

considered body in order to obtain accurate results. Similar results have already been experimentally observed (s
e.g. [1]). The large size needed for the computational domain imposes a careful mesh design. The derived error es
mators (44), (50) and (62) rely on the solution of an additional dual problem. This additional problem which is linear
is solved numerically by means of the method described in Section 3.2. We refer to [30,27,32] for the derivation of
techniques leading to local refinement strategies on the basis of such error estimators. The fourth column of Table
clearly show that the proposed approach allows us to solve such fluid/structure interaction problem in a very efficien
way. A prototypical mesh adapted toward the drag computation is depicted in Fig. 3.
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