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Abstract

The flow at high Reynolds number in a two-dimensional channel whose walls are slightly deformed is considered. T
addresses the problem of constructing a uniformly valid approximation leading to a better understanding of two-dim
steady laminar incompressible separated flow. It is proposed to use a new asymptotic approach: the Successive Com
Expansions Method (SCEM). The starting point is an assumed form of the approximation. The matching principle is a by
of the method not at all necessary to construct the uniformly valid approximation.To cite this article: J. Mauss et al., C. R.
Mecanique 334 (2006).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Approximation valable uniformément pour l’écoulement dans un canal. On considère l’écoulement à grand nombre
Reynolds dans un canal bidimensionnel dont les parois sont légèrement déformées. Cette étude est liée à la constructio
proximation uniformément valable de la solution conduisant à une meilleure compréhension de la séparation pour des éc
laminaires de fluides visqueux incompressibles. On propose d’utiliser une nouvelle approche asymptotique appelée
des approximations successives complémentaires » dont l’acronyme est MASC. Le point de départ est une forme su
l’approximation conduisant à l’utilisation d’un développement asymptotique généralisé. La méthode des développemen
totiques raccordés devient une conséquence de la MASC et le principe du raccordement n’est plus nécessaire dans ce
Pour citer cet article : J. Mauss et al., C. R. Mecanique 334 (2006).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

We consider a laminar steady two-dimensional flow of an incompressible Newtonian fluid in a channel
Reynolds number. When small perturbations, e.g. indentations, are placed on the walls, adverse pressure
are generated and separation can occur. The analysis of the flow structure has been done essentially by
Later, a systematic asymptotic analysis has been performed by Mauss and Cousteix [2] and Saintlos and M
An extensive analysis of the triple deck structure can be found in Sobey [4]. With the SCEM, we assume a un
valid approximation (UVA) based on generalised expansions. This method developed by Cousteix and Maus
been used by Dechaume et al. [6].

2. Formulation

If the characteristic length, velocity and pressure are chosen respectively ash, U0 andρU2
0 , the dimensionles

equations can be written

�V · grad�V = −−−−→
gradΠ + 1

Re
� �V , div �V = 0 (1)

where �V is the velocity,Π the pressure andRethe Reynolds number.
If (v(x), v(y)) and(x, y) are respectively the longitudinal and transverse velocity components and coordinat

basic plane Poiseuille flow can be written,

v(x) = u0 = y − y2, v(y) = 0, Π = Π0 = −2x

Re
+ p0

where,p0 being a constant pressure, the characteristic velocityU0 is linked to the basic pressure gradient or flow r
by,

U0 = − h2

2η0

∂Π∗
0

∂x∗
= 6

Q∗

Lh

The flow is perturbed, for instance, by indentations such as,

y = εF (x, ε) and y = 1− εG(x, ε) (2)

whereε is a small parameter. If we seek a solution in the form,

v(x) = u0(y) + εau(x, y, ε), v(y) = εav(x, y, ε), Π − p0 = −2x

Re
+ εbp(x, y, ε) (3)

wherea andb are yet undetermined, we obtain the equations,

ux + vy = 0 (4a)

Lεu = εa(uux + vuy) + u0ux + u′
0v + εb−apx − 1

Re
�u = 0 (4b)

Lεv = εa(uvx + vvy) + u0vx + εb−apy − 1

Re
�v = 0 (4c)

The operatorsLεu andLεv denote respectively thex- andy-momentum equations.
It is clear that, for high Reynolds numbers, the reduced equations are of first order leading to a singular pert

In the core flow, we are looking for approximations coming from asymptotic generalised expansions such tha

u = u1(x, y, ε) + · · · , v = v1(x, y, ε) + · · · , p = p1(x, y, ε) + · · · (5)

With the SCEM, no generality is lost by takinga = b. Formally neglecting terms of the order O(εa,1/Re) , we obtain
the equations,

u1x + v1y = 0 (6a)

u0u1x + u′ v1 = −p1x, u0v1x = −p1y (6b)
0
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It is very interesting to observe the singular behaviour of the solution of (6) as we approach the bounda
instance, wheny → 0, we obtain,

u1 = −2p10 lny + c10 + · · ·
v1 = −p10x + 2p10xy lny − y(2p10x + c10x) + · · ·

p1 = p10 + y2

2
p10xx + · · ·

(7)

Similar results are obtained when(1− y) → 0. In (7),p10 andc10 are functions ofx andε.

3. The uniformly valid approximation

In order to fulfil the no-slip condition at the walls, boundary layer variables are required,

Y = y

ε
and Y ∗ = 1− y

ε
(8)

As in the boundary layers,u0 = O(ε), we have to choosea = 1 in order to be able to describe separated flows. T
following the SCEM, the approximation already obtained in the core flow is complemented as follows,

u = U1(x,Y, ε) + U∗
1 (x,Y ∗, ε) + u1(x, y, ε)

v = εV1(x,Y, ε) − εV ∗
1 (x,Y ∗, ε) + v1(x, y, ε)

p = ∆(ε)P1(x,Y, ε) + ∆(ε)P ∗
1 (x,Y ∗, ε) + p1(x, y, ε)

(9)

Here, the triplet(u, v,p) is no longer the exact solution of the problem but only an approximation. For instance
boundary conditions are fulfilled, from (4b) and (4c),Lεu andLεv are not zero but must be small, in a sense.

The gauge function∆(ε) is not yet known. Finally, thev-approximation comes from the continuity equations,

U1x + V1Y = 0, U∗
1x + V ∗

1Y ∗ = 0 (10)

It is clear that we can write,

(U1,V1,P1) → 0 whenY → ∞
(U∗

1 ,V ∗
1 ,P ∗

1 ) → 0 whenY ∗ → ∞
Moreover, boundary conditions must be written, on the lower and upper boundaries given byY = F(x, ε) andY ∗ =
G(x, ε),

u0 + εu = 0, v = 0 (11)

For instance, with our approximation, we can write on the lower boundary,

u0 + εU1 + εu1 = 0, εV1 + v1 = 0

It must be kept in mind that, wheny tends to 0 or 1, each termu1 andv1 or their derivatives are singular, which is n
the case foru andv. Thus, this channel flow shows clearly the interest of the SCEM.

Assuming that 1/Re= o(ε), it can be interesting to refine the approximation of the core equations. The con
equation keeping the same form, we have then,

u0u1x + u′
0v1 + ε(u1u1x + v1u1y) = −p1x

u0v1x + ε(u1v1x + v1v1y) = −p1y
(12)

4. The lower interactive boundary layer model

To obtain the interactive boundary layer for the lower boundary and the core flow, we set

u = U1(x,Y, ε) + u1(x, y, ε)

v = εV1(x,Y, ε) + v1(x, y, ε)

p = ∆(ε)P1(x,Y, ε) + p1(x, y, ε)
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where, for the sake of simplicity, the same notation(u, v,p) as for the preceding UVA has been used. The tri
(u1, v1,p1) comes from the core approximation. In order to have inertia terms of the same order of magnitud
viscous terms, we takeRe= 1

k
ε−3, wherek is, as we shall see, a useful normalisation factor. From (4b) and (4c

(12), we obtain the equations,

(U1 + u1)U1x +
(

V1 + v1

ε

)
U1Y + U1u1x + u0

ε
U1x + u′

0V1 + εV1u1y

= −∆

ε
P1x + k(U1YY + ε2u1yy) + O(kε2)

(U1 + u1)V1x +
(

V1 + v1

ε

)
V1Y + U1

v1x

ε
+ V1v1y + u0

ε
V1x = − ∆

ε3
P1Y + k(V1YY + εv1yy) + O(kε)

From the second equation, we are led to take∆(ε) = ε3. Then, neglecting terms O(ε2), the first equation becomes

(U1 + u1)U1x +
(

V1 + v1

ε

)
U1Y + U1u1x + u0

ε
U1x + u′

0V1 + εV1u1y = k(U1YY + ε2u1yy)

The second equation enables us to calculate the transverse pressure gradientPY as soon as the velocity field is know

(U1 + u1)V1x +
(

V1 + v1

ε

)
V1Y + v1x

ε
U1 + V1v1y + u0

ε
V1x = −P1Y + k(V1YY + εv1yy)

Now, as the behaviour of the core flow is singular wheny → 0, with the preceding definitions of (u, v, p), it is better
to write the momentum equations in the form

ε(uux + vuy) + u0ux + u′
0v = −p1x + kε3uyy (13)

ε(uvx + vvy) + u0vx = −py + kε3vyy (14)

5. The global interactive boundary layer model

The generalised asymptotic expansions for the velocity are given by,

v(x) = u0(y) + εu(x, y, ε) + · · · , v(y) = εv(x, y, ε) + · · · (15)

The problem we have to solve is the continuity equationux + vy = 0 together with Eq. (13). However, now, we ha
to solve simultaneously the continuity equation (6a) and the core equations (12) or (6b) depending on the
desired.

The same form as Prandtl’s equations is recovered if we let

U = u0 + εu, V = εv, Πx = −2kε3 + εp1x

leading to,

Ux + Vy = 0 (16a)

UUx + V Uy = −Πx + kε3Uyy (16b)

The boundary conditions are now,U = V = 0 on the walls.
As we have four conditions, it is clear that the pressure gradient must be adjusted in order to ensure the glo

flow conservation in the channel.
In addition, in a first approximation, the pressure must satisfy the equation

�p1 − 2
u′

0

u0
p1y = 0 (17)

To ensure the link between pressure and velocity in the core flow it is necessary that, from (6b), in this region

u0v1x = −p1y (18)

For this problem,
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ust be
Lεu = (px − p1x) − kε3Uxx and Lεv = −kε3Vxx

It must be kept in mind that(px − p1x) is a boundary layer term, small in the core flow.
It is why we call it ‘global interactive boundary layer model’ (GIBL).

6. Regular asymptotic analysis of GIBL

For regular expansions, we have to write the hump equations more precisely,

y = εF (xεα) and, y = 1− εG(xεα)

whereα is the searched longitudinal perturbation giving possibly separation. Ask may depend onα our aim is to find
these two unknowns in such a way that we get a significant wall deformation to ensure the possibility of sepa

We introduce the variable

X = xεα (19)

With

u = u∗(X,y, ε), v = εαv∗(X,y, ε), p1 = p∗(X,y, ε)

the continuity equation isu∗
X + v∗

y = 0, and the longitudinal equation becomes,

ε(u∗u∗
X + v∗u∗

y) + u0u
∗
X + u′

0v
∗ = −p∗

X + kε3−αu∗
yy (20)

The pressure equation becomes

ε2αp∗
XX + p∗

yy − 2
u′

0

u0
p∗

y = 0

showing that, using regular expansions,α � 0. We have also, in the core flow

u0v
∗
X = −ε−2αp∗

y

Forα > 0, in studying both the core flow and the boundary layer, we easily find,

p∗ = ε�P(X) + εβ+2αA′′(X)

30
(6y5 − 15y4 + 10y3) + · · · (21)

u∗ = εβA(X)u′
0 + · · · and v∗ = −εβA′(X)u0 + · · · (22)

whereβ is not known andA(X) is the displacement function. It is noted that (22) is a first order solution to Eq
valid in the core flow.

In the lower boundary, to obtain a significant longitudinal equation, the first order regular approximation m
written,

u∗ = �U(X,Y ) + · · · , v∗ = ε�V (X,Y ) + · · · , p∗ = ε�P(X) + · · · (23)

giving the equations,

�UX + �VY = 0

Y �UX + �V + �U �UX + �V �UY = −�PX + �UYY

(24)

With k = εα . The Reynolds number is writtenRe= ε−3−α .
We thus obtain three cases forα > 0 which can be also classified with the slope of the indentationδ = ε1+α . This

can be written,

ε = Re−1/(3+α) or δ = Re−(1+α)/(3+α)

1) α > 1
2 or δ � Re−3/7.

In that case,β = 0, p∗ = ε�P1(X) + · · · and limY→∞ �U1 = A(X).
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2) α = 1
2 or δ = Re−3/7.

This is the classical triple deck case. We have alwaysβ = 0 and limY→∞ �U1 = A(X), but the pressure is given by

p∗ = ε

(
�P1(X) + A′′(X)

30
(6y5 − 15y4 + 10y3)

)
+ · · ·

3) 0< α < 1
2 or Re−3/7 � δ � Re−1/3.

In that case,β = 1− 2α, limY→∞ �U1 = 0 and the pressure is given as in the case 2. The height of the perturba
smaller but the slope is larger. In fact, at this order, there is no displacement of the boundary layer.

For α = 0, which is the limiting case of our model, the only change is in the core flow, but from (7) the re
expansion are singular at the boundaries. It is very clear that the use of SCEM is necessary. If we use the S
symmetric and asymmetric cases are treated in the same way.

References

[1] F.T. Smith, On the high Reynolds number theory of laminar flows, IMA J. Appl. Math. 28 (3) (1982) 207–281.
[2] J. Mauss, J. Cousteix, Uniformly valid approximations for singular perturbation problems and matching principle, C. R. Mecanique 33

697–702.
[3] S. Saintlos, J. Mauss, Asymptotic modelling for separating boundary layers in a channel, Int. J. Engrg. Sci. 34 (2) (1996) 201–211.
[4] I.J. Sobey, Introduction to Interactive Boundary Layer Theory, Oxford Appl. Engrg. Math., Oxford University Press, 2000.
[5] J. Cousteix, J. Mauss, Approximations of Navier–Stokes equations at high Reynolds number past a solid wall, J. Comput. Appl. Mat

(2004) 101–122.
[6] A. Dechaume, J. Cousteix, J. Mauss, An interactive boundary layer model compared to the triple deck theory, Eur. J. Mech. B Fluids

439–447.


