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Abstract

We derive a closed system of effective equations describing a time-dependent flow of a viscous incompressible Newtonian fluid
through a long and narrow elastic tube. The 3D axially symmetric incompressible Navier—Stokes equations are used to model the
flow. Two models are used to describe the tube wall: the linear membrane shell model and the linearly elastic membrane and the
curved, linearly elastic Koiter shell model. We study the behavior of the coupled fluid—structure interaction problem in the limit
when the ratio between the radius and the length of the wktends to zero. We obtain the reduced equations that are of Biot
type with memory. An interesting feature of the reduced equations is that the memory term explicitly captures the viscoelastic
nature of the coupled problem. Our model provides significant improvement over the standard 1D approximations of the fluid—
structure interaction problem, all of which assume an ad hoc closure assumption for the velocity profile. We performed experimental
validation of the reduced model using a mock circulatory flow loop assembled at the Cardiovascular Research Laboratory at the
Texas Heart Institute. Experimental results show excellent agreement with the numerically calculated solution. Major applications
include blood flow through large human arterigs cite this article: S. Canicetal., C.R. Mecanique 333 (2005).

0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Un modele efficace bidimensionnel décrivant 'interaction fluide—structure dans I'écoulement sanguin : analyse, simula-
tion et validation expérimentale.Nous obtenons un systéme fermé d'équations efficaces, décrivant I'écoulement non-stationnaire
d’un fluide newtonien incompressible visqueux a travers un tuyau élastique long et de faible épaisseur. Pour modéliser I'écoule:
ment, nous utilisons le systéeme de Navier—Stokes 3D axisymétrique et incompressible. Deux modeles sont employés pour décrir
le comportement élastique de la paroi latérale : les équations de Navier pour une membrane courbe élastique linéaire, et ensuite
modéele de Koiter, d’'une coque courbe, élastique linéaire. Nous étudions le comportement du systéeme lorsque de eapport
I'épaisseur caractéristique et la longueur du tube, tend vers zéro. Nous obtenons les équations efficaces, essentiellement 1D, ¢
sont du type de Biot avec mémoire. Une caractéristique intéressante des équations efficaces est que le terme de mémoire capti
explicitement la nature viscoélastique du probléme couplé. Notre modele efficace fournit une amélioration significative par rapport
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aux modeles 1D standards de I'interaction fluide—structure, qui nécessitent une formule de fermeture pour la vitesse, proposée
hoc. Nous avons effectué la validation expérimentale du modéle réduit en utilisant la boucle d’écoulement simulé au Cardiovasct
lar Research Laboratory, Texas Heart Institute. Les résultats expérimentaux montrent un accord excellent avec la solution calcul
numeériqguement. L'application principale inclut I'écoulement sanguin a travers les grandes artéres du corpshoumeiber cet

article: S. Cani¢ et al., C. R. Mecanique 333 (2005).

0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

This work is motivated by the study of blood flow in compliant arteries. In medium to large vessels such as the
human aorta and iliac arteries, blood can be modeled as a viscous, incompressible Newtonian fluid, [1,2]. Driven by
time-periodic pressure pulse caused by the contractions and relaxations of the heart muscle, blood flow interacts wi
the pulsation of arteries. Modeling and simulation of the fluid—structure interaction between blood flow and arterial
walls have been studied by many authors, see, for example, [3—8,1]. However, real-time calculations of large sectior
of the vascular system are still out of reach. Simplified models need to be used whenever possible. In axially sym
metric sections of the vascular system one-dimensional models have been used to speed up the simulation, [9-11
12,8,1]. These models have two drawbacks: they are not closed (an ad hoc assumption needs to be made on the sh
of the axial velocity profile to close the system) and outflow boundary conditions generate nonphysiological reflectec
waves that contaminate the flow. The latter is due to the fact that the system is hyperbolic and Dirichlet boundan
conditions give rise to the reflections from the artificially posed outlet boundary that are of the same magnitude a
the physiological waves themselves, see [13,5]. In the present article we derive a simplified, effective model that ge
around both drawbacks. The resulting equations are closed (the closure follows from the three-dimensional problel
itself), and the nonphysiological reflected waves are minimized by the fact that the model equations are of mixec
hyperbolic-parabolic type, with memory. The memory terms explicitly capture the observed viscoelastic nature of the
fluid—structure interaction in blood flow. Although the resulting equations are two-dimensional, their simplified form
allows a decomposition into a set of coupled one-dimensional problems, thereby allowing numerical simulation with
complexity of the one-dimensional problems. In this article we present the derivation of the effective equations, a nu
merical method for their simulation and experimental validation performed on a mock flow loop at the Cardiovascular
Research Laboratory at the Texas Heart Institute. The experimental validation shows excellent agreement with tt
numerically calculated solution.

2. The three-dimensional fluid—structure interaction model

We study the flow of an incompressible, viscous Newtonian fluid through a cylinder with compliant walls. In the
reference state the cylinder Is> 0 units long and R > 0 units wide. The aspect ratio:= R/L > 0 is assumed
to be small. For a giveR, L > 0 denote the reference cylinder I3, = {(r cost, rsind, z) e R3: r € (O, R), 6 €
(0,27),z € (0, L)} and its lateral boundary b, = {(R cosd, Rsiné, z) € R3: 6 € (0, 2n), z € (0, L)}; see Fig. 1.

We study a time-dependent flow driven by the time-dependent inlet and outlet boundary data. The compliant cylinde
and its boundary deforms as a result of the fluid—structure interaction between the fluid occupying the domain and th
cylinder’s boundary.

We assume that the lateral wall of the cylinder behaves as a homogeneous, isentropic, linearly elastic shell of thicl
nessh. We consider two linearly elastic shell models: the linearly elastic membrane model (1) and the linear Koiter
shell model (2), studied in [14—17]. Accounting for only radial displacemefits, 1) and assuming a prestressed
reference configuration at reference pressue[18,19], the model equations, in Lagrangian coordinates, take the
following form:
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Fig. 1. Visualisation du domaine.
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Here E is the Young’s modulusyg is the shell densityy is the Poisson ratio angl. is the radial component of the
contact force.

The fluid is modeled by the incompressible Navier—Stokes equations, defined on the deformed @omain
{(r,0,2) |r < R+n(z,1), 0 €[0,21), z<(0,L)} with the lateral, inlet and outlet bounda®y. (1) = {r = R +
n°(z,1), z€ (0, L)}, By(t) :=082:(t) N{z =0}, B} (t) :=08:(t) N {z= L}, respectively. Assuming zero azimuthal
velocity, the Eulerian formulation of the equations in cylindrical coordinates reads

p(avrs +U83vf +v88vf> _M<82vf N azvf n 1ovf _v_f)_i_a_pgzo 3)

ar  Tor ‘oz a2 9z2 ' ror 12 ar

v vy 0vf 3%ve  %E  100f ap®
p(at +Ur3r +UZ31) M<8r2+8z2+rar>+8z @
b ot v o
or 0z r

Herev® = (vf, vf) is the fluid velocity,p® is the pressurey is fluid dynamic viscosity coefficient and is fluid
density.

The coupling between the fluid and the structure is obtained through the kinematic condition requiring continuity
of the velocity evaluated at the deformed interfager)

on(z,t)

up(R+n°(z,0),2,1) = Py

uf(R+n°(z,1),z,1)=0 (6)

and the dynamic condition requiring continuity of contact forces at the deformed interface. Since the fluid contact
force [(p® — pref)l — 2uD(v®)]n - e, is given in Eulerian coordinates, whepgs is the reference pressure, and the
structure contact force (1) or (2) is given in Lagrangian coordinates, we must take into account the Jacobian of the
transformation from Eulerian to Lagrangian coordinales= \/det((Vqﬁ)Tqu) = \/(R +18)2(1 + (3,1)2), where

¢:(z,0) — (x,y,z) and its gradien¥ ¢ are defined by

. e _

x = (R +1°)cosd, b X B cosd  —(R +n°)sing
— & H _ ay 9 _ ant .

y=R+n)sing, V=2 = |=| SLsing (R+n°)cos

=2, 1 0 1 0
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The coupling is then performed by requiring that for every Borel suBsef the lateral boundan¥,, the contact
force exerted by the fluid to the structure equals, but is of opposite sign to the contact force exerted by the structure
the fluid, namely,

/[(ps — pref)l — ZMD(vS)]n ce,Jdodz = / frRd9dz
B B
and so, pointwise, the dynamic coupling condition reads

[(P° — preDl —2uD(¥*)]n - e, <1+ %) 1+ @n9)2=f onX, xR" (7)

where f, is given by either (1) or (2).
Initially, the cylinder filled with fluid is assumed to be in an equilibrium. The reference configuration is that of
with the initial reference pressuyges. The initial conditions read:

on®
€ =
T
In this manuscript we assume that the flow is driven by the time-dependent dynamic pressure prescribed at both en
of the cylinder with the following inlet/outlet boundary conditions:

=0 and »*=0 onX, x {0} (8)

vi=0, p°+p())?/2=Po(t) + pret ONBG(1) 9
£=0, p°+p)?/2=PL(t)+ pret ONB; (1) (10)
n®=0 forz=0, n®=0 forz=L andvre R (11)

assuming pressure drop to Bdr) = P.(t) — Po(t) € C3°(0, +00). This, of course, is not the only set of initial

and boundary data that will give rise to a well-posed problem, see [20] for a discussion. We consider the curren
inlet/outlet boundary data primarily because we found these conditions to be reasonable and practical to work with
More precisely, we will see in Section 4.2 that in the reduced modet2approximation of the inlet/outlet data
requires only the inlet and outlet pressure to be prescribed, and this is something we can measure both in vitro ar
in vivo. Moreover, in [21] we showed that in the three-dimensional model with the inlet/outlet data requiieng

and prescribed time-dependent dynamic pressure, a boundary layer forms to accommodate the transition from tl
zero displacement to the displacement dictated by the dynamic pressure condition. We proved in [21,27] that th
contamination of the flow by the boundary layer decays exponentially fast away from the inlet/outlet boundaries.
Therefore, except for a small neighborhood of the inlet/outlet boundary, the displacement will follow the dynamics
determined by the time-dependent dynamic pressure.

Our goal is to derive the reduces equations approximating the original three-dimensional problera?t@acthe
curacy. To do that we write the problem in non-dimensional form and use asymptotic expansions for the velocity,
displacement and pressure plugged into the equations to conclude which effects are negligible. An important comp
nent in this approach is to estimate the leading order behavior of the unknown functions by using a priori solution
estimates. They will also provide an estimate for the flow regime that corresponds to the parameters in the problen
shown in Table 1.

3. The energy and a priori estimates

We start by the derivation of an energy estimate. To simplify notation introduce

hE 1 B2 Pref R ) 0, linear membrane
C= 1-_o2R2 <1+ Oref + 1—2), Oref= 73(1— o), B= %, linear Koiter (12)

Multiply the momentum equations by the velocity test function, integrate by parts and take into account the boundan
conditions and the coupling at the lateral boundary to obtain

Lemma 3.1.Solution{v?, n°} satisfies the following energy equality
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Introduce the non-dimensional time= wt, wherew is the characteristic frequency, specified later in (19). From now
on we will be working with the non-dimensional tindout will drop the ‘tilde’ notation for simplicity. The physical

time ¢ will be used later only in the final form of the reduced equations.
To get to the energy estimates we integrate the energy equality (13) with respect to time and take into account the

rescaled time to get

pw 2
7||v8||2+2u/|}0<v8)\| + ps@>Th R 9,1 ||?

L 2 2p2
+rorE /(1(1+Qref+ﬁ )(n 2+ ZpA0n ) + ﬂé (agne>2)dz

1—02 R?
0
1
:/{ / vi Po(t)dS — / viPr(7) dS} dr (14)
0 “Bo(r) Bp(7)
We rewrite the expression under the time integral on the right-hand side as
L 27
L . e A(r) A ¢
div(pv®)dx — pv® -ndX(r) = 7V dx — pwdn°n,J dodz (15)
2:(7) (1) 2:(7) 00

wheren, = (R +7°)/v/ (R + n9)2(1+ (3:1°)?), J = /(R + n®)2(1+ (3.1°)?) and
. A1)
p(t) = TZ + Po(t) whereA(r) = Pp(1) — Po()

Then using (14) and (15) we get the following energy inequality

t
w 2
%||v8||2+2u/||1)(v8)|| +psw3nhR||a,n8||2+ch/(n8)2dz
0

t L

< /{ / %v dx — Zna)/ﬁamg(R+ns)dz}dr

0 ‘2.0 0
Estimate the right-hand side further in terms of the quantities on the left-hand side and the data.

(16)

Proposition 3.2.For anya > 0 the following holds

A 7 R?
f / AW e g de —fnv 20, @ flA( [Pde+ TP ”””°° /u °12, de

0 2:(1)
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Similarly, the second term on the right-hand side can be estimated as follows:

Proposition 3.3.For any« > 0 the following holds

t t
.12 1512 2
<mwaRC [ [n°112, + 7w 13112,
aC
0

r L
27rw//138,n8(R+n5)dzdr

2
871 Rw TwRC TwRC
f| 2de + ° (sup/|a,p|dr> +—5 IInallinrTSthllngllz

Use these results to estimate the right-hand side of (16) and take the supremum over time of the right-hand side to ¢

BRI 1220, + 7@ %pshRIG " |1P 4+ T0RC |1

< paw ad VIS Ilpll2
/Hv 122000 dr+<maRc+7 17112, de + e ||a, “I2de
0

L t
87Rw [ ., 8twLR . 7 R? 2 TwRC
+—— | pdz+ sup |8,p|d‘c +— |A(r)| dr +
C C z pawL
0 0

t

oW
() = f { 10" W2,y + 7@ 0shRID 1 + ancnn@nZ} de (17)
0
Then we have

L
I p1I12 TwRC ) 8an/ 2
/1‘ < — t Su € _— d
y(t) (a+apsw2hR2C yo+—, tplln 1"+ —c podz

0
+8mL <Supf|8,p|dr> +—/|A(r)| dr

Now takea so that]| 5|2, /(@psw?h R?C) < « and lettg be such that mag ) y'(t) = y' (o). Then|y(t)| < Ty’ (t0)l,

and so we get
! 2
R R
(SUIO/ 10 p| df)
z
0

2
suplin®ll72
t

Define

L
C 87Rw [ . 8rwL
SUP||778||2+—C /pzdz-i-
t
0

y'(to) < 2aTy'(t0) + X
t

2
L TR /|A(r)|2dt
powL

0

Choose, for example; = = 77~ Then
1 RC 87 R [ 8TwLR t 2 ATnR? |
Tw T Row R 940 R T
=y (o) < Suplln5||2+—fp2dZ+ Supflazpldf + /IA(I)IZdT
2 4 t C C z ,0(1)L
0 0 0

Take into account the definition of, given by (17), and combine the terms containing ffenorm of ¢ on both
sides to get
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We now choose the characteristic frequencgo that all the terms on the right-hand side contribute with the same
weight. Namely, we set the coefficient in front of the pressure {gm@nd its time derivative equal to the coefficient in
front of the pressure drop terd(r) to get

1 [RC 1 [hE(L+ Qret+ B?/12) (19)
TN 20 T L 20R(1—02)

We remark thatL is exactly the structure “sound speed” derived by Fung in [11] for the linear membrane model.
Finally, after dividing both sides of inequality (18) hywe get

Theorem 3.4.The following energy inequality holds for the solutiafi, »°} of the coupled fluid—structure interaction
problem described in Sectidh

16rLR _,
— P

0 TR
SV 1 20, 1y + 7@ pshRI |2 + —=ClIn°|? <

whereP? :=sup, |p|? + (sup [p |p:1de)% + T [31A(7)|? and C is defined by12).
From this results we get the following a priori solution estimates.

Lemma 3.5.Solution{v?, n°} of the fluid—structure interaction problem satisfies the following a priori estimates
32 16 32

_2 2 P7 2 ”vs”iZ(Q @®) < A 2
C psw hC LR4m e PRC
2

t
4rR? | 2 _,
19, v¢ 112, + + 19,0812, }d‘L’ <—— | Zp
0/{ rUrllz2c. ) Loy @ [TTS T RE
t
(o o o + 13605 [Py o e < 22 |22
Yz 1 L2(2: (1)) 2Ur 1 L2(2¢ (1)) = m ,ORC

0
whereC is defined by12).

1 2 1 2
Z||n€(t)||L2(O,L)< P2, Z“at’7€(t)||1‘2(o,L)<

&€
r

r

Corollary 3.6. For the Koiter shell model the following holds

96
oh2C?

192

1 2 1 2 4L |6
Lot O < P L O a0 < g Ph 5Ol m < oz 2P

whereC is defined by(12).

Using the a priori estimates we obtain the asymptotic expansions and derive the reduced equations in the nex
section.

4. The effective equations
4.1. Asymptotic expansions

First write the underlying equations in non-dimensional form. For that purpose introduce the following non-
dimensional independent variabes andr

(20)

w

1. 1 [hEQA 2/12
r=RF, z=Lz, t=—t, wherew=— A+ Oret + £7/12)
L Rp(1—o0?)
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Abdominal Aorta Pressure: total length=14cm, average R=0.8cm
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Fig. 2. Inlet/outlet aortic pressure.
Fig. 2. La pression artérielle a I'entrée/sortie [22].

Table 1

Table with parameter values

Tableau 1

Tableau contenant les valeurs des parameétres

Parameters Aorta/lliacs Latex tube
Char. radiusk (m) 0.006-0.012 (0.008) [1] 0.011
Char. lengthL (m) 0.065-0.2 (0.14) 0.34

Dyn. viscosityu (kg/ms) 35x 1073 35x 1073
Young’s modulusE (Pa) 16-1F (5 x 10°) [2] 1.0587x 10°
Wall thickness: (m) 1-2x 1073 [1] 0.0009

Wall densitypg (kg/m?2) 1.1[1] 1.1

Fluid densityp (kg/m?3) 1050 1000

Using the a priori estimates obtained in Section 3 we introduce the following asymptotic expansions

R(1—-0?)
phE(1+ Qret+ /12
R2(1-0?) »
hE(1+ Qret+ p2/12)

Since the estimates obtained in the previous section present the upper bounds for the behavior of the unknown fur
tions, in expansions (21), (22) we used goaledupper bounds to only capture how the magnitude of the unknown
functions changes with a given parameter. For example, we see that the magnitude of the vessel wall displaceme
increases as the square of the reference rakliaad decreases with the increase of the vessel wall thicknessl
Young's modulusE.

In this article we want to develop a reduced effective model that is a good approximation of the fluid—structure
interaction problem for the parameter values and the pressure data corresponding to the abdominal aorta and ili
arteries, given in Table 1. Using these values (the values given in parentheses) we/obt8ib m/s, ® = 2.5 x
1074 m, w = 113. These are in excellent agreement with the values measured in human abdominal aorta, see [2], fc
which the average velocity is around 0.5smand radial displacement is below 10 percent of the reference radius.
Notice that our value of is around 3 percent of the reference radRis- 0.008 m.

Using a standard approach, presented in detail in [20], based on plugging expansions (21), (22) into Eqgs. (1)—(¢
and ignoring the terms of ordef and smaller, we obtain:

v =V +evt -], wherez/z\/ (21)

n° =i’ +eit+..-}, where 2 = and pf=pV2{®+ept+---}. (22)

e The s2-approximation of the pressure is hydrostatic, namgly; 5° + ¢ 51 is constant across the cross-section
of the tubed p/a7 = 0. This follows from the conservation of radial momentum equation.

e The following two-dimensional initial-boundary value problem defined on the scaled domain descrikes an
approximation of the fluid—structure interaction problem
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= 7 A~ Vr —— ~ =\ ==
ot 9z or 0z Rel|ror\  or
. o .
—= ) + —=(Fv) =0 (24)
ar 0z
P a7
Lateral boundary: p — prei= —517, (¥,,0;) = —’Z 0 (25)
pV?2 a1
Inlet/Outlet:  77=0, 5 =0 and p = (Po;L(7)+ prer)/(pV?) (26)
i _ 0N
Initial data: 7 = 8—;’ =0 (27)

whered, := 3} + e92 s0 thatvf = eV (i, + O(£?)), U := 020 + 02 s0 thatf = V (3, + O(e?)), p := p° + e pt
so thatp® = pV2(p + O(e2)) andij := 7i° + 7! so thaty® = & (77 + O(£2)). Here the Strouhal and the Reynolds
numbers are given by

L
Sh=7w and Re= (28)

For the parameter values from Table 1 we §bt= 31 andRe= 69. Notice that Eq. (25) says that the leading-order
term that survives from the fluid contact force is the pressure term, and theft-#ipproximation of the contact force
corresponding to the linear Koiter shell model consists of only the displacement term shown in (25). The derivative
terms turn out to be all of higher order. Furthermore, noticesthapproximation of the inlet and outlet boundary
conditions consists of prescribing only the pressure and not the dynamic pressure.

4.2. The reduced equations

Although problem (23)-(27) presents a simplification of the three-dimensional fluid—structure interaction problem
described in Section 2, it is still rather involving and difficult to study this problem both theoretically and numerically.
This is why further simplifications have been obtained in the literature. They are based on averaging equations (23)
(24) with respect to the cross-sectional area leading to a system of one-dimensional equations of hyperbolic type
These equations have two major drawbacks: (i) They are not closed (ad hoc assumptions on the axial velocity profile
needs to be used to obtain a closed system); (ii) Due to their hyperbolic nature, prescribing the pressure at the inle
and at the outlet gives rise to the reflected waves that are not physiologically reasonable. In the present article we
obtain an effective model that gets around both drawbacks. We obtdisedsystem of reduced equations that is of
mixed hyperbolic-parabolic type, displaying explicitly the physiologically obsewszbelastimature of the coupled
problem, see Egs. (39) and (41). Furthermore, the mixed system ‘allows’ prescribing the inlet and outlet pressures
without exhibiting reflections appearing in the one-dimensional hyperbolic problems, see Section 5.

To derive the reduced effective equations that approximate the original three-dimensional problerftadhe
curacy we rely on the ideas presented by the authors in [20] utilizing homogenization theory in porous media flows.
Once the proper motivation is established the calculation of the effective equations itself can be performed using
formal asymptotic theory, which we now utilize.

Consider Eg. (23) and the values of the non-dimensional paran&ter81 andRe= 69. Multiply Eq. (23) bys
and define the rescaled non-dimensional parameters

_Re_ pRV
==
Notice that now the Reynolds numbReg is the ‘usual’ local Reynolds humber, readiRg= 1200, and thaSh is
of order oneShy = 1.8. Introduce the rescaled pressure

pLV? . 1- ~ = 5
p= Tp=pVZgP=pV2p, sop=¢p (30)

and notice that the nonlinear advection terms are now of ardeook for a solution which is in the form of the
leading, zero-th order approximation plus dét€orrection. The nonlinear terms will not appear in the leading order

R
Shy = £Sh= 7“’ Re (29)
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approximation, but only in the calculation of thecorrection. Proceed by rescaling the pressure in the leading-order
momentum equation resulting from (23) and average across the cross-section of the leading-order mass equati
corresponding to (24). One gets the following system forzia®-th order approximationf the solution, written in
dimensional variables, defined on the domaia 0< L, 0<r < R + n°(z, 1):

0,2 R
d(R ad
IRAm) 2 / 2r0dr =0 (31)
ot 0z N
0
Y 8 (hEL+ Qe+ $%/12 1° 19 ([ 00
p— —_ = -\ rr— (32)
at 0z R(1—0?) R+n° ror\ or
0 0 0 0
v;(0,z,1) bounded v (R+n"(z,1),z,t)=0 andv (r,z,00=0 (33)
p=Pos(t)+ pret forz=0/L, 0<r<RandvreR, (34)
The pressure is linked ton° via
hE(1+4 Oret+ 82/12) n°
p(z, 1) = pref + Oref + P/ U (35)

R(1—0?) R

The system for the-correction of the solution is obtained by first noticing that ¢herder conservation of mass
equation (24), integrated, implies an explicit formulaﬁér

R+770
av?

1 _ 0,91° /_z
rvg(r,z, 1) = (R+1°) Tt ™ (&, 2, 1§ dg (36)

r

Next we focus on the-order equations derived from (23) and linearize the nonlinear advectiorj term around the zero-
order gpproximation. We obtain an equation that is not closeg due to the presence of tiigp tgbmn However,
sincepl is zero at the lateral boundafy= 1+ @ /R7°, and sincep! is independent of, we conclude thap! = 0.
Thus, we obtain the following closed problem for theorrectionof the velocity, defined on the domainQz < L,
0 < r < R+ 1%z, r) written in dimensional form
vl 109 [ vl
—~ v (r—=2)==S,1(r,z,¢t 37
ot vr8r<r3r) 3 21) (37)
vzl(O, z,t) bounded vzl(R + no(z, t),z,1) =0, vzl(r, 0,1)= vzl(r, L,t)=0 and vzl(r, z,00=0 (38)

whereS,1(r, z, 1) = vld v?/ar + ug’au?/az is the linearized advection term containing the already calculated function.
Herev = u/p is the kinematic viscosity coefficient. Notice that the boundary condition is evaluated at the deformed
boundary whose?-approximation is obtained in the previous step.

Theorem 4.1.The velocity field#? + 32, ¢5}) and the pressure field5° satisfy Eqs(23)—(27)to O(&?).
The proof is the same as that of Proposition 7.1 in [20].
4.3. In summary

Functions{(v2 + v1, v}), n°, p}, wherev?, n°, p satisfy problem (31)—(35);! solves (36) ana? solves (37), (38),

satisfy the fluid—structure interaction problem described in Section 2 te’taecuracy. The reduced equations hold
under the following assumptions:

(i) The domain is axially symmetric with small aspect ratie R/L <« 1;
(ii) Longitudinal displacement is negligible;
(i) Radial displacement is nottoo large, i.@/R < ¢;
(iv) The initial tube radius is constant;
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(v) TheShnumber is not small, i.eSh> 1, andReis medium;
(vi) The z-derivatives of the non-dimensional quantities are of ord@n O

4.4. Expansion with respect to the radial displacement

We simplify our problem further by introducing the expansions with respect to the small par@amet@r/ R. This
parameter measures the size of the radial displacement in non-dimensional variables:

FO= 700 L0l 4. O F00 L 5501,
ﬁzzﬁ?+55?»l+...’ 1321:,7}04_..., =04 ...

In dimensional variables we have
n=n00 0l = (p(ﬁo,o o0t 4. ). wheren®0 = @700 0.1 — @701
v, = v?’o + vg’l + vzl'o 4= V(ﬁ?»o +5ﬁ?’1 +gﬁ2"0 4. ) v, = vrl,O 4= V(Sﬁ}’o 4+ )
Following a similar approach as in [20] one obtains that Egs. (31)—(35) and (36)—(38) imply the following leading-
order problems, written in dimensional form.

4.4.1. The zero-th order approximation
Find v2°(r, z, 1), n%9(z, t) and p°0(z, 1) such that

R
am*0 19
g—t—i_EB_ rUg’OdVZO
p :
0 (39)
w20 1o 0l 9% 0 ERQ+ Ot B12) 910
P T e e )T T T O T YT T R1— 09 9z
v2%(0,z,1) bounded v2°(R,z,1)=0, p%9(z,0) = prer.  1°%(z,0) =v2%(r,z,00=0 (40)
n%0(0,1) = Po(t)/C, n°%(L,1)=PL(t)/C
Then recover thé = &/ R-correctionv®(r, z, 1), %1(z, ) and p®1(z, 1) by solving
87]0’1 1 d p 0.1 1 003770’0
o TR TR o
o (42)
it Lo auety ot o ap0t o ER(L Ot £2/12) 970t
P e e )T T T O e YT T R 09 a2
910, z,¢) bounded v>(R,z, 1) = 0’Oavg)o(R 1)
Uz » Zs Uz , 4, 1)=—1 T » Xy (42)
PP 0=0, n%%z.0 =02 (nz.00=0, 7%%0.1)=4L(L.1)=0
Before we state the-correction observe that (39)—(42) can be solved efficiently by considering
ac 19 ([ ac .
— ———|r—=]1=0 Iin(O,R 0
ot r8r<r8r> N (0. R) x (0, c0) (43)

£(0,¢) isbounded ¢(R,t)=0 and ¢, 0 =1

and the mean af in the radial directionC(z) = ZfOR ¢ (r, t)yr dr, which can both be evaluated in terms of the Bessel's
functions. Our solution can then be written in terms of the following operators

t

t
@ % )2, 0) :=/;(r, @)ﬂz,r)dr, (K f)(z 1) :=/ic(”(’p_ T)>f(z,r)dr
0 0
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This approach will uncover the visco-elastic nature of the coupled fluid—structure interaction problem since the result
ing equations will have the form of a Biot system with memory. Namely, the problem now consists of fiffding

%0, vg,o by solving the following initial-boundary value problem of Biot type with memory:
an®0 C *(K#n°9
— (5, ) ==— ———-—(z,) 0n(0, L) x (0,
o1 (z,1) 20k 922 (z, 1) (0, L) x (0, 400) (44)
n%%0,1) = Po)/C, n°°%L,n)=P.(t)/C and 7%0(z,00=0
Recover% (z,)=C 3’52‘0 (z,1). Calculatev>° by solving
8v?’0 10 81)?’0 Bpo’o( 0
gy =L,
P ot Mr or ar 9z ¢ (45)
v?o(o, z,t) bounded v?’O(R, z,1)=0
Recover theés-correctionn®1, p%1, v2 by solving the following initial-boundary value problem:
an®t C 0%(K+n>Y
L )=—— ———5—"(z,1) — S;01(z, ¢
or DT R gz @ TSl (46)
%10, =1"%L,n=0 and n°(z,0)=0
where
1 ,007%° R 9 3v20 19 9 3v20
So1(z,t)=—n20 = (00 =_ = O L (,00%%
3 (&)= R, 28z( or |_o) TR\ e\ o |,
Recovera’z’,—j’1 (z,1) = Cag—jl(z, t). Calculatev®! by solving
adt 10 [ 9t ap®t
t r or r Z ) 00 (47)
Uzo’l(O, z,t) bounded vg’l(R, Z,1) = —nO’OZ—Z(R, z,1)
r
4.4.2. Thes-correction
Solve forvzl’O = vzl’o(r, z,1) andv,l‘0 = vrl’o(r, z, t) by first recoveringjrl’0 via
R i
rvrl’o(r,z,t):Rn——}-/—z(é,z,t)Sdf (48)
ot 0z
r
and then solve the following linear problem fﬁﬂro defined on(0, R) x (0, L) x (0, c0)
Wi 19 [ 020 S0t
—V——\7r = — 7, Z,
ot ror or o0t
(49)

v}0(0,z,7) bounded v1O(R,z,1) =0

v}, 0,1) = v}, L,1)=0 and v}%(r,z,00=0

whereS 10(r. z, 1) = v} %9020 /or + v 0z

Biot systems were first introduced by Biot in the 1950s [23] and derived formally from first principles in the case
of porous media flows with linear elastic structure undergoing small vibrations in the seventies. We refer to [24] anc
[25] and the references therein for details. For a review of the mathematically rigorous homogenization results relate
to these models we refer to [26].
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5. Numerical method

First rewrite the approximations in the following way: take the derivative with respeabtohe first equation in
(39) and substitutév?’o/at from the second equation to obtain

R R
32500 19 [ 9020 19 19 [ 920 9
Rl o= — (=) - (9 ) d
or2 Raz ) o oR 02 r(“rar(r or ) 52 (C0) o
0 0
R NEDS RC 9210
opdz\ A |,_g 20 972

Therefore instead of (39), we solve the hyperbolic-parabolic system

921%0  CR %0 1 (800 (50)
912 20 3z2  paz\ ar |._p
0,0 0,0 0,0
av; 10 / dv; an>
2 () = —c 51
P ot Mr ar (r ar ) 0z ®1)

with the initial and boundary conditions (40). Perform the same computation for, thegdproximation and replace
(41) by

921t CR%%t  pua (92° 1 32( 00)2 (52)
02 2p 822 paz\ or |,_p) 2Ra2V
0,1 0,1 0,1
av; 10/ dv, an>
== =_C 53
P o1 “rar<r a;») 9z (3)

with initial and boundary conditions given by (42).

The approximation J10 is straightforward once the approximation®0and Q1 are obtained. The systems for
the Q 0 and Q1 approximations have the same form, with the mass and stiffness matrices equal for both problems,
up to the boundary conditions. Thus they are generated only once. Solve them simultaneously using a time-iteratior
procedure. First solve the parabolic equationvf?)P at the time step; 1 by explicitly evaluating the right-hand side
at the time-step;. Then solve the wave equation fof© with the evaluation of the right-hand side at the time-step
ti+1. Using these results fm?’o andn®0, computed at; 1, obtain a correction af, 1 by repeating the process with
the updated values of the right-hand sides. The numerical algorithm can be expressed:

1. Approximation QO:
Fori=0tonr
(a) solve (51) at; 1 for v?,o using 1D FEM with linear elements and implicit time-discretization
(b) solve (50) at;_1 for %0 using 1D FEM withC! elements and implicit time-discretization
2. Approximation Q1:
Fori=0tonr
(a) solve (53) at; 1 for v?’l using 1D FEM with linear elements and implicit time-discretization
(b) solve (52) at;_.1 for %1 using 1D FEM withC! elements and implicit time-discretization
3. Approximation 10
(a) solve (48) forvrl’0 using numerical integration
(b) solve (49) forv}O using 1D FEM with linear elements and implicit time-discretization

4. Compute the total approximatiop = v=°, v, = v90 4+ 21 + 010 5 = 500 4 01,

In this algorithm a sequence of 1D problems is solved, so the numerical complexity is that of 1D solvers. However,
leading order two-dimensional effects are captured as shown in Figs. 6 and 7.
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il

1T
il

Pressure Meterers—A

Inlet Valve Reservoir
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Fig. 3. Flow loop at the Cardiovascular Research Laboratory at the Texas Heart Institute (left), a sketch of the flow loop (middle) and a HeartMatc
Left Ventricular Assist Device (right).

Fig. 3. La boucle d’écoulement simulé au Cardiovascular Research Laboratory, Texas Heart Institute (a gauche), un croquis de la boucle d’écoul
ment simulé (au centre) et un HeartMate Left Ventricular Assist Device (a droite).

6. Numerical simulations and comparison with experiment

We used a mock circulatory loop to validate our mathematical flow model. Ultrasonic imaging and Doppler meth-
ods were used to measure axial velocity of the flow. Non-dairy coffee creamer was dispersed in water to enabl
reflection for ultrasound measurements. A high-frequency (20 MHz) single crystal probe was inserted through @
catheter at several locations of the tube. In Fig. 4 right we show the results of the reading at the mid-point of the tube

To determine the Young’s modulus of the tube wall we measured the tube diafredténe reference pressure of
84 mm Hg @ = 2.22 cm) and at the maximal pressure of 148 mm Hg=(2.38 cm), utilizing the linear pressure-
displacement relationship (35) and the data for the tube wall thickness provided by the manufacturer of the latex tub
Kent Elastomer Products Inc.

Fig. 3 shows the experimental set up, a sketch of the main components of the mock circulatory loop and the
HeartMate Left Ventricular Assist Device used as pulsatile pump, typically inserted in patients to aid the function of
the heart’s left ventricle.

6.1. Comparison

Numerical simulations were performed for the flow loop parameter values, shown in Table 1, with the measurec
inlet and outlet pressure data shown in Fig. 4 left. A calculation of the non-dimensional parameter values shows the
our model can be used to simulate the flow conditions in the experimental set up. More precisely, for the pressure da
shown in Fig. 4 left, the value of the norf is around 15000, the average magnitude of the veld¢itgefined in
(21) is Q68 /s, the time scale parameter= 30 s, and the Strouhal and Reynolds numbers defined in (28) and
(29) areSh= 15, Re=24,Shy = 0.5 andRe) = 2247.

The axial component of the velocity measured at the mid-point of the tube (filtered data) was compared with the
numerical simulation over one cardiac cycle. The two graphs, shown in Fig. 4 on the right, show excellent agreemer
indicating that the mathematical model we describe in this manuscript provides a good approximation for the flow.

Next we show the (two-dimensional) details of the simulations of the flow at four different times in the cardiac
cycle. The subsequent figures show the radial (top subplot) and the axial (middle subplot) components of the velocit
numerically calculated along the experimental tube superimposed over the streamlines of the flow. The color bar
indicate the magnitude of the velocity in m/s. The bottom subplot shows the inlet pressure data in mm Hg with the
red dot indicating the time in a cardiac cycle at which the corresponding snap-shots are taken. The displacement itse
(not the entire radius) is magnified by a factor of five to emphasize the movement of the vessel wall. Notice how the
radius of the tube changes as we progress in time from Fig. 5 left to Fig. 6 right. In Fig. 5 left the radius is roughly
that of the configuratior®,, with zero displacement and with the magnitude of the radial and axial components of
the velocity near zero. Fig. 5 right captures the forward moving wave in the structure as the velocity increases at th
beginning of the systole. The systolic peak is shown in Fig. 6 left. Notice the maximum displacement of the wall, as
well as the fact that the axial component of the velocity dominates the flow (radial component of the velocity shown
in the top subplot is zero). Finally, Fig. 6 right shows the end of systole and beginning of diastole. Notice the decreas
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Comparison between the calculated (solid line} and measured (stars) velocity

Inlet {solid line) and outlet (star) pressure
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Fig. 4. The figure on the left shows the filtered inlet (solid line)
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and outlet (stars) pressure data measured experimentally. The figure on the right

shows a comparison between the axial velocity measured experimentally (stars) and calculated numerically (solid line). The velocity is taken at the
mid-point of the tube plotted as a function of time during one cardiac cycle.

Fig. 4. La figure a gauche montre les pressions a I'entrée (ligne solide) et a la sortie (étoiles), filtrées et mesurées expérimentalement. La figure
droite montre la comparaison entre la vitesse axiale, mesurée expérimentalement (étoiles) et calculée numériquement (ligne solide). ees valeurs
la vitesse, prises au milieu du tuyau, sont tracées comme une fonction du temps, pendant un cycle cardiaque.

Streamlines and radial velocity (m's) for t = 17 6151

Streamlines and radial velocity (m/s) for t= 17.7195
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Fig. 5. The figure on the left corresponds to the snap-shot taken at diastole just before the inlet pressure begins to increase. The figure on the rigl
corresponds to the snap-shot taken just before the systolic peak of the inlet pressure shown at the bottom subplot.

Fig. 5. La figure & gauche correspond a la photo prise a la diastole avant I'augmentation de la pression a I'entrée. La figure a droite correspond a |

photo prise immédiatement avant le maximum systolique de la

pression de I'entrée, montré sur sous-graph au fond.

in the radius and more pronounced secondary flows. All the figures clearly indicate two-dimensional features of the

flow.

Fig. 7 right shows the radius versus tube length at the systolic peak, compared with the reference ®dius of
0.011 m. Fig. 7 left presents the numerically calculated radial displacement over 25 cardiac cycles. Notice that its

maximum value is just around the measured value

d®nhim.
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Streamlines and radial velocity (ms) for t = 17.604 Streamlines and radial velocity (m/s) for t = 17.9333
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Fig. 6. The figure on the left shows the flow at systolic peak. The figure on the right shows the flow at the beginning of diastole.
Fig. 6. La figure & gauche montre I'écoulement au maximum systolique. La figure a droite montre I'écoulement au commencement de la diastole
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Fig. 7. The left subplot shows the numerically calculated displacement at the mid-point of the tube (axially and radially) for 25 cardiac cycles. The
right subplot shows the reference radius and the radius at the systolic peak as a function of the tube length.

Fig. 7. Le sous-graph a gauche montre le déplacement, calculé numériquement, dans le point au milieu du tuyau (par I'axe et par le rayon) pour .
cycles cardiaques. Le sous-graph a droite montre le rayon de référence et le rayon au maximum systolique comme une fonction de la longueur
tuyau.
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