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Abstract

We derive a closed system of effective equations describing a time-dependent flow of a viscous incompressible Newto
through a long and narrow elastic tube. The 3D axially symmetric incompressible Navier–Stokes equations are used to
flow. Two models are used to describe the tube wall: the linear membrane shell model and the linearly elastic membran
curved, linearly elastic Koiter shell model. We study the behavior of the coupled fluid–structure interaction problem in t
when the ratio between the radius and the length of the tube,ε, tends to zero. We obtain the reduced equations that are of
type with memory. An interesting feature of the reduced equations is that the memory term explicitly captures the vis
nature of the coupled problem. Our model provides significant improvement over the standard 1D approximations of t
structure interaction problem, all of which assume an ad hoc closure assumption for the velocity profile. We performed exp
validation of the reduced model using a mock circulatory flow loop assembled at the Cardiovascular Research Laborat
Texas Heart Institute. Experimental results show excellent agreement with the numerically calculated solution. Major app
include blood flow through large human arteries.To cite this article: S. Čanić et al., C. R. Mecanique 333 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Un modèle efficace bidimensionnel décrivant l’interaction fluide–structure dans l’écoulement sanguin : analyse, simul
tion et validation expérimentale.Nous obtenons un système fermé d’équations efficaces, décrivant l’écoulement non-stat
d’un fluide newtonien incompressible visqueux à travers un tuyau élastique long et de faible épaisseur. Pour modélise
ment, nous utilisons le système de Navier–Stokes 3D axisymétrique et incompressible. Deux modèles sont employés p
le comportement élastique de la paroi latérale : les équations de Navier pour une membrane courbe élastique linéaire, e
modèle de Koiter, d’une coque courbe, élastique linéaire. Nous étudions le comportement du système lorsque le rappoε, entre
l’épaisseur caractéristique et la longueur du tube, tend vers zéro. Nous obtenons les équations efficaces, essentiellem
sont du type de Biot avec mémoire. Une caractéristique intéressante des équations efficaces est que le terme de mém
explicitement la nature viscoélastique du problème couplé. Notre modèle efficace fournit une amélioration significative pa
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aux modèles 1D standards de l’interaction fluide–structure, qui nécessitent une formule de fermeture pour la vitesse, pr
hoc. Nous avons effectué la validation expérimentale du modèle réduit en utilisant la boucle d’écoulement simulé au Car
lar Research Laboratory, Texas Heart Institute. Les résultats expérimentaux montrent un accord excellent avec la solutio
numériquement. L’application principale inclut l’écoulement sanguin à travers les grandes artères du corps humain.Pour citer cet
article : S. Čanić et al., C. R. Mecanique 333 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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Navier–Stokes 3D

1. Introduction

This work is motivated by the study of blood flow in compliant arteries. In medium to large vessels such
human aorta and iliac arteries, blood can be modeled as a viscous, incompressible Newtonian fluid, [1,2]. Dr
time-periodic pressure pulse caused by the contractions and relaxations of the heart muscle, blood flow inte
the pulsation of arteries. Modeling and simulation of the fluid–structure interaction between blood flow and
walls have been studied by many authors, see, for example, [3–8,1]. However, real-time calculations of large
of the vascular system are still out of reach. Simplified models need to be used whenever possible. In axia
metric sections of the vascular system one-dimensional models have been used to speed up the simulation
12,8,1]. These models have two drawbacks: they are not closed (an ad hoc assumption needs to be made o
of the axial velocity profile to close the system) and outflow boundary conditions generate nonphysiological r
waves that contaminate the flow. The latter is due to the fact that the system is hyperbolic and Dirichlet b
conditions give rise to the reflections from the artificially posed outlet boundary that are of the same magn
the physiological waves themselves, see [13,5]. In the present article we derive a simplified, effective model
around both drawbacks. The resulting equations are closed (the closure follows from the three-dimensional
itself), and the nonphysiological reflected waves are minimized by the fact that the model equations are o
hyperbolic-parabolic type, with memory. The memory terms explicitly capture the observed viscoelastic natu
fluid–structure interaction in blood flow. Although the resulting equations are two-dimensional, their simplifie
allows a decomposition into a set of coupled one-dimensional problems, thereby allowing numerical simulat
complexity of the one-dimensional problems. In this article we present the derivation of the effective equation
merical method for their simulation and experimental validation performed on a mock flow loop at the Cardiov
Research Laboratory at the Texas Heart Institute. The experimental validation shows excellent agreemen
numerically calculated solution.

2. The three-dimensional fluid–structure interaction model

We study the flow of an incompressible, viscous Newtonian fluid through a cylinder with compliant walls.
reference state the cylinder isL > 0 units long and 2R > 0 units wide. The aspect ratioε := R/L > 0 is assumed
to be small. For a givenR,L > 0 denote the reference cylinder byΩε = {(r cosθ, r sinθ, z) ∈ R

3: r ∈ (0,R), θ ∈
(0,2π), z ∈ (0,L)} and its lateral boundary byΣε = {(R cosθ,R sinθ, z) ∈ R

3: θ ∈ (0,2π), z ∈ (0,L)}; see Fig. 1.
We study a time-dependent flow driven by the time-dependent inlet and outlet boundary data. The compliant
and its boundary deforms as a result of the fluid–structure interaction between the fluid occupying the domain
cylinder’s boundary.

We assume that the lateral wall of the cylinder behaves as a homogeneous, isentropic, linearly elastic shel
nessh. We consider two linearly elastic shell models: the linearly elastic membrane model (1) and the linea
shell model (2), studied in [14–17]. Accounting for only radial displacementsηε(z, t) and assuming a prestress
reference configuration at reference pressurepref [18,19], the model equations, in Lagrangian coordinates, tak
following form:
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Fig. 1. Domain sketch.

Fig. 1. Visualisation du domaine.

• The linear membrane model

fr := ρSh
∂2ηε

∂t2
+ hE

1− σ 2

1

R2
ηε + pref

ηε

R
(1)

• The linear Koiter shell model

fr = ρSh
∂2ηε

∂t2
+ hE

1− σ 2

1

R2
ηε + hE

1− σ 2

h2

12

(
∂4ηε

∂z4
− 2

σ

R2

∂2ηε

∂z2
+ 1

R4
ηε

)
+ pref

ηε

R
(2)

HereE is the Young’s modulus,ρS is the shell density,σ is the Poisson ratio andfr is the radial component of th
contact force.

The fluid is modeled by the incompressible Navier–Stokes equations, defined on the deformed domainΩε(t) =
{(r, θ, z) | r < R + ηε(z, t), θ ∈ [0,2π), z ∈ (0,L)} with the lateral, inlet and outlet boundaryΣε(t) = {r = R +
ηε(z, t), z ∈ (0,L)}, Bε

0(t) := ∂Ωε(t) ∩ {z = 0}, Bε
L(t) := ∂Ωε(t) ∩ {z = L}, respectively. Assuming zero azimuth

velocity, the Eulerian formulation of the equations in cylindrical coordinates reads

ρ

(
∂vε

r

∂t
+ vε

r

∂vε
r

∂r
+ vε

z

∂vε
r

∂z

)
− µ

(
∂2vε

r

∂r2
+ ∂2vε

r

∂z2
+ 1

r

∂vε
r

∂r
− vε

r

r2

)
+ ∂pε

∂r
= 0 (3)

ρ

(
∂vε

z

∂t
+ vε

r

∂vε
z

∂r
+ vε

z

∂vε
z

∂z

)
− µ

(
∂2vε

z

∂r2
+ ∂2vε

z

∂z2
+ 1

r

∂vε
z

∂r

)
+ ∂pε

∂z
= 0 (4)

∂vε
r

∂r
+ ∂vε

z

∂z
+ vε

r

r
= 0 (5)

Herevε = (vε
r , v

ε
z ) is the fluid velocity,pε is the pressure,µ is fluid dynamic viscosity coefficient andρ is fluid

density.
The coupling between the fluid and the structure is obtained through the kinematic condition requiring co

of the velocity evaluated at the deformed interfaceΣε(t)

uε
r

(
R + ηε(z, t), z, t

)= ∂ηε(z, t)

∂t
, uε

z

(
R + ηε(z, t), z, t

)= 0 (6)

and the dynamic condition requiring continuity of contact forces at the deformed interface. Since the fluid
force [(pε − pref)I − 2µD(vε)]n · er is given in Eulerian coordinates, wherepref is the reference pressure, and
structure contact force (1) or (2) is given in Lagrangian coordinates, we must take into account the Jacobia
transformation from Eulerian to Lagrangian coordinatesJ := √det((∇φ)T∇φ) = √(R + ηε)2(1+ (∂zηε)2), where
φ : (z, θ) �→ (x, y, z) and its gradient∇φ are defined by

x = (R + ηε)cosθ,

y = (R + ηε)sinθ,

z = z,

∇φ =



∂x
∂z

∂x
∂θ

∂y
∂z

∂y
∂θ


=




∂ηε

∂z
cosθ −(R + ηε)sinθ

∂ηε

∂z
sinθ (R + ηε)cosθ



1 0 1 0
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The coupling is then performed by requiring that for every Borel subsetB of the lateral boundaryΣε, the contac
force exerted by the fluid to the structure equals, but is of opposite sign to the contact force exerted by the str
the fluid, namely,∫

B

[
(pε − pref)I − 2µD(vε)

]
n · erJ dθ dz =

∫
B

frR dθ dz

and so, pointwise, the dynamic coupling condition reads

[
(pε − pref)I − 2µD(vε)

]
n · er

(
1+ ηε

R

)√
1+ (∂zηε)2 = fr onΣε × R

+ (7)

wherefr is given by either (1) or (2).
Initially, the cylinder filled with fluid is assumed to be in an equilibrium. The reference configuration is that oΣε,

with the initial reference pressurepref. The initial conditions read:

ηε = ∂ηε

∂t
= 0 and vε = 0 onΣε × {0} (8)

In this manuscript we assume that the flow is driven by the time-dependent dynamic pressure prescribed at
of the cylinder with the following inlet/outlet boundary conditions:

vε
r = 0, pε + ρ(vε

z )
2/2= P0(t) + pref onBε

0(t) (9)

vε
r = 0, pε + ρ(vε

z )
2/2= PL(t) + pref onBε

L(t) (10)

ηε = 0 for z = 0, ηε = 0 for z = L and∀t ∈ R+ (11)

assuming pressure drop to beA(t) = PL(t) − P0(t) ∈ C∞
0 (0,+∞). This, of course, is not the only set of initi

and boundary data that will give rise to a well-posed problem, see [20] for a discussion. We consider the
inlet/outlet boundary data primarily because we found these conditions to be reasonable and practical to w
More precisely, we will see in Section 4.2 that in the reduced model, anε2-approximation of the inlet/outlet da
requires only the inlet and outlet pressure to be prescribed, and this is something we can measure both in
in vivo. Moreover, in [21] we showed that in the three-dimensional model with the inlet/outlet data requiringηε = 0
and prescribed time-dependent dynamic pressure, a boundary layer forms to accommodate the transition
zero displacement to the displacement dictated by the dynamic pressure condition. We proved in [21,27]
contamination of the flow by the boundary layer decays exponentially fast away from the inlet/outlet boun
Therefore, except for a small neighborhood of the inlet/outlet boundary, the displacement will follow the dy
determined by the time-dependent dynamic pressure.

Our goal is to derive the reduces equations approximating the original three-dimensional problem to thε2 ac-
curacy. To do that we write the problem in non-dimensional form and use asymptotic expansions for the v
displacement and pressure plugged into the equations to conclude which effects are negligible. An importan
nent in this approach is to estimate the leading order behavior of the unknown functions by using a priori
estimates. They will also provide an estimate for the flow regime that corresponds to the parameters in the
shown in Table 1.

3. The energy and a priori estimates

We start by the derivation of an energy estimate. To simplify notation introduce

C = hE

1− σ 2

1

R2

(
1+ Qref + β2

12

)
, Qref = pref

E

R

h
(1− σ 2), β =

{
0, linear membrane
h
R

, linear Koiter (12)

Multiply the momentum equations by the velocity test function, integrate by parts and take into account the b
conditions and the coupling at the lateral boundary to obtain

Lemma 3.1.Solution{vε, ηε} satisfies the following energy equality
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∫
Ωε(t)

(vε)2 dV + 2µ

∫
Ωε(t)

D(vε) · D(vε)dV + hρS

2

d

dt

L∫
0

(∂tη
ε)2πR dz

+ hE

1− σ 2

d

dt

L∫
0

(
R2β2

12
(∂2

z ηε)2 + σ

6
β2(∂zη

ε)2 + 1

R2

(
1+ Qref + β2

12

)
(ηε)2

)
πR dz

=
∫

Bε
0(t)

vε
zP0(t)dS −

∫
Bε

L(t)

vε
zPL(t)dS (13)

Introduce the non-dimensional timet̃ := ω t, whereω is the characteristic frequency, specified later in (19). From
on we will be working with the non-dimensional timet̃ but will drop the ‘tilde’ notation for simplicity. The physica
time t will be used later only in the final form of the reduced equations.

To get to the energy estimates we integrate the energy equality (13) with respect to time and take into acc
rescaled time to get

ρω

2
‖vε‖2 + 2µ

t∫
0

∥∥D(vε)
∥∥2 + ρSω3πhR‖∂tη

ε‖2

+ πωR
hE

1− σ 2

L∫
0

(
1

R2

(
1+ Qref + β2

12

)
(ηε)2 + σ

6
β2(∂zη

ε)2 + β2R2

12
(∂2

z ηε)2
)

dz

=
t∫

0

{ ∫
B0(τ )

vε
zP0(τ )dS −

∫
BL(τ)

vε
zPL(τ)dS

}
dτ (14)

We rewrite the expression under the time integral on the right-hand side as

∫
Ωε(τ)

div(p̂vε)dx −
∫

Σ(τ)

p̂vε · ndΣ(τ) =
∫

Ωε(τ)

A(τ)

L
vε
z dx −

L∫
0

2π∫
0

p̂ω∂τ η
εnrJ dθ dz (15)

wherenr = (R + ηε)/
√

(R + ηε)2(1+ (∂zηε)2), J =√(R + ηε)2(1+ (∂zηε)2) and

p̂(t) = A(t)

L
z + P0(t) whereA(t) = PL(t) − P0(t)

Then using (14) and (15) we get the following energy inequality

ρω

2
‖vε‖2 + 2µ

t∫
0

∥∥D(vε)
∥∥2 + ρSω3πhR‖∂tη

ε‖2 + πωRC

L∫
0

(ηε)2 dz

�
∣∣∣∣∣

t∫
0

{ ∫
Ωε(t)

A(t)

L
vε
z dx − 2πω

L∫
0

p̂∂tη
ε(R + ηε)dz

}
dτ

∣∣∣∣∣ (16)

Estimate the right-hand side further in terms of the quantities on the left-hand side and the data.

Proposition 3.2.For anyα > 0 the following holds∣∣∣∣∣
t∫

0

∫
Ωε(t)

A(t)

L
vε
z dx dτ

∣∣∣∣∣� ραω

2

t∫
0

‖vε
z‖2

L2(Ωε(τ))
dτ + πR2

ραωL

t∫
0

∣∣A(τ)
∣∣2 dτ + π‖p̂‖2∞

ρSαωhR

t∫
0

‖ηε‖2
L2 dτ
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ide to get
Similarly, the second term on the right-hand side can be estimated as follows:

Proposition 3.3.For anyα > 0 the following holds∣∣∣∣∣2πω

t∫
0

L∫
0

p̂∂tη
ε(R + ηε)dzdτ

∣∣∣∣∣� πωαRC

t∫
0

‖ηε‖2
L2 + πω

‖p̂‖2∞
αC

t∫
0

‖∂tη
ε‖2

L2

+ 8πRω

C

L∫
0

|p̂|2 dz + 8πωLR

C

(
sup

z

t∫
0

|∂t p̂|dτ

)2

+ πωRC

8
‖ηε‖2

L2 + πωRC

8
sup

t
‖ηε‖2

Use these results to estimate the right-hand side of (16) and take the supremum over time of the right-hand s
ρω

2
‖vε‖2

L2(Ωε(t))
+ πω3ρShR‖∂tη

ε‖2 + πωRC‖ηε‖2

� ραω

2

t∫
0

‖vε
z‖2

L2(Ωε(τ))
dτ +

(
πωαRC + π‖p̂‖2∞

ρSαωhR

) t∫
0

‖ηε‖2
L2 dτ + πω

‖p̂‖2∞
αRC

t∫
0

‖∂tη
ε‖2 dτ

+8πRω

C

L∫
0

p̂2dz + 8πωLR

C

(
sup

z

t∫
0

|∂t p̂|dτ

)2

+ πR2

ραωL

t∫
0

∣∣A(τ)
∣∣2 dτ + πωRC

4
sup

t
‖ηε‖2

L2

Define

y(t) =
t∫

0

{
ρω

2
‖vε‖2

L2(Ωε(t))
+ πω3ρShR‖∂tη

ε‖2 + πωRC‖ηε‖2
}

dτ (17)

Then we have

y′(t) �
(

α + ‖p̂‖2∞
αρSω2hR2C

)
y(t) + πωRC

4
sup

t
‖ηε‖2 + 8πRω

C

L∫
0

p̂2 dz

+ 8πωLR

C

(
sup

z

t∫
0

|∂t p̂|dτ

)2

+ πR2

ραωL

t∫
0

∣∣A(τ)
∣∣2 dτ

Now takeα so that‖p̂‖2∞/(αρSω2hR2C) � α and lett0 be such that max[0,T ] y′(t) = y′(t0). Then|y(t)| � T |y′(t0)|,
and so we get

y′(t0) � 2αTy′(t0) + πωRC

4
sup

t
‖ηε‖2 + 8πRω

C

L∫
0

p̂2 dz + 8πωLR

C

(
sup

z

t∫
0

|∂t p̂|dτ

)2

+ πR2

ραωL

t∫
0

∣∣A(τ)
∣∣2 dτ

Choose, for example,α = 1
4T

. Then

1

2
y′(t0) � πωRC

4
sup

t
‖ηε‖2 + 8πRω

C

L∫
0

p̂2 dz + 8πωLR

C

(
sup

z

t∫
0

|∂t p̂|dτ

)2

+ 4T πR2

ρωL

t∫
0

∣∣A(τ)
∣∣2 dτ

Take into account the definition ofy, given by (17), and combine the terms containing theL2-norm of ηε on both
sides to get
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ρω

2
‖vε‖2

L2(Ωε(t))
+ πω3ρShR‖∂tη

ε‖2 + πωRC

2
‖ηε‖2

� 16πLRω

C

(
sup
z,t

|p̂|2 +
(

sup
z

t∫
0

|∂t p̂|dτ

)2)
+ 8T πR2

ρωL

t∫
0

∣∣A(τ)
∣∣2 dτ (18)

We now choose the characteristic frequencyω so that all the terms on the right-hand side contribute with the s
weight. Namely, we set the coefficient in front of the pressure termp̂ and its time derivative equal to the coefficient
front of the pressure drop termA(τ) to get

ω = 1

L

√
RC

2ρ
= 1

L

√
hE(1+ Qref + β2/12)

2ρR(1− σ 2)
(19)

We remark thatωL is exactly the structure “sound speed” derived by Fung in [11] for the linear membrane m
Finally, after dividing both sides of inequality (18) byω we get

Theorem 3.4.The following energy inequality holds for the solution{vε, ηε} of the coupled fluid–structure interactio
problem described in Section2

ρ

2
‖vε‖2

L2(Ωε(t))
+ πω2ρShR‖∂tη

ε‖2 + πR

2
C‖ηε‖2 � 16πLR

C
P2

whereP2 := supz,t |p̂|2 + (supz
∫ t

0 |p̂t |dτ)2 + T
∫ t

0 |A(τ)|2 andC is defined by(12).

From this results we get the following a priori solution estimates.

Lemma 3.5.Solution{vε, ηε} of the fluid–structure interaction problem satisfies the following a priori estimates

1

L

∥∥ηε(t)
∥∥2

L2(0,L)
� 32

C2
P2,

1

L

∥∥∂tη
ε(t)
∥∥2

L2(0,L)
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ρSω2hC
P,

1

LR2π
‖vε‖2
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� 32

ρRC
P2

t∫
0

{
‖∂rv

ε
r ‖2

L2(Ωε(τ))
+
∥∥∥∥vε

r

r

∥∥∥∥
2

L2(Ωε(τ))

+ ‖∂zv
ε
z‖2

L2(Ωε(τ))

}
dτ � 4πR2

µ

√
2

ρRC
P2

t∫
0

{∥∥∂rv
ε
z

∥∥2
L2(Ωε(τ))

+ ∥∥∂zv
ε
r

∥∥2
L2(Ωε(τ))

}
dτ � 4R2

µ

√
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ρRC
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whereC is defined by(12).

Corollary 3.6. For the Koiter shell model the following holds

1

L

∥∥∂zη
ε(t)
∥∥2

L2(0,L)
� 96

σh2C2
P2,

1

L

∥∥∂2
z ηε(t)

∥∥2
L2(0,L)

� 192

R2h2C2
P2,

∥∥ηε(t)
∥∥

L∞(0,L)
� 4L

hC

√
6

σ
P

whereC is defined by(12).

Using the a priori estimates we obtain the asymptotic expansions and derive the reduced equations in
section.

4. The effective equations

4.1. Asymptotic expansions

First write the underlying equations in non-dimensional form. For that purpose introduce the following
dimensional independent variablesr̃ , z̃ andt̃

r = Rr̃, z = Lz̃, t = 1

ω
t̃, whereω = 1

L

√
hE(1+ Qref + β2/12)

Rρ(1− σ 2)
(20)
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Fig. 2. La pression artérielle à l’entrée/sortie [22].

Table 1
Table with parameter values

Tableau 1
Tableau contenant les valeurs des paramètres

Parameters Aorta/Iliacs Latex tube

Char. radiusR (m) 0.006–0.012 (0.008) [1] 0.011
Char. lengthL (m) 0.065–0.2 (0.14) 0.34
Dyn. viscosityµ (kg/m s) 3.5× 10−3 3.5× 10−3

Young’s modulusE (Pa) 105–106 (5× 105) [2] 1.0587× 106

Wall thicknessh (m) 1–2× 10−3 [1] 0.0009
Wall densityρS (kg/m2) 1.1 [1] 1.1
Fluid densityρ (kg/m3) 1050 1000

Using the a priori estimates obtained in Section 3 we introduce the following asymptotic expansions

vε = V
{
ṽ0 + εṽ1 + · · ·}, where 2V =

√
R(1− σ 2)

ρhE(1+ Qref + β2/12)
P (21)

ηε = Φ
{
η̃0 + εη̃1 + · · ·}, where 2Φ = R2(1− σ 2)

hE(1+ Qref + β2/12)
P, and pε = ρV 2{p̃0 + εp̃1 + · · ·}. (22)

Since the estimates obtained in the previous section present the upper bounds for the behavior of the unkn
tions, in expansions (21), (22) we used thescaledupper bounds to only capture how the magnitude of the unkn
functions changes with a given parameter. For example, we see that the magnitude of the vessel wall disp
increases as the square of the reference radiusR and decreases with the increase of the vessel wall thicknessh and
Young’s modulusE.

In this article we want to develop a reduced effective model that is a good approximation of the fluid–st
interaction problem for the parameter values and the pressure data corresponding to the abdominal aorta
arteries, given in Table 1. Using these values (the values given in parentheses) we obtainV = 0.5 m/s, Φ = 2.5 ×
10−4 m, ω = 113. These are in excellent agreement with the values measured in human abdominal aorta, se
which the average velocity is around 0.5 m/s and radial displacement is below 10 percent of the reference ra
Notice that our value ofΦ is around 3 percent of the reference radiusR = 0.008 m.

Using a standard approach, presented in detail in [20], based on plugging expansions (21), (22) into Eqs
and ignoring the terms of orderε2 and smaller, we obtain:

• The ε2-approximation of the pressure is hydrostatic, namely,p̃ = p̃0 + εp̃1 is constant across the cross-sect
of the tube,∂p̃/∂r̃ = 0. This follows from the conservation of radial momentum equation.

• The following two-dimensional initial-boundary value problem defined on the scaled domain describeε2

approximation of the fluid–structure interaction problem
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Sh
∂ṽz

∂t̃
+ ṽz

∂ṽz

∂z̃
+ ṽr

∂ṽz

∂r̃
+ ∂p̃

∂z̃
= 1

Re

{
1

r̃

∂

∂r̃

(
r̃
∂ṽz

∂r̃

)}
(23)

∂

∂r̃
(r̃ ṽr ) + ∂

∂z̃
(r̃ ṽz) = 0 (24)

Lateral boundary: p̃ − p̃ref = P
ρV 2

η̃, (ṽr , ṽz) =
(

∂η̃

∂t̃
,0

)
(25)

Inlet/Outlet: η̃ = 0, ṽr̃ = 0 and p̃ = (P0/L( t̃ ) + pref
)
/
(
ρV 2) (26)

Initial data: η̃ = ∂η̃

∂t̃
= 0 (27)

whereṽr := ṽ1
r + εṽ2

r so thatvε
r = εV (ṽr +O(ε2)), ṽz := ṽ0

z + εṽ1
z so thatvε

z = V (ṽz +O(ε2)), p̃ := p̃0 + εp̃1

so thatpε = ρV 2(p̃ +O(ε2)) andη̃ := η̃0 + εη̃1 so thatηε = Φ(η̃ +O(ε2)). Here the Strouhal and the Reynol
numbers are given by

Sh= Lω

V
and Re= ρV R2

µL
(28)

For the parameter values from Table 1 we getSh= 31 andRe= 69. Notice that Eq. (25) says that the leading-or
term that survives from the fluid contact force is the pressure term, and that theε2-approximation of the contact forc
corresponding to the linear Koiter shell model consists of only the displacement term shown in (25). The de
terms turn out to be all of higher order. Furthermore, notice theε2-approximation of the inlet and outlet bounda
conditions consists of prescribing only the pressure and not the dynamic pressure.

4.2. The reduced equations

Although problem (23)–(27) presents a simplification of the three-dimensional fluid–structure interaction p
described in Section 2, it is still rather involving and difficult to study this problem both theoretically and nume
This is why further simplifications have been obtained in the literature. They are based on averaging equati
(24) with respect to the cross-sectional area leading to a system of one-dimensional equations of hyperb
These equations have two major drawbacks: (i) They are not closed (ad hoc assumptions on the axial veloc
needs to be used to obtain a closed system); (ii) Due to their hyperbolic nature, prescribing the pressure a
and at the outlet gives rise to the reflected waves that are not physiologically reasonable. In the present a
obtain an effective model that gets around both drawbacks. We obtain aclosedsystem of reduced equations that is
mixed hyperbolic-parabolic type, displaying explicitly the physiologically observedviscoelasticnature of the couple
problem, see Eqs. (39) and (41). Furthermore, the mixed system ‘allows’ prescribing the inlet and outlet p
without exhibiting reflections appearing in the one-dimensional hyperbolic problems, see Section 5.

To derive the reduced effective equations that approximate the original three-dimensional problem to thε2 ac-
curacy we rely on the ideas presented by the authors in [20] utilizing homogenization theory in porous med
Once the proper motivation is established the calculation of the effective equations itself can be performe
formal asymptotic theory, which we now utilize.

Consider Eq. (23) and the values of the non-dimensional parametersSh= 31 andRe= 69. Multiply Eq. (23) byε
and define the rescaled non-dimensional parameters

Sh0 = εSh= Rω

V
, Re0 = Re

ε
= ρRV

µ
(29)

Notice that now the Reynolds numberRe0 is the ‘usual’ local Reynolds number, readingRe= 1200, and thatSh0 is
of order one,Sh0 = 1.8. Introduce the rescaled pressure

p = ρLV 2

R
˜̃p = ρV 2 1

ε
˜̃p = ρV 2p̃, so ˜̃p = εp̃ (30)

and notice that the nonlinear advection terms are now of orderε. Look for a solution which is in the form of th
leading, zero-th order approximation plus itsε correction. The nonlinear terms will not appear in the leading o
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approximation, but only in the calculation of theε correction. Proceed by rescaling the pressure in the leading-
momentum equation resulting from (23) and average across the cross-section of the leading-order mass
corresponding to (24). One gets the following system for thezero-th order approximationof the solution, written in
dimensional variables, defined on the domain 0� z � L, 0� r � R + η0(z, t):

∂(R + η0)2

∂t
+ ∂

∂z

R+η0∫
0

2rv0
z dr = 0 (31)

ρ
∂v0

z

∂t
+ ∂

∂z

(
hE(1+ Qref + β2/12)

R(1− σ 2)

η0

R + η0

)
= µ

1

r

∂

∂r

(
r
∂v0

z

∂r

)
(32)

v0
z (0, z, t) bounded, v0

z (R + η0(z, t), z, t) = 0 andv0
z (r, z,0) = 0 (33)

p = P0/L(t) + pref for z = 0/L, 0� r � R and∀t ∈ R+ (34)

The pressurep is linked toη0 via

p(z, t) = pref + hE(1+ Qref + β2/12)

R(1− σ 2)

η0

R
(35)

The system for theε-correction of the solution is obtained by first noticing that theε-order conservation of mas
equation (24), integrated, implies an explicit formula forṽ1

r :

rv1
r (r, z, t) = (R + η0)∂η0

∂t
+

R+η0∫
r

∂v0
z

∂z
(ξ, z, t)ξ dξ (36)

Next we focus on theε-order equations derived from (23) and linearize the nonlinear advection term around th
order approximation. We obtain an equation that is not closed due to the presence of the term∂ ˜̃p1/∂z̃. However,
since ˜̃p1 is zero at the lateral boundaryr̃ = 1 + Φ/Rη̃0, and since˜̃p1 is independent of̃r , we conclude that̃̃p1 = 0.
Thus, we obtain the following closed problem for theε correctionof the velocity, defined on the domain 0� z � L,
0� r � R + η0(z, t) written in dimensional form

∂v1
z

∂t
− ν

1

r

∂

∂r

(
r
∂v1

z

∂r

)
= −Sv1

z
(r, z, t) (37)

v1
z (0, z, t) bounded, v1

z (R + η0(z, t), z, t) = 0, v1
z (r,0, t) = v1

z (r,L, t) = 0 and v1
z (r, z,0) = 0 (38)

whereSv1
z
(r, z, t) = v1

r ∂v0
z /∂r + v0

z ∂v0
z /∂z is the linearized advection term containing the already calculated func

Hereν = µ/ρ is the kinematic viscosity coefficient. Notice that the boundary condition is evaluated at the de
boundary whoseε2-approximation is obtained in the previous step.

Theorem 4.1.The velocity field(ṽ0
z + εṽ1

z , εṽ
1
r ) and the pressure field1

ε
˜̃p0 satisfy Eqs.(23)–(27)to O(ε2).

The proof is the same as that of Proposition 7.1 in [20].

4.3. In summary

Functions{(v0
z +v1

z , v
1
r ), η

0,p}, wherev0
z , η0, p satisfy problem (31)–(35),v1

r solves (36) andv1
z solves (37), (38)

satisfy the fluid–structure interaction problem described in Section 2 to theε2-accuracy. The reduced equations h
under the following assumptions:

(i) The domain is axially symmetric with small aspect ratioε = R/L � 1;
(ii) Longitudinal displacement is negligible;

(iii) Radial displacement is not too large, i.e.,Φ/R � ε;
(iv) The initial tube radius is constant;
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(v) TheShnumber is not small, i.e.,Sh> 1, andReis medium;
(vi) The z-derivatives of the non-dimensional quantities are of order O(1).

4.4. Expansion with respect to the radial displacement

We simplify our problem further by introducing the expansions with respect to the small parameterδ := Φ/R. This
parameter measures the size of the radial displacement in non-dimensional variables:

η̃0 = η̃0,0 + δη̃0,1 + · · · , ˜̃p0 = ˜̃p0,0 + δ ˜̃p0,1 + · · · ,
ṽ0
z = ṽ0

z + δṽ0,1
z + · · · , ṽ1

z = ṽ1,0
z + · · · , ṽ1

r = ṽ1,0
r + · · ·

In dimensional variables we have

η = η0,0 + η0,1 + · · · = Φ
(
η̃0,0 + δη̃0,1 + · · ·), whereη0,0 = Φη̃0,0, η0,1 = Φδη̃0,1

vz = v0,0
z + v0,1

z + v1,0
z + · · · = V

(
ṽ0,0
z + δṽ0,1

z + εṽ1,0
z + · · ·) vr = v1,0

r + · · · = V
(
εṽ1,0

r + · · ·).
Following a similar approach as in [20] one obtains that Eqs. (31)–(35) and (36)–(38) imply the following le
order problems, written in dimensional form.

4.4.1. The zero-th order approximation
Find v

0,0
z (r, z, t), η0,0(z, t) andp0,0(z, t) such that



∂η0,0

∂t
+ 1

R

∂

∂z

R∫
0

rv0,0
z dr = 0

ρ
∂v

0,0
z

∂t
− µ

1

r

∂

∂r

(
r
∂v

0,0
z

∂r

)
= −∂p0,0

∂z
(z, t),

∂p0,0

∂z
(z, t) = Eh(1+ Qref + β2/12)

R2(1− σ 2)

∂η0,0

∂z

(39)

{
v

0,0
z (0, z, t) bounded, v

0,0
z (R, z, t) = 0, p0,0(z,0) = pref, η0,0(z,0) = v

0,0
z (r, z,0) = 0

η0,0(0, t) = P0(t)/C, η0,0(L, t) = PL(t)/C
(40)

Then recover theδ = Φ/R-correctionv0,1
z (r, z, t), η0,1(z, t) andp0,1(z, t) by solving



∂η0,1

∂t
+ 1

R

∂

∂z

R∫
0

rv0,1
z dr = − 1

R
η0,0∂η0,0

∂t

ρ
∂v

0,1
z

∂t
− µ

1

r

∂

∂r

(
r
∂v

0,1
z

∂r

)
= −∂p0,1

∂z
(z, t),

∂p0,1

∂z
(z, t) = Eh(1+ Qref + β2/12)

R2(1− σ 2)

∂η0,1

∂z

(41)


v

0,1
z (0, z, t) bounded, v

0,1
z (R, z, t) = −η0,0∂v

0,0
z

∂r
(R, z, t)

p0,1(z,0) = 0, η0,1(z,0) = v
0,1
z (r, z,0) = 0, η0,1(0, t) = η0,1(L, t) = 0

(42)

Before we state theε-correction observe that (39)–(42) can be solved efficiently by considering


∂ζ

∂t
− 1

r

∂

∂r

(
r
∂ζ

∂r

)
= 0 in (0,R) × (0,∞)

ζ(0, t) is bounded, ζ(R, t) = 0 and ζ(r,0) = 1
(43)

and the mean ofζ in the radial directionK(t) = 2
∫ R

0 ζ(r, t)r dr, which can both be evaluated in terms of the Bess
functions. Our solution can then be written in terms of the following operators

(ζ � f )(r, z, t) :=
t∫
ζ

(
r,

µ(t − τ)

ρ

)
f (z, τ )dτ, (K � f )(z, t) :=

t∫
K
(

µ(t − τ)

ρ

)
f (z, τ )dτ
0 0
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This approach will uncover the visco-elastic nature of the coupled fluid–structure interaction problem since th
ing equations will have the form of a Biot system with memory. Namely, the problem now consists of findinη0,0,
p0,0, v

0,0
z by solving the following initial-boundary value problem of Biot type with memory:


∂η0,0

∂t
(z, t) = C

2ρR

∂2(K � η0,0)

∂z2
(z, t) on (0,L) × (0,+∞)

η0,0(0, t) = P0(t)/C, η0,0(L, t) = PL(t)/C and η̃0,0(z,0) = 0

(44)

Recover∂p
0,0

∂z
(z, t) = C

∂η0,0

∂z
(z, t). Calculatev0,0

z by solving


ρ

∂v
0,0
z

∂t
− µ

1

r

∂

∂r

(
r
∂v

0,0
z

∂r

)
= −∂p0,0

∂z
(z, t)

v
0,0
z (0, z, t) bounded, v

0,0
z (R, z, t) = 0

(45)

Recover theδ-correctionη0,1, p0,1, v
0,1
z by solving the following initial-boundary value problem:


∂η0,1

∂t
(z, t) = C

2ρR

∂2(K � η0,1)

∂z2
(z, t) − Sη0,1(z, t)

η0,1(0, t) = η0,1(L, t) = 0 and η0,1(z,0) = 0

(46)

where

Sη0,1(z, t) := 1

R
η0,0∂η0,0

∂t
− R

2

∂

∂z

(
η0,0∂v

0,0
z

∂r

∣∣∣∣
r=R

)
+ 1

2R

∂

∂z

(
K �

∂

∂t

(
η0,0∂v

0,0
z

∂r

∣∣∣∣
r=R

))

Recover∂p
0,1

∂z
(z, t) = C

∂η0,1

∂z
(z, t). Calculatev0,1

z by solving




ρ
∂v

0,1
z

∂t
− µ

1

r

∂

∂r

(
r
∂v

0,1
z

∂r

)
= −∂p0,1

∂z
(z, t)

v0,1
z (0, z, t) bounded, v0,1

z (R, z, t) = −η0,0∂v
0,0
z

∂r
(R, z, t)

(47)

4.4.2. Theε-correction

Solve forv1,0
z = v

1,0
z (r, z, t) andv

1,0
r = v

1,0
r (r, z, t) by first recoveringv1,0

r via

rv1,0
r (r, z, t) = R

∂η0,0

∂t
+

R∫
r

∂v
0,0
z

∂z
(ξ, z, t)ξ dξ (48)

and then solve the following linear problem forv
1,0
z defined on(0,R) × (0,L) × (0,∞)



∂v
1,0
z

∂t
− ν

1

r

∂

∂r

(
r
∂v

1,0
z

∂r

)
= −S

v
1,0
z

(r, z, t)

v1,0
z (0, z, t) bounded, v1,0

z (R, z, t) = 0

v1,0
z (r,0, t) = v1,0

z (r,L, t) = 0 and v1,0
z (r, z,0) = 0

(49)

whereS
v

1,0
z

(r, z, t) = v
1,0
r ∂v

0,0
z /∂r + v

0,0
z ∂v

0,0
z /∂z.

Biot systems were first introduced by Biot in the 1950s [23] and derived formally from first principles in th
of porous media flows with linear elastic structure undergoing small vibrations in the seventies. We refer to [
[25] and the references therein for details. For a review of the mathematically rigorous homogenization result
to these models we refer to [26].
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5. Numerical method

First rewrite the approximations in the following way: take the derivative with respect tot of the first equation in
(39) and substitute∂v

0,0
z /∂t from the second equation to obtain

∂2η0,0

∂t2
= − 1

R

∂

∂z

R∫
0

r
∂v

0,0
z

∂t
dr = − 1

ρR

∂

∂z

R∫
0

r

(
µ

1

r

∂

∂r

(
r
∂v

0,0
z

∂r

)
− ∂

∂z

(
Cη0,0))dr

= −µ

ρ

∂

∂z

(
∂v

0,0
z

∂r

∣∣∣∣
r=R

)
+ RC

2ρ

∂2η0,0

∂z2

Therefore instead of (39), we solve the hyperbolic-parabolic system

∂2η0,0

∂t2
− CR

2ρ

∂2η0,0

∂z2
= −µ

ρ

∂

∂z

(
∂v

0,0
z

∂r

∣∣∣∣
r=R

)
(50)

ρ
∂v

0,0
z

∂t
− µ

1

r

∂

∂r

(
r
∂v

0,0
z

∂r

)
= −C

∂η0,0

∂z
(51)

with the initial and boundary conditions (40). Perform the same computation for the 0,1 approximation and replac
(41) by

∂2η0,1

∂t2
− CR

2ρ

∂2η0,1

∂z2
= −µ

ρ

∂

∂z

(
∂v

0,0
z

∂r

∣∣∣∣
r=R

)
− 1

2R

∂2

∂t2

(
η0,0)2 (52)

ρ
∂v

0,1
z

∂t
− µ

1

r

∂

∂r

(
r
∂v

0,1
z

∂r

)
= −C

∂η0,1

∂z
(53)

with initial and boundary conditions given by (42).
The approximation 1,0 is straightforward once the approximations 0,0 and 0,1 are obtained. The systems f

the 0,0 and 0,1 approximations have the same form, with the mass and stiffness matrices equal for both pr
up to the boundary conditions. Thus they are generated only once. Solve them simultaneously using a time
procedure. First solve the parabolic equation forv

0,0
z at the time stepti+1 by explicitly evaluating the right-hand sid

at the time-stepti . Then solve the wave equation forη0,0 with the evaluation of the right-hand side at the time-s
ti+1. Using these results forv0,0

z andη0,0, computed atti+1, obtain a correction atti+1 by repeating the process wi
the updated values of the right-hand sides. The numerical algorithm can be expressed:

1. Approximation 0,0:
For i = 0 tonT

(a) solve (51) atti+1 for v
0,0
z using 1D FEM with linear elements and implicit time-discretization

(b) solve (50) atti+1 for η0,0 using 1D FEM withC1 elements and implicit time-discretization
2. Approximation 0,1:

For i = 0 tonT

(a) solve (53) atti+1 for v
0,1
z using 1D FEM with linear elements and implicit time-discretization

(b) solve (52) atti+1 for η0,1 using 1D FEM withC1 elements and implicit time-discretization
3. Approximation 1,0

(a) solve (48) forv1,0
r using numerical integration

(b) solve (49) forv1,0
z using 1D FEM with linear elements and implicit time-discretization

4. Compute the total approximationvr = v
1,0
r , vz = v

0,0
z + v

0,1
z + v

1,0
z , η = η0,0 + η0,1.

In this algorithm a sequence of 1D problems is solved, so the numerical complexity is that of 1D solvers. H
leading order two-dimensional effects are captured as shown in Figs. 6 and 7.
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Fig. 3. Flow loop at the Cardiovascular Research Laboratory at the Texas Heart Institute (left), a sketch of the flow loop (middle) and a H
Left Ventricular Assist Device (right).

Fig. 3. La boucle d’écoulement simulé au Cardiovascular Research Laboratory, Texas Heart Institute (à gauche), un croquis de la bouc
ment simulé (au centre) et un HeartMate Left Ventricular Assist Device (à droite).

6. Numerical simulations and comparison with experiment

We used a mock circulatory loop to validate our mathematical flow model. Ultrasonic imaging and Dopple
ods were used to measure axial velocity of the flow. Non-dairy coffee creamer was dispersed in water to
reflection for ultrasound measurements. A high-frequency (20 MHz) single crystal probe was inserted th
catheter at several locations of the tube. In Fig. 4 right we show the results of the reading at the mid-point of

To determine the Young’s modulus of the tube wall we measured the tube diameterd at the reference pressure
84 mm Hg (d = 2.22 cm) and at the maximal pressure of 148 mm Hg (d = 2.38 cm), utilizing the linear pressur
displacement relationship (35) and the data for the tube wall thickness provided by the manufacturer of the la
Kent Elastomer Products Inc.

Fig. 3 shows the experimental set up, a sketch of the main components of the mock circulatory loop
HeartMate Left Ventricular Assist Device used as pulsatile pump, typically inserted in patients to aid the fun
the heart’s left ventricle.

6.1. Comparison

Numerical simulations were performed for the flow loop parameter values, shown in Table 1, with the me
inlet and outlet pressure data shown in Fig. 4 left. A calculation of the non-dimensional parameter values sh
our model can be used to simulate the flow conditions in the experimental set up. More precisely, for the pres
shown in Fig. 4 left, the value of the normP is around 15 000, the average magnitude of the velocityV , defined in
(21) is 0.68 m/s, the time scale parameterω = 30 s−1, and the Strouhal and Reynolds numbers defined in (28)
(29) areSh= 15,Re= 24,Sh0 = 0.5 andRe0 = 2247.

The axial component of the velocity measured at the mid-point of the tube (filtered data) was compared
numerical simulation over one cardiac cycle. The two graphs, shown in Fig. 4 on the right, show excellent ag
indicating that the mathematical model we describe in this manuscript provides a good approximation for the

Next we show the (two-dimensional) details of the simulations of the flow at four different times in the c
cycle. The subsequent figures show the radial (top subplot) and the axial (middle subplot) components of the
numerically calculated along the experimental tube superimposed over the streamlines of the flow. The c
indicate the magnitude of the velocity in m/s. The bottom subplot shows the inlet pressure data in mm Hg
red dot indicating the time in a cardiac cycle at which the corresponding snap-shots are taken. The displacem
(not the entire radius) is magnified by a factor of five to emphasize the movement of the vessel wall. Notice
radius of the tube changes as we progress in time from Fig. 5 left to Fig. 6 right. In Fig. 5 left the radius is r
that of the configurationΣε, with zero displacement and with the magnitude of the radial and axial compone
the velocity near zero. Fig. 5 right captures the forward moving wave in the structure as the velocity increas
beginning of the systole. The systolic peak is shown in Fig. 6 left. Notice the maximum displacement of the
well as the fact that the axial component of the velocity dominates the flow (radial component of the velocity
in the top subplot is zero). Finally, Fig. 6 right shows the end of systole and beginning of diastole. Notice the d
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Fig. 4. The figure on the left shows the filtered inlet (solid line) and outlet (stars) pressure data measured experimentally. The figure o
shows a comparison between the axial velocity measured experimentally (stars) and calculated numerically (solid line). The velocity is t
mid-point of the tube plotted as a function of time during one cardiac cycle.

Fig. 4. La figure à gauche montre les pressions à l’entrée (ligne solide) et à la sortie (étoiles), filtrées et mesurées expérimentalement
droite montre la comparaison entre la vitesse axiale, mesurée expérimentalement (étoiles) et calculée numériquement (ligne solide). Lee
la vitesse, prises au milieu du tuyau, sont tracées comme une fonction du temps, pendant un cycle cardiaque.

Fig. 5. The figure on the left corresponds to the snap-shot taken at diastole just before the inlet pressure begins to increase. The figure
corresponds to the snap-shot taken just before the systolic peak of the inlet pressure shown at the bottom subplot.

Fig. 5. La figure à gauche correspond à la photo prise à la diastole avant l’augmentation de la pression à l’entrée. La figure à droite corr
photo prise immédiatement avant le maximum systolique de la pression de l’entrée, montré sur sous-graph au fond.

in the radius and more pronounced secondary flows. All the figures clearly indicate two-dimensional feature
flow.

Fig. 7 right shows the radius versus tube length at the systolic peak, compared with the reference radiuR =
0.011 m. Fig. 7 left presents the numerically calculated radial displacement over 25 cardiac cycles. Notice
maximum value is just around the measured valued of 0.8 mm.
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Fig. 6. The figure on the left shows the flow at systolic peak. The figure on the right shows the flow at the beginning of diastole.

Fig. 6. La figure à gauche montre l’écoulement au maximum systolique. La figure à droite montre l’écoulement au commencement de l

Fig. 7. The left subplot shows the numerically calculated displacement at the mid-point of the tube (axially and radially) for 25 cardiac cy
right subplot shows the reference radius and the radius at the systolic peak as a function of the tube length.

Fig. 7. Le sous-graph à gauche montre le déplacement, calculé numériquement, dans le point au milieu du tuyau (par l’axe et par le ray
cycles cardiaques. Le sous-graph à droite montre le rayon de référence et le rayon au maximum systolique comme une fonction de la
tuyau.
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[20] S.Čaníc, A. Mikelić, D. Lamponi, J. Tambǎca, Self-consistent effective equations modeling blood flow in medium-to-large compliant ar

SIAM J. Multisc. Anal. Simul. 3 (2005) 559–596.
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