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Abstract

In a previous article the authors introduced a Lagrange multiplier based fictitious domain method. Their goal in the presen
article is to apply a generalization of the above method to: (i) the numerical simulation of the motion of neutrally buoyant particles
in a three-dimensional Poiseuille flow; (ii) study — via direct numerical simulations — the migration of neutrally buoyant balls in
the tube Poiseuille flow of an incompressible Newtonian viscous fluid. Simulations made with one and several particles show tha
as expected, the Segré—Silberberg effect takes plaagte this article: T.-W. Pan, R. Glowinski, C. R. Mecanique 333 (2005).
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Résumé

Simulation directe du mouvement de particules sphériques de flottabilité neutre dans un écoulement de Poiseuille tri-
dimensionnel.Dans un autre article, les auteurs ont introduit une méthode de domaine fictif avec multiplicateurs de Lagrange.
Leur objectif dans le présent article est d’appliquer une généralisation de la méthode ci-dessus a : (i) la simulation numérique ¢
mouvement de particules interagissant avec un écoulement de Poiseuille tri-dimensionnel lorsque fluide et particules ont la mér
densité ; (ii) I'étude — par simulation numérique directe — de la migration de particules sphériques interagissant avec I'écoulemer
de Poisseuille, dans un tube de section ciculaire, d’un fluide Newtonien, visqueux, incompressible, de méme densité que les pat
cules. Comme prévu, ces simulations, effectuées avec une ou plusieurs particules, mettent en evidence I'effet de Segré—Silberbe
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1. Introduction

The problem of particle motions in shear flows is crucially important in many engineering areas, such as the
handling of fluid—solid mixtures in slurries, colloids, and fluidized beds. The experiments of Segré and Silberberg [1,2]
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have had a large influence on fluid mechanics studies of migration and lift of particles. They studied the migration of

dilute suspensions of neutrally buoyant spheres in a pipe flow at Reynolds numbers between 2 and 700. The particle
migrate away from the wall and centerline and accumulate at about 0.6 of the pipe radius from the centerline. Karnis
el al. [3] verified the same phenomenon and observed that particles migrate faster for larger flow rate, closer to the
wall for larger flow rate and closer to the axis for larger rigid spheres. The ‘anomalous’ motion observed is attributed

to the nonlinear effect of inertia. Comprehensive reviews of experimental and theoretical works have been given by
Brenner [4], Cox and Mason [5], Leal [6], Feuillebois [7], and McLaughlin [8] among others.

Direct numerical simulations have been used for understanding particle motion in shear flows. Feng el al. [9] inves-
tigated the motion of neutrally buoyant and non-neutrally buoyant circular particles in plane Couette and Poiseuille
flows using a finite element method and obtained qualitative agreement with the results of perturbation theories and o
experiments. Inamuro et al. [10] used the lattice Boltzmann method to study the motions of neutrally buoyant circular
disks in a pressure driven plane Poiseuille flow. The Segré-Silberberg effect was found. They found that the equilib-
rium position of the particle is closer to the wall as the Reynolds number increases from about 12 to 96; but moves
away from the wall as either the diameter of disk or the length of the channel is increased. Pan and Glowinski have
generalized théistributed Lagrange multiplier/fictitious domain meth@l M/FD) for the numerical simulation of
particulate flow (see [11-13]) to the case where the particles are neutrally buoyant in [14] for two-dimensional flows
and confirmed via simulations that the phenomenon of collisions between particles is one of the key factors driving
particles to the central region of the plane Poiseuille flow. Concerning three-dimensional computational results, Yang
et al. [15] have recently studied the migration of a neutrally buoyant ball in a tube Poiseuille flow by using an arbitrary
Lagrangian—Eulerian moving mesh technique.

In this article, we have extended the methodology in [14] to three-dimensional flows and performed simulations
of the migration of neutrally buoyant balls in a tube Poiseuille flow. The content of this article is as follows: in
Section 2, we discuss a fictitious domain formulation of the model problem concerning the case of the neutrally
buoyant balls moving freely in a three-dimensional Poiseuille flow; then in Section 3 we discuss briefly the time and
space discretization issues, and in Section 4 we present and comment the results of numerical experiments involvin
one and five neutrally buoyant balls.

2. Afictitious domain formulation of the model problem

All the fluid—solid interactions to be considered in this article concern the flow of fluid—solid particle mixtures in
a cylindrical tube (denoted by in the sequel) with a circular cross-section. In order to take a full advantage of the
fictitious domain approach we will embddin a cylindrical tube (denoted h§) with a square cross section whose
edge length is equal to the diameter of theross-section. We will start our discussion with a one particle situation.
Therefore, let2 c R3 be a rectangular parallelepiped. We supposeshi filled with aNewtonian incompressible
viscous fluidof densityp  andviscosityu ¢) and that it contains a moving neutrally buoyant rigid partigleentered
at G = {G1, G2, G3}' of densityp, as shown in Fig. 1, which shows also the inclusion(nof the cylinderT
mentioned above; we suppose that the central axis of both cylinders is parallektpdkis. The flow is modeled by
the Navier—Stokes equationghile the particle motion is described by tBeller—Newton’s equationdVe introduce
(with dx = dx4 dx2 dx3) the following functional spaces:

Fig. 1. An example of three-dimensional flow region with one rigid body.
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Wop={vive (Hl(Q))3, v =0 on the top, bottom, front, and back &f and
v is periodic in thers direction}

L%={q|qeL2(m,/qu=0}
2

Aoty ={mlpe (Hl(B(l)))S, (m,€)pr) =0, (m, €& x (5)()30) =0,i=123]}
Ar={plpe(H 2 \T))g, u is periodic in thexs direction}

wheree; = {1,0, 0}/, e = {0, 1,0}, e3 = {0, 0, 1}/, and wherg(-, -) g (resp.,(-, -)7) is an inner product omg(r)

(resp., A7) (see [13] (Section 5) and [11] (Chapter 8) for further information on the choidg, o). Above,

and from now on, periodicity in thes direction means periodicity of perioll, L being the common length of the
truncated cylinders? andT. Then, the distributed Lagrange multiplier based fictitious domain formulation for the
flow around a freely moving neutrally buoyant particle inside a cylindrical tube reads as follows (see [11-13] for a
detailed discussion of the non-neutrally buoyant case):

Fora.es >0, findu(t) € Wo p, p(t) € L3, Va(t) €R3, G(1) e R®

() € R3, A(t) € Ag(t), A1 € A7 such that

pf/[g—t:Jr(u-V)u] 'VdX+2,bLf/D(U)ID(V)dX—/pV-VdX—()»,V>B([)—()»T,V)T
2 kos 2

1)
=,of/g~vdx+/F~vdx, Vv e Wo,p
2 2
/qV ‘u()dx=0, Vge L) (2)
2
(. u®)g,, =0, Yae Ao(t) 3)
(wr.u®), =0, VureAr (4)
dc
5 = Ve (5)
Ve(0)=Ve, w0 =0’ G0)=6=]c69 63 Gy} (6)
_ uo(x), Vxe 2\ B(0)
. O = = —_ - 7
uex, 0 = Bo() {VOG +®xG%, Vxe BO) @

In (1)—(7)u and p denotevelocityandpressurerespectively) is aLagrange multiplierassociated with relation (3)
(from (3) the fluid has a rigid body motion in the region occupiedByy)), A7 is aLagrange multiplierassociated
with relation (4) (from (4), the fluid velocity i8in £2\ T), D(v) = %(Vv+ (VVv)"), g denotegravity, F is an imposed
pressure gradienpointing in thexsz-direction inside the cylindef, V¢ is thetranslation velocityof the particleB,
ande is theangular velocityof B. We suppose that th#o-slip condition holds ord B. We also use, if necessary, the
notationg (¢) for the functionx — ¢ (X, 1).

Remark 1. The hydrodynamical forces and torque imposed on the rigid body by the fluid are built in (1)—(7) implicitly
(see [12,13] for details), thus we do not need to compute them explicitly in the simulation. Since in (1)—(7) the flow
field is defined on the entire domas®, it can be computed with a simple structured grid.

Remark 2.In (3), the rigid body motion in the region occupied by the particle is enforced via Lagrange multipliers
To recover the translation velocity () and the angular velocity (z) from u(z) satisfying (3), we solve the following
equations

(e, u(®) = Ve() — 0(t) x (S)%(z) =

(& x Gx, U(7) — Vg (1) — @(f) x 5))()

0, fori=123

8
=0, fori=123 ®

B(t)
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Remark 3. In (1)—(7), the ball is moving freely inside the cylind&r If we want to restrict the ball to move along
a line parallel and under the central axis of the cylinder and to rotate freely only with respect.tp-dkes, we
have to modify the multiplier spacaq(z) accordingly. Since we hawég = {Vy,, Vx,, Vis} ={0,0, V\,} andw =
{wx,, Oy, Wy} = {wy,, 0, 0}, the multiplier spaceto(r) becomes

3 —
Ao) = {n|pe(H(B®)), (n.e3)p1r) =0, (1, €1 x GX)pg) =0}
Via (3) we obtainV,, =0, V,, =0, w,, = 0 andw,, = 0. LetVg = {0, 0, V,;}" andw® = {w,,, 0, 0}'. To recoverv,,
andw,, from u(¢) satisfying (3), we solve the following equations
! (e3, u(r) — V& (1) — 0 (1) x &)Bm =0

e2 x B, u(r) — V&(1) — (1) x G_’)(>B<t) =0

Remark 4.In (1), 2/, D(u) : D(v) dx can be replaced by, Vu: Vvdx sinceu is divergence free and iWg, p. This
change can make the computation simpler and faster. Also the ggaivit{d) can be absorbed into the pressure term.

3. Space approximation and time discretization

Concerning the finite element basgohce approximatioof {u, p} in problem (1)—(7), we will use thBercovier—
Pironneau P1-iso- P> finite element approximation (as in Bristeau et al. [16]; see also [11] (Chapter 5)). More
precisely, withk a space discretization stepe introduce a uniform ‘tetrahedrizatioff, of £2 and a twice coarser
‘tetrahedrization’Zz,. We approximate theig p, L2(2) andLS by the following finite dimensional spaces

Won = {Vi | V) € (Co(ﬁ))3, Vilr € (P1)%, YT € Tj,, v, = 0on the top, bottom, front, and

back of§2 andv is periodic atl” in the x3 direction} (9)
L2 ={qn | qn € C%82). qulr € P1. VT € Toy) (10)
Ly, = {qh | qn e L2, fqh dx =0, g, is periodic atl” in thex3 direction} (11)

respectively; in (9)—(11)P1 is the space of the polynomials in three variables of degrde A finite dimensional
space approximatingig(?) is as follows: Iet{si}lN:l be a set of points fronB(¢z) which coverB(z) (uniformly, for
example); we define then

N
Ap(t) = {uh pyp = mS(X—E), p; €R3 Vi=1,..., N} (12)
i=1
wheres(-) is the Dirac measure at= 0. Then we shall us¢, ) g, ) defined by
N
(s Vi) By = D By - Vi(€;), Vi, € Ap(D), Vi € Woy, (13)

i=1
Then we approximateg(z) by

Aon(®) = {1 p e An@), (1, &) B, =0, (1, & x GX)p,y =0, i =1,2,3} (14)

A typical choice of points for defining (12) is to take the grid points of the velocity mesh internal to the particle
B and whose distance to the boundaryRofs greater than, e.dg./2, and to complete with selected points from the
boundary ofB(¢) (see, e.g., Fig. 2, for an example of selected points on the surfage))f As we did for A () and
(-, ) B, (1), We define the finite dimensional spade , and the inner produgt, -)7, via a set of points of the velocity
mesh internal to the regiof? \ T and whose distance to the surfaceld greater than, e.@. and a set of the points
chosen from the surface of the cylinder

Remark 5. In order to facilitate the construction of the finite dimensional spagg we slightly increased the size of
the cross section a®, replacing thus this last cylinder kiy;,. With this approach it is easier to select the collocation
points used to force the conditien= 0 outsideT (see Section 4 for more details).
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Fig. 2. An example of selected points on the boundary of the particle.

Remark 6. The inner product like bracket, -) g, 1) in (13) makes little sense for the continuous problem, but it is
meaningful for the discrete problem; it amounts to forcing the rigid body motiaBi(of via a collocation method
A similar technique has been used to enforce Dirichlet boundary conditions by Bertrand et al. [17].

Using the above finite dimensional spaces leads to the following approximation of problem (1)—(7) (where, for
notational simplicity, we still denote b2 the domain?;, introduced in Remark 5):

Fora.es >0, finduy(t) € Wou, p(t) €L3,. Vo) eR3, G(r) e R3
w(t) € R3 Xh(t) € Aou(t), A, € Ar, such that

—_— + (up - V)uh] -vdx+uf/Vuh : Vvadx
? (15)
phV vdX — (A, V) B,(1) — (AT,, V)T, = /F -vdx, YveWp
2
/qV up(t)dx=0, VgelL? (16)
2
(. un )y, , =0, Vi€ Agn(t) 17)
(kr, up@®), =0, Vpr €Az (18)
dG
= _vV 19
dr G (19)
Ve(0)=V3, w0 =0’ G0)=6"=]c6% 63 6y} (20)
Up(X,0) =t (X) (with V- Qg =0) (21)

Applying a first order operator splitting scheme a la Marchuk—Yanenko [18] (also see [11-13]) to discretize equa-
tions (15)—(21) in time, we obtain (after dropping some of the subsdrjpts

u =dg,, V, ®°, andGP are given (22)
for n > 0, knowingu”, V%, »" andG”, computeu”Jré andp"*% via the solution of
un+6 —u"
pff — A -vdx—/p”’L%V -vdx=0, Vve Wy
2 2 (23)
/qV . u"+% dx=0, Vge L,%; u"*é € Won, p"+% € L(z),h
2

2 . .
Then computes”*s via the solution of
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/‘Z—l; -vdx+/(u”+f’ls ‘V)u-vdx=0, Vve Wy, ae. Oﬂ(l",t'”l)

A o (24)
u(t") = Ut u(t) € Wo
urtE = u (L) (25)
Next, computeu’”f% and)f;:% via the solution of
3 2

pf/% -vdx+auf/Vu”+%-Vvdx

2 2

- (x'}:g,v)Th = / Frtlovdx, Yve Woy (26)

@ 3

<[LT, U"+%>Th =0, VYureArnp U"+% € Wo.n, X’;:E € Arp

Now predict the position and the translation velocity of the center of mass of the particle as follows:

4
TakeV'gLﬁ’0 =Vg and G0 = G"; then predict the new position of the particle via the following sub-cycling

and predicting—correcting technique:

Fork=1,..., N, compute

v;g—%,k _ Vrgr‘g,k—l = (Gn+é,k—l)At/2N (27)
Grtek — gntek—1 (Q'gr%’k + V’gf%’k_l)AtMN (28)
ViR SV (B (@) 1 (67 EAY) ArjaN #)
GrHek — gntak-1 (V’gr%’k + V’g’%’k_l)AtMN (30)
enddo;

+4 +3.N 4 4 5 2 vi i
andletV ® =Vg ©, G"6 =G5V, Computeu”*3 andr"*8 via the solution of

u”+?53 —u”+% 5 5
pf/T'VdX+,3Mf'/VUn+€'VVdX=<A,n+G,V) 4. YWeWo
2 2 ' (31)

4 4

5 n+d 5 5 nt+d

n+g — 6. nt+3g n+g 6
(m,u G)BH% =0, VpeAy,® utse W, Ve e Ay,

h

n+3 5 5
and then solve fo¥ 5 ® andw"*& from u"*s

n+2 ”Jr% n+2 n+4 :
(€, U6 — V5 & —w'"ts x G"Tox) H%:O, fori=1,2,3
Bh
N , 32
n+g nt2 n+3 n+32 n+ g ; (32)
(& x G"Fox, U™ — V' ® —0"tE x G"Fex) 4 =0, fori=123

h
5
Finally, takev'gl’0 = V'gr6 andG"t10 = G"+%; then predict the final position and translation velocity as follows:

Fork=1,..., N, compute

V’gl’k _ Vré+1,k—1 = (Gn+1,k—l)At/2N (33)
Gk = Gkl g (GriLk | ymibhedy oy gy (34)

V}’(l;‘l,k — Vrcl;-l,k—l + (Fr(én-i-l,k) + = (Gn+1’k_l))At/4N (35)
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GrtLk — grtlh=1 (V'gl’k + V'é+l’k_1)At/4N (36)

enddo;

5 5
and letvg = V’grl’N, G"t1l = G"tLN: and seu" 1 = u"ts, W'l = 0" T8,

In the above algorithm (22)—(36), we have™ = (n + s)At, Agj;l‘ = Ao (t"**), B)™ is the region occupied
by the particle centered &"**, andF" is a short range repulsion force which prevents the particle/particle and
particle/wall penetration (see, e.g., [12,13]). Finadlyand 8 verify « + 8 = 1; we have chosem = 1 andg = 0O for
the numerical simulations to be discussed in Section 4.

3.1. Solutions of the subproblems (23), (24), (26) and (31)

To solve thédegenerated’ quasi-Stokes probl€&8), we employed areconditioned conjugate gradientethod
introduced in [19] (see also [11] (Chapter 7)). In the above algorithm the preconditioning is achieved via the solution
at each iteration of a discrete Poisson problem; to solve this last problem we used a matrix-free fast solver fron
FISHPAK, a package due to Adams, Swarztrauber and Sweet (see [20] for details). To sqheetlalvection
problem(24), we employed thevave-like equation methatiscussed in, e.g., [21], [11] (Chapter 6) and [22]. Unlike
the two-dimensional flow investigated in [14], we have to solve here thesaddle-point problem&6) and (31). As
in, e.g., [14], we usedonjugate gradient algorithm® solve the two above problems. Actually, problems (26) and
(31) are particular cases of

a/u-vdx+u/Vu:Vvdx:/f~vdx+(l,v), Vv e Wop
2

A A (37)
(m,uy=0, VuedA; ueWyy, LeA
The conjugate gradient method for the solution of problem (37) reads as follows:
2%c Aisgiven (38)
solve
a/u°~vdx+u/Vu°:Vvdx:/f.vdx+(x°,v)
2 2 Q2 (39)
WV e Wop: ue Wo,
then solve
(@ n)=(r, 0, VYuea g®eca (40)
and set
wo =g¢° (41)
Form >0, assuming tha”, u”, w”, g” are known, computg”*+1, u"+1 wn+l gnt+l as follows:
Solve
a/l]’" ~vdx+,u/VU’” : Vvdx = (w”, v)
A A (42)
Vv e Wopn; U™ e Wop
and set
(@ k) =(r.0"), VheA g ea (43)
Then compute
pm =(g".9")/(@". W") (44)
and set
AL oWt ur Tt i, gt =g — pd” (45)
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If (g"+1, g"*t1) /(g% g% < e, then takau = u™+1. If not, compute

Yin = <gm+l, g)n—&—l)/(gm’ gm> (46)
and set
W = gy w 47)

Dom =m + 1 and go back to (42).

Remark 7. When solving the saddle point problem (31), the finite dimensional multiplier spé*gé has to verify
some constraints. Actually, the solution of the discrete variational problems (40) and (43) is achieved as follows:

(i) We observe first that both problems are particular cases of

(9. ) s = (. U) e, V€ Ag)'s g€ Ay’ (48)
(i) Next, we solve thainconstrained problem

(@ 1) s = (U)o, Vo€ AR ge AT (49)

(iii)y Then to obtaing, projectg into A”“ by findingb = {b1, b, b3}’ andc = {c1, c2, c3}’ so thatb, c andg verify

g=§—-c—bx Gx (50)
and
(9, &) gnts =0, fori=1,2,3
R (51)
(0.6 x G"*5X) guis =0, fori=1,23
h

The resulting 6x 6 linear systems are solved directly.
The procedure described in (i)—(iii) can be easily modified in order to handle the particle constrained motions

5
mentioned in Remark 3. For these cases, when solving (32) to dbgariﬁ andw"*g, one encounters a linear system
similar to the above one.

4. Numerical experiments and discussion
4.1. One ball cases

For the first series of test problems, we consider the simulation of the constrained motion of a neutrally buoyant ball
moving in a fluid filled cylinder. The ball center stays on a line paralledia, and located below the cylinder axis in
a vertical plane containing this axis; we suppose also that this ball is only allowed to rotate freely with respect to the
x1-axis as discussed in Remark 3. For (cross-)validation purposes, we will compare our results with those reported ir
[15], obtained by an arbitrary Lagrange—Euler technigue involving a moving mesh. Following Remark 5, we take for
computational domain i€ = (0,5 + 4h,) x (0,5+ 4h,) x (0, 10), with £, the space discretization step we use to
construct the flow velocity spaces. The radii®f the cylinder is 2.5 and its length is 10. The radius of the ball is
0.375, while the common value of the densities of the fluid and ball is 1. The viscosity of the fluid is 1. ThE force
(1) is a constant vector, positively oriented in the3 direction; ||F| has been chosen so that the maximum velocity
U,, of the correspondinBoiseuille flon(without patrticle) is 20 or 40. At = 0, the ball mass cent&(0) is vertically
below the cylinder axis parallel t0x3, at a distancé; from this axis which varies fron® /10 to 3R /4. We suppose
that the ball is at rest initially and that the initial fluid velocity corresponds to the one of a fully developed Poiseuille
flow whose maximal velocity/,, is either 20 or 40. We have used uniform tetrahedral meshes to approximate velocity
and pressure. The velocity (resp., pressure) mesh sizessl/20 (resp.f:, = 2h,), while the time discretization step
is At =0.001. Each case in Table 1 has been run during two time units and the reported values have been obtained b
averaging the corresponding computed values on the time-infdr8aP]. The results reported in Table 1 correspond
to U,, = 20 andU,, = 40; they are in very good agreement with those reported in [15].
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Table 1

Parameters for each computation (in columns 1, 2 and 7, 8) and comparisons (in columns 3—-6 and 9-12) between the results computed by t
methods in this article and those in [15};, is the translation velocity in th€@x3 direction andwy, is the angular velocity with respect to the

axis. The results with the superscripare from [15]

Un di/R Vg V;‘a wxy a)}‘l Un di/R Vg V;‘3 wxy a)}‘l

20 Q010 194965 19493 Q77513 078747 40 (0:K0] 389781 38398 15193 14897
20 020 188841 18881 15514 15725 40 020 377295 37424 30324 30309
20 030 178656 17862 23235 23539 40 030 356716 35618 45136 46092
20 040 164442 16439 30872 31284 40 040 328297 32833 59456 61050
20 050 146210 14616 38409 38918 40 050 291910 29159 73532 75560
20 060 123957 12388 45824 46424 40 060 247773 24763 87919 90370
20 070 973378 97052 52798 53295 40 070 195744 19534 10235 10490
20 Q75 818216 81272 55765 55710 40 075 165464 16472 10873 11028
Table 2

Parameters for each computation (in columns 1-2) and comparisons (in columns 3-8) between the results computed by the methods in this arti
and those in [15]Vx; andwy, are as in the caption of Table 1 adds the distance between the particle center of mass and the axis of the cylinder
T parallel toOx3. The results with the superscripiare from [15]

U di /R d (d/R) d* (d*/R) Vs V;‘3 wxq w;("l
20 0.2 1.51448 (0.605792) 1.5027 (0.6108) 12.2353 12.364 4.635872 4.6513
20 0.75 1.51454 (0.605816) 1.5027 (0.6108) 12.2365 12.364 4.628561 4.6513
40 0.25 1.60718 (0.642872) 1.6041 (0.64164) 22.6388 22.558 9.474327 9.6591
40 0.75 1.60644 (0.642576) 1.6041 (0.64164) 22.6496 22.558 9.484843 9.6591
x;-component of the translation velocity of the ball X,—component of the angular velocity of the ball
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Fig. 3. Histories of ther3 component of the translation velocity (left) and of thecomponent of the angular velocity (right) when the maximal
velocity Uy, is 20. The dashed line (resp., solid line) corresponds to thed:#®&e= 0.2 (resp., the cas& /R = 0.75).

For the cases where the ball is moving freely, we have chosen same set of parameters and initial conditions as
the above series of test problems, with one notable exception: namely, the initial digtdrosa the mass center of
the ball to the central axis has been limited to those given in Table 2. In Table 2 we have shown the computed values
Vy; andw,, obtained once the ball reacheseuilibrium positiorand compare them with those reported in [15]. We
observe the very good agreement between ‘our’ results and those in [15]; we observe also that the equilibrium distan
is essentially independent of the rati/ R. Assuming that theharacteristic lengths the diameter of the particle,
the particle Reynolds numbeat the equilibrium is 9.18 (resp., 16.98)lf, = 20 (resp.,U,, = 40). In Figs. 3-5 we
have shown the histories of (¥}, (ii) w,,, and (iii) of the ratiod /R, whered is the distance between the ball center
of mass and the cylinder axis parallel@x3z. As found in Karnis et al. [3], at the higher flow rate the particle moves
closer to the wall of the cylinder and that the equilibrium position of the particle is reached faster, as shown in Fig. 5.
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X;—component of the translation velocity of the ball X,-component of the angular velocity of the ball
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Fig. 4. Histories of thecg component of the translation velocity (left) and of thecomponent of the angular velocity (right) when the maximal
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velocity Uy, is 40. The dashed line (resp., solid line) corresponds to thed;@®&e= 0.25 (resp., the casé /R = 0.75).

The ratio between the distance to the central axis and the radius of the tube

The ratio between the distance to the central axis and the radius of the tube
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Fig. 5. Histories of the ratio of /R for U,, = 20 (left) andU,, = 40 (right) for the freely moving neutrally buoyant ball.

For the velocity (resp., pressure) mesh sizg,is= 1/20 (resp.), = 2h,), the number of velocity (resp., pressure)
nodes is about.26 x 10P (resp., 270,440). The typical memory size for one test case is of the order of 320 Megabytes
and it takes about 112 sec./time step on a 1.6 GHz AMD Athlon CPU.

Remark 8. IncreasingL (L = 10 here) will not significantly modify the distance to the cylinder axis that the ball
reaches as — oo (for this range of particle Reynolds numbers, at least). As shown in previous calculations, our
methodology can simulate particulate flow at larger particulate Reynolds numbers, but it will require d.largr
smallers, andrn,. Incidentally, for the case of one freely moving ball with), = 20, the tube Reynolds number is
61.2 taking the tube diameter as characteristic distance and the ball translation speed as characteristic velocity.

4.2. Five ball case

For this test case, we have considered the simulation of five neutrally buoyant balls moving ‘freely’ in a tube
Poiseuille flow. Most parameters and initial conditions are as in the one ball situations discussed in Section 4.1, the
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Fig. 6. Histories of the distances from the mass centers of the five balls to the central axis (left) and trajectories of the five balls viewed in the
direction of theOx3-axis (right). In the right picture, the symbo}-' indicates the end of each ball center trajectory.

Fig. 7. Relative position of the five balls in the tube at 65.

only differences being: (iJ/,, whose value is 20, here; and (ii) the initial position of the balls, which-al0 have

their centers of mass located at the vertices of a regular pentagon contained in a plan orthogonglthe five
particle have all their centers of mass located at the distar¥&Rdrom the axis ofT parallel to Oxz. As shown

in Figs. 6 and 7, the five balls move closer to the cylinder axis and stabilize at a distance to the axis of the cylinde
of the order of 0.585. On the other hand the initial co-planar configuration is lost, as shown in Fig. 7. Actually, we
observe that the balls do not collide and, that, once they have reached their ‘equilibrium’ distance to the center of th
cylinder, they rotate at an uniform velocity, the center of mass of each particle describing thus a kind of helicoid in the
tubeT. The average velocity is of the order of 12.6 for€@ < 65, implying thus that the averaged particle Reynolds
number is about 9.45 (taking again the particle diameter as characteristic length). The side and front views of the fiv
ball positions at = 65 are shown in Fig. 7.

5. Conclusion

In [14] we developed a distributed Lagrange multiplier based fictitious domain method for simulating the motion
of neutrally buoyant particles in pressure driven two-dimensional channel flow. In this article, we have generalizec
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the above methodology so that it can handle three-dimensional variants of the particulate flow considered in [14].
For those test problems involving only one neutrally buoyant particle moving in a fluid filled cylinder, the numerical
results are in very good agreement with the results reported in [15], which were obtained using an Arbitrary Euler—
Lagrange method with moving mesh. In a near future, we will apply this methodology to cases involving particles
with a more complicated shape, such as ellipsoids and cylinders.
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