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Abstract

We investigate the behavior of fluid—particle mixtures subject to shear stress, by mean of direct simulation. This approach is
meant to give some hints to explain the influence of interacting red cells on the global behavior of the blood. We concentrate on the
apparent viscosity, which we define as a macroscopic quantity which characterizes the resistance of a mixture against externall
imposed shear motion. Our main purpose is to explain the non-monotonous variations of this apparent viscosity when a mixture
of fluid and interacting particles is submitted to shear stress during a certain time interval. Our analysis of these variations is
based on preliminary theoretical remarks, and some computations for some well-chosen static configloaiitatbis article:
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Résumé

Viscosité apparente d'un mélange de fluide Newtonien et de particules en interactioNous présentons une étude du com-
portement global d’'un mélange de fluide newtonien et de particules rigides par la simulation directe. Cette approche apporte de
éléments d’analyse de l'influence d’'inclusions rigides en interaction (comme dans le cas des globules rouges dans le sang) sur |
comportement global du mélange complexe. Nous nous sommes concentrés ici sur la viscosité apparente, que nous définisso
comme une quantité macroscopique qui caractérise la résistance d’un fluide complexe a un mouvement de cisaillement impos
Notre objectif principal est d’expliquer les variations non monotones de cette viscosité apparente au cours du temps, lorsque le
particules interagissent. Notre analyse se base sur des remarques théoriques préliminaires et sur un certain nombre de calculs
cette viscosité pour des configurations représentaffges.citer cet article: A. Lefebvre, B. Maury, C. R. Mecanique 333 (2005).
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1. Introduction

The viscosity of a diluted suspension can be estimated from the exact solution to the Stokes equations for a single
particle in an infinite fluid domain (this approach dates back to Einstein [1] in 1906). In many situations, e.g. red
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cells in the blood, the dilution assumption is no longer valid, and inclusions are likely to interact with each other in a
complex way. Under some assumptions the behaviour of neighbouring particles can be described by mean of analy!
expressions or asymptotic development. See e.g. [2] where the motion of two spheres in a shear flow is describe
More recently, Stokesian Dynamics has been applied to compute the motion of spheres in a linear Stokes flow fc
particular geometries (see [3,4]). But the overall behaviour of nonhomogeneous, many-body mixtures under gener
shear conditions calls for the use of direct numerical methods.

As a consequence, direct simulation of fluid—particle mixtures motivated a great amount of research during the
last decade. Some authors, like Glowinski (see [5,6]) use a Cartesian mesh which covers the overall computation
domain, and the rigid motion is taken into account by a Lagrange multiplier. The other class of approaches relies on
moving mesh which follows the geometry of the fluid domain. This approach has been followed by [7-9].

The present work is based on this second approach, which we think is more adapted to shear flow of highl
concentrated suspension, as the presence of a (possibly) fine mesh which covers interparticle gaps makes it possibl
compute accurately in these high stress regions. Moreover, integrating the degrees of freedom for the particles into tl
finite element space allows to compute highly viscous flows with unconditional stability, whereas other methods whict
decouple fluid and particles are more adapted to situations where inertia (at least inertia of the rigid bodies) plays
significant role. Although the numerical approach we follow would make it possible to handle Navier—Stokes flows
and general geometries, we chose to limit ourselves here to Stokes flow, in order to show how a globally nonlines
behaviour can be recovered even though the instantaneous fluid model is itself linear.

2. Continuous model

We consider a rectangular domdinfilled with a mixture of a Newtonian fluid anN rigid particles. The viscosity
of the fluid is denoted by. All particles are circular, and their common radius.i$Ve denote by; the force exerted
on particlei. We shall consider the situation whefgis a sum of forces exerted by the other particles. The mixture
domaing? is a rectangle @ x L (see Fig. 1). The flow is periodic in thedirection. Left and right walls are supposed
to move vertically with velocities-Upe, and+Uope,, respectively. Origin of the reference frarge y) is set on the
centerline.

Let X; = X;(¢) be the center of particle We denote the fluid domain by

N
2r =2\ | JBX®.»

i=1

The surrounding fluid is supposed to obey the incompressible Stokes equations in the moving fluids@dgngin

—uAu+Vp=0
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Fig. 1. Notations.
Fig. 1. Notations.
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while equilibrium of the particles at each time gives

/O’-HZF,‘

I
2)
/ rixo-n=0
I
wherer; is the position vector relatively to the cendér of particlei, ando the stress tensor{ s the identity matrix)
o =u(Vu+'vu) — plg 3
The no-slip conditions on the particles surface (denotedlgs) for theith particle) are
uxX)=V;4+w; xr; onrl;forl<i<N (4)

whereV; is the translational velocity of particieandw; is the angular velocity of particle
We shall denote by = (V1,...,Vy) andw = (w1, ..., wy) the vectors corresponding to the translational and
rotational degrees of freedom. L&t= (X41,..., Xy) be given. Denoting b)Hﬁl(QF) the set of all those fields in

HY($2r) which are periodic in the vertical direction, we introduce the space
M={U=@uV,0)=U,V1,....,Vy,01,...,0y) such thau € H}(2r)%, V; e R? w; €R,
u(x) =Vi+w; xr; onI;, u|r,=—Uoey, U= Uoey}
and its homogeneous counterpatts (spacell for Up = 0). The instantaneous variational formulation reads
FindU = (u,V, w) € IT and pe L3($2F) such that:

N
%/(Vu+’Vu):(VG+’VG)—/pV-G—Z\N/i-F,~=O, vU = (0,V,®) € o
O Or i=1 (5)

/r)v-u=0 VP e L3(2F)
QF

WhereLg(.QF) is the set of.2 functions with zero mean value ov&r.
The velocity fieldU = (u, V, w) is also the unique solution to the following constrained minimization problem:

N
Minimize J (W) = % / YW+ VW2 =Y - F
o i=1 ©)

over gy = {W = (W, Y, ) € IT such thatv - w=0in 25}

Note that, as we neglect inertia, the evolution problem for the particles can be written as a system of ordinary differ-
ential equationsX =V (X), where the mappinX — V(X) is the particle part of the solution to problem (5).

2.1. Apparent viscosity

The notion of apparent viscosity on which we shall base our approach corresponds to what is actually measured b
most viscosimeters. It is defined as follows: we consider the pure Couette flow of an homogeneous fluid of yiscosity
under the same conditions. For a certain valug athe vertical forces exerted on the walls are identical to the forces
exerted by the actual mixture. The apparent viscosity is defined as this very value.

The vertical components of those forces exerted on the walls are:

Fz=fey~o~ex and F,:/ey.g.(_ex)
I T,
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In case of a Newtonian fluid, the exact solutian p) being

X
U(X, y) = UOEey

p(x,y) =0
we haveFy=F; — F, = ZM%L. The apparent viscosity can therefore be expressed as
Happ= 2L Fo whereFy = / € -0 -6 (7
,JUr;

3. Theoretical considerations
We summarize here some simple properties of the apparent viscosity which are direct consequences of its definitio
3.1. Passive particles

We suppose in this section that there are no forces exerted on the particles. In this case, there is an equivale
expression for the apparent viscosity, which relates to dissipated energy. We multiply momentum equatian (1) by
and integrate it ovef2. Integration by parts gives

%/|Vu+’Vu|2= / U-(o-n)=UoFo
rur,

so that

Ha t 2
= —F Vu+'Vu
Happ 4LU02/| |
2

which is proportional to the functional whialn minimizes (see formulation (6)). As a consequence, if we consider
two sets of particles, the second one being larger in the sense that it covers the first one, there are obviously mo
constraints in the second one, and the minimum of the functional is larger. Finally, in accordance with intuition, if
there are no forces, apparent viscosity increases when particules are added. As we shall see, it does not mean that
apparent viscosity is an increasing function of the solid fraction.

3.2. Non-zero forces

These considerations are no longer valid if we consider a system of particles submitted to forces. In that case
apparent viscosity may either increase or decrease with the intensity of the forces. Indeed, the energy balance nc
takes into account the action of these forces and the apparent viscosity expresses

Vu+'vul? —
AT 772 /' 2
4LU U

In order to investigate the variations of this quantity with respeEtaodUp, we separate their respective contributions
to the solutiorlJ. Let us denote by® = (u%, VO, »?) the solution to problem (5) with = 0 andUg = 1, and byU* =
Wf,VF, o) the solution to the same problem withy = 0. By linearity of the problem, it holdsl = UgU° + UF.
Using this expression fdd as well as the variational formulations fof andU*, we obtain another expression for
the apparent viscosity:

wa 2 a a
Mapp:E/|Vu0+’Vuo| —TUOZV?-F,':/LO—TUO V?F, (8)

Mapp=

Note thatu© is the apparent viscosity in the caSe= 0. It does not depend dio.
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Fig. 2. Opposite effects of an attractive force upapp depending on the configuration.
Fig. 2. Effets opposés d’'une force attractive gdpp, selon la configuration.

The influence of interaction (or external) forces is expressed by the scalar p@dﬂ?zt F;, whose sign depends
on the configuration only. Fig. 2 illustrates this alternative. We consider two particles submitted to an attractive force.
In the first case (on the left in Fig. 2), the forces tend to increase the apparent viscosity, whereas they make it decreas
in the other case. In some situations, the apparent viscosity might even become negative, as can be checked for tt
second configuration if we have the force modulus go to infinity.

Another direct consequence of expression (8) is that, when the forces tend to incigasieen iapp is a decreas-
ing function ofUg (for a fixed force field).

We shall finish this section by considering another situation where the dependence of the apparent viscosity with
respect to attractive forces is predictable. Suppose all interparticle forces derive from a convex potential of their
distances:

Fi=) Fji. Fji=—kV¥ (D))
J#i
Consider now a static, stable configuration, corresponding to an equilibrium of the system of particles in a quiescent
fluid. This means that the configuration minimizes the global potential energy

E= g > w(Di))
J#
over the set of feasible configuration (i.e. configurations with no overlapping). In this situation, any feasible\fotion
(i.e. any motion which respects the non-overlapping constraints) of the set of particles has non-negative scalar produc
with the gradient ofz, i.e.V - F < 0. As the actual velocity fielt/? is itself necessarily feasible, we are in a situation
where forces tend to increase the apparent viscosity.

4. Numerical strategy

Our approach is based on a direct discretization of spack is thoroughly described in [9], and we shall simply
indicate here the main features of the method we use:

(i) the computation is performed on a mesh which is itself periodic, so that periodicity is taken into account in a
strong way;
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Fig. 3. Zoom of the mesh.
Fig. 3. Détail du maillage.

(i) a structured, thin, layer of elements is added around each particle, in order to ensure an accurate computatic
of lubrication forces. Furthermore, the global mesh is coarser far away from the particles, where the velocity
gradients are expected to be smaller (see Fig. 3);

(i) the degrees of freedom associated to the particles are integrated within the discretization space for the velocity
so that we end up with a standard symmetric positive definite stiffness matrix;

(iv) for non-stationary computation, as the fluid domain is likely to undergo large deformation, the mesh has to be
regenerated from time to time. For Navier—Stokes flow, a projection of the velocity from the old mesh onto the

new one is necessary. As for the computations which are presented here, this step is not necessary, because
neglect inertia.

We must add a few comments concerning the problem of particles getting close to each other. It is especiall
sensitive in the situation we consider, as we add attractive forces between particles, and those forces tend to p
particles in contact. Different strategies have been used to overcome this problem. Some authors add a short-ran
repulsive force between neighbouring particles (see Glowinski [5], Singh [13]). Another strategy consists in refining
the mesh in the neighbourhood of the interparticle gap (see Hu [8]). The latter approach is justified by the following
considerations, which applies to particles with a mass, and a fortiori to particles with no mass. Considering two smoot
spheres in a viscous fluid, approaching each other at veldgcitheres is the distance, the lubrication force (which
acts on both spheres with opposite directions) is known to be of éydgisee Kim [10]). Therefore, if we denote by
F the modulus of a force which tend to approach them, the distanbeys an equation like

F=—-+F
&

so thate can be checked easily to remain positive, as soo# & bounded (or even locally integrable in time).

Consequently, particles can be expected to avoid actual contact if the computation respects the physical model. E
periments suggest that the global behaviour of the mixture is not too sensitive to what is done at the local level, a
far as reasonably diluted suspensions are concerned. Nevertheless, for high concentrations (say, solid fractions ab
50%), lubrication forces begin to play a crucial role in the overall behaviour. We chose here to use a fine mesh ir
the neighbourhood of the particles. Nevertheless, as interaction forces tend to put particles in contact, which woul
imply a breakdown of the computation (if particle boundary intersect, a new mesh cannot be generated), we perforr

a projection-like step which ensures that interparticle distances are larger than a given parafieieheuristic
procedure is described in [9].
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5. Numerical experiments
5.1. Passive particles

This section presents results concerning the apparent viscosity of some mixtures when there is no interaction force:s

We first consider configurations with ‘uniform’ distribution of the particles where the minimal distance between
the particles is bounded away from zero, and we plot apparent viscosity with respect to the solid fraction. By uniform
distribution we mean the following: in a first step, particles centers are disposed randomly (according to a uniform law)
in the computational domain, and a relative overlap (corresponding to 25% of the diameter) is tolerated, which mean:
that if a new particle violates this condition, it is not created. In a second step, particles are swept away from each othe
according to the very same procedure which is used at each time step to ensure a minimal distance between particle
This correction can be thought of as a projection onto the set of feasible configurations, i.e. such that the minimal
distance between particles is greater than a prescribed yaNete that a procedure based on a simple exclusion of

app

1 L L L L L L @
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Fig. 4. Apparent viscosity with respect to solid fraction for uniform distributions.
Fig. 4. Viscosité apparente en fonction de la fraction solide pour des distributions uniformes.
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Fig. 5. Apparent viscosities 2.0, 2.45, 1.62, and 6.54.
Fig. 5. Viscosités apparentes 2,0, 2,45, 1,62, et 6,54.
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Fig. 6. Apparent viscosityersus time.
Fig. 6. Viscosité apparente en fonction du temps.

any overlap excludes the creation of solid fractions above 45%, whereas the acceptance of a certain amount of initi
overlapping makes it possible to reach more than 60%.

We recover the fact (see Fig. 4) that apparent viscosity increases with respect to solid fraction and tends to blo
up as this fraction approaches its maximal value (see [11]). For higher solid fraction, the lubrication forces betweel
particles play an increasing role, the dependenqesgf upon solid fraction has to be investigated more carefully.

The next set of results (Fig. 5) illustrates the fact that apparent viscosity is not a monotonous function of the solic
fraction as soon as non-uniform distributions are considered. To that purpose, we considered non-uniform distributior
with the same solid fraction (25%), but with different overall distributions. We computed the apparent viscosity in 4
cases. Firstly, the distribution is uniform, in the sense indicated in the beginning of this section, and mgfiac.

The second computation corresponds to an aggregate. The apparent viscosity is found to be gteatarh{2h
illustrates the well-known fact that, in general, non-uniformity tends to increase the viscosity. The third computation
indicates that the opposite behaviour is observed for some special types of aggregates. Indeed, when the partic
are located in the neighbourhood of the centerline, the computed viscosity is found to be lower than in the twc
previous casesulpp = 1.62), which can be explained by the presence of two ‘empty’ zones in the neighbourhood
of the walls. Note that the apparent viscosity would be almost the same if the cloud of particles were replaced by
a rigid body covering the same zone. In this situation the apparent viscosity is therefore quite stable with respec
to small perturbations of the particle distribution. In the 4th case, we built a bridge of particles between the two
walls. The situation is now completely different, as the shear necessarily induces a deformation of the agglomerate
particles. These deformations are expensive from the energetic point of view because all particles are close to the
neighbours, so that lubrication forces act against the deformation. In this case, the apparent viscosity is very sensiti
to infinitesimal transformations of the configuration. We ran a 5th computation by tuning up the minimal distance
parameter to 15% of the particle radius (whereas it is 5% for configuration 4). We did not represent the configuration
as it cannot be distinguished from configuration 4. The apparent viscosity dropped dow? tiaBbe compared

to 6.54 for the apparently identical situation). This type of situation has been investigated by Berlyand [12], from a
theoretical point of view, but we are not yet able to perform quantitative comparisons between the computations an
their results.
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Fig. 7. Configurations (1) to (6).
Fig. 7. Configurations (1) a (6).

5.2. Case with interaction forces

We compute here the evolution of a mixture of fluid and 150 interacting particles. The interaction force between
particles is attractive:

: 0.1
if dij < 20r thenF,-j = d_3 eIseF,»j =0,
ij
and geometrical parameters are 0.02,L = 2,a = 1/2. The time step is chosen such that the largest displacement of
a particle between two time iterates is 20% of the radild/e prescribed the following shear history: at the beginning
(from time label (1) to time label (2) on Fig. 6)jo = 1; then from (2) to (6), it is set to 50; and finally, from (6) to

point (12), it is set back to 1.
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Fig. 8. Configurations (7) to (12).
Fig. 8. Configurations (7) a (12).

The first curve of Fig. 6 plots the apparent viscosity with respect to the time. We plotted a second curve to exhibit
the part of geometrical parameters in the overall apparent viscosity. This second curve (dotted line) correspond to tt
apparent viscosity associated to the current configuration, as if there were no interaction forces. As previously, w
shall denote this latter quantity y° (see Section 3.2). The configurations corresponding to time labels from (1) to
(12) are represented in Figs. 7 and 8.

— From(1) to (2), the configuration is close to a minimum of the potential energy. According to the remark which
was made at the end of Section 3.2, the apparent viscosity is greater than if there were no forces.

— From (2) to (6), the velocity is much larger. As a consequence, the forces have a very small impact on the
instantaneous apparent viscosity (see expression (8))uapds close tou?. During this period of time, the
aggregate is pulled apart by shear forces and the configuration becomes closer to the uniform distribution, whic
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explains the fact that® decreases (see Fig. 5, cases 1 and 2), and sadggsThe slight increase of bottaapp
andu? between (5) and (6) can be explained by the fact that particles begin to reaggregate.

— From (6) to (12), the velocity is set back to a smaller value, so that shear forces are dominated by attraction forces
and particules tend to aggregate again, which induces an overall increageTdfe behaviour ofiapp is more
complicated, because of the effect which was illustrated by Fig. 2. We can obseryadpatgins to decrease
and becomes lower thau® between (8) and (10), which means that the corresponding configurations are such
that the scalar product in Eq. (8) is positive. Thegincreases while particles aggregate again and go closer to
a minimum of the interaction energy.

6. Conclusion

We presented a numerical approach to investigate the complex dependence of the apparent viscosity of an activ
fluid—particle mixture upon geometrical distribution and interactions forces. The tool we developed provides what
those simulations necessitate at a reasonable computational cost: an accurate description of close-range particle int
actions, and the ability to deal with periodic geometries in order to perform long time simulations at constant solid
fraction.

We show how non-monotonous variations of the apparent viscosity can be explained by a competition between
geometrical effects (global properties of the particle distribution and local ‘closeness’ of particles) and interactions
forces. The approach we propose extends straightforwardly to more general situations: Navier—Stokes flows, domain
with curved boundaries, non-circular particles.
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