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Abstract

The flow at high Reynolds number in a two-dimensional channel whose walls are slightly deformed is considered. This Note
addresses the problem of constructing a uniformly valid approximation leading to a better understanding of two-dimensiona
steady laminar incompressible separated flow. It is proposed to use a hew asymptotic approach: the Successive Complement
Expansions Method (SCEM). The starting point is an assumed form of the approximation. The matching principle is a by-produc
of the method not at all necessary to construct the uniformly valid approximdtiaite this article: J. Mauss et al., C. R.
Mecanique 334 (2006).
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Résumé

Approximation valable uniformément pour I'écoulement dans un canal. On considére I'écoulement & grand nombre de
Reynolds dans un canal bidimensionnel dont les parois sont [égerement déformées. Cette étude est liée a la construction d'une
proximation uniformément valable de la solution conduisant a une meilleure compréhension de la séparation pour des écoulemel
laminaires de fluides visqueux incompressibles. On propose d'utiliser une nouvelle approche asymptotique appelée «Méthot
des approximations successives complémentaires» dont I'acronyme est MASC. Le point de départ est une forme supposée
I'approximation conduisant a I'utilisation d'un développement asymptotique généralisé. La méthode des développements asymj
totiques raccordés devient une conséquence de la MASC et le principe du raccordement n’est plus nécessaire dans cette méth
Pour citer cet article: J. Mauss et al., C. R. Mecanique 334 (2006).
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1. Introduction

We consider a laminar steady two-dimensional flow of an incompressible Newtonian fluid in a channel at high
Reynolds number. When small perturbations, e.g. indentations, are placed on the walls, adverse pressure gradien
are generated and separation can occur. The analysis of the flow structure has been done essentially by Smith [1
Later, a systematic asymptotic analysis has been performed by Mauss and Cousteix [2] and Saintlos and Mauss [3
An extensive analysis of the triple deck structure can be found in Sobey [4]. With the SCEM, we assume a uniformly
valid approximation (UVA) based on generalised expansions. This method developed by Cousteix and Mauss [5] has
been used by Dechaume et al. [6].

2. Formulation

If the characteristic length, velocity and pressure are chosen respective)ylasand pUg, the dimensionless
equations can be written

<u

- BN 1 - -
-gradV = —gradIT + @AV, divV =0 (2)

whereV is the velocity,IT the pressure andethe Reynolds number.
If (vy), v(yy) @and(x, y) are respectively the longitudinal and transverse velocity components and coordinates. The
basic plane Poiseuille flow can be written,

2 2x
Vw =uo=y =y vy =0 M=Io=—r-+po
e
where, pg being a constant pressure, the characteristic vel@gjtis linked to the basic pressure gradient or flow rate
by,

h? 3I1;  Q*
o=—"F—"= 6—
2n0 0x4 Lh
The flow is perturbed, for instance, by indentations such as,
y=¢F(x,e) and y=1—¢eG(x,¢) (2)
wheree is a small parameter. If we seek a solution in the form,
2x
vy =uo(y) +eux, v, €), vy =&%v(x,y,e), I—po= “Re T e’ px.y.e) 3
wherea andb are yet undetermined, we obtain the equations,
uy+vy,=0 (4a)
1
Leu =¢e%(uuy —i—vuy)—i—uoux—i—ué)v—i-eb_“px — R—eAuzo (4b)
1
Levzea(uvx+vvy)—|—uovx+eb_“py— —Av=0 (4c)

Re

The operatord..u and L. v denote respectively the- and y-momentum equations.
Itis clear that, for high Reynolds numbers, the reduced equations are of first order leading to a singular perturbation
In the core flow, we are looking for approximations coming from asymptotic generalised expansions such that,

u:ul(x,y,e)-y..., l}:Ul(x,y,E)—i—..., p:pl(x’y,g)+... (5)

With the SCEM, no generality is lost by takiag= 5. Formally neglecting terms of the orde(£, 1/Re , we obtain
the equations,

ui +v1y, =0 (6a)

uoU1x + Ugv1 = —pix, UV = —p1y (6b)
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It is very interesting to observe the singular behaviour of the solution of (6) as we approach the boundaries. Fo
instance, whery — 0, we obtain,

u1=—2polny+cio+---

v1 = —pioc + 2p1aey INy — y(2p1ar + c100) + - -
2

y
p1=pio+ 7p10xx+-~~

Similar results are obtained whéh— y) — 0. In (7), p1o andcig are functions ofc ande.
3. Theuniformly valid approximation

In order to fulfil the no-slip condition at the walls, boundary layer variables are required,

y=2 and Y*:—l_y (8)
& &

As in the boundary layerso = O(e), we have to choose =1 in order to be able to describe separated flows. Then,
following the SCEM, the approximation already obtained in the core flow is complemented as follows,

u=U1(x,Y, &) + U (x,Y*, &) +ui(x,y,¢)
v=eVi(x,Y, &) —eVi(x,Y" &) +vi(x,y,¢€) )
p=AE)Pi(x,Y, &)+ A(e) Py (x,Y*, &) + p1(x, y, €)

Here, the triple{u, v, p) is no longer the exact solution of the problem but only an approximation. For instance, if all
boundary conditions are fulfilled, from (4b) and (4£),x andL.v are not zero but must be small, in a sense.
The gauge functiori (¢) is not yet known. Finally, the-approximation comes from the continuity equations,

le + VlY = 07 Uj_kx + ny* =0 (10)
It is clear that we can write,

(U1, V1, P1) - 0 whenY — oo

U5, Vy, Pf)— 0 whenY* — oo

Moreover, boundary conditions must be written, on the lower and upper boundaries gi¥ea By(x, ¢) andY™* =
G(x,¢),

uog+eu =0, v=0 (12)
For instance, with our approximation, we can write on the lower boundary,
ug+eUy + cuyp =0, eVi+v1=0

It must be kept in mind that, whentends to 0 or 1, each term andv4 or their derivatives are singular, which is not
the case for andv. Thus, this channel flow shows clearly the interest of the SCEM.

Assuming that IRe= o(¢), it can be interesting to refine the approximation of the core equations. The continuity
equation keeping the same form, we have then,

/
uou1x + ugul + (Ui, + viuly) = —pix

(12)
uov1y + &(U1viy + vivyy) = —piy

4. Thelower interactive boundary layer model

To obtain the interactive boundary layer for the lower boundary and the core flow, we set
u="Ui(x,Y, &) +ui(x,y,e)
v=eVi(x,Y, &) +vi(x, y,€)
p=A@E)Pi(x,Y, &) + pi(x, y,¢)
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where, for the sake of simplicity, the same notati@nv, p) as for the preceding UVA has been used. The triplet

(u1, v1, p1) comes from the core approximation. In order to have inertia terms of the same order of magnitude as the
viscous terms, we takRe= %8_3, wherek is, as we shall see, a useful normalisation factor. From (4b) and (4c) and
(12), we obtain the equations,

v u
U1+ u)Us + <V1 + ;l)UlY + Uruye + ?Ole + ugV1 + e Viugy

A
= —— P+ k(Uryy +&%unyy) + Olhe?)

v1 Vilx uQ A
(U1+u)Vie + | Vi+ . Viy + U17 + Vivyy + ?le = _8_3P1Y + k(Viyy + ev1yy) + O(ke)
From the second equation, we are led to take) = 3. Then, neglecting terms(@?), the first equation becomes
v u
(U1 +up)Uy, + <V1 + ;l)UlY + Uruy, + ?Ole + ugV1 + eViury = k(Uryy + Szulyy)
The second equation enables us to calculate the transverse pressure ghadieabon as the velocity field is known,
V1 U1y ug
(U1+up)Vie + Vi+ - Viy + TUl + Vivgy + ?le = —P1y + k(Viyy + evyyy)

Now, as the behaviour of the core flow is singular wiyer- 0, with the preceding definitions of (v, p), itis better
to write the momentum equations in the form

e(utty + vity) + uoy 4+ ugy = —p1y + keduyy (13)
e(uvy +vvy) + uguy = —py + k83vyy (14)

5. Theglobal interactive boundary layer model

The generalised asymptotic expansions for the velocity are given by,

U(x)ZMO(Y)+8’4(X,)’78)+"'1 U(y)zé‘v(xvysg)—‘r“' (15)

The problem we have to solve is the continuity equatior- v, = 0 together with Eg. (13). However, now, we have
to solve simultaneously the continuity equation (6a) and the core equations (12) or (6b) depending on the accurac
desired.

The same form as Prandtl’s equations is recovered if we let

U=ug+eu, V=ce¢v, Hx=—2k83+8plx

leading to,
Ui+ Vy=0 (16a)
UUy + VUy =~ + ke3Uyy (16b)

The boundary conditions are nol,= V = 0 on the walls.

As we have four conditions, it is clear that the pressure gradient must be adjusted in order to ensure the global mas
flow conservation in the channel.

In addition, in a first approximation, the pressure must satisfy the equation

/

)
Ap1—2—p1, =0 17)
uo
To ensure the link between pressure and velocity in the core flow it is necessary that, from (6b), in this region,

UV = —Ppiy (18)
For this problem,
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Lot = (py — p1c) —keUy, and Lov = —ke’Vy,
It must be kept in mind thatp, — p1.) is a boundary layer term, small in the core flow.
It is why we call it ‘global interactive boundary layer model’ (GIBL).

6. Regular asymptotic analysis of GIBL

For regular expansions, we have to write the hump equations more precisely,
y=¢e¢F(x&%) and y=1-eG(x&%)

wherew is the searched longitudinal perturbation giving possibly separatioh.may depend or our aim is to find
these two unknowns in such a way that we get a significant wall deformation to ensure the possibility of separation.
We introduce the variable

X =xe” (29)
With
u=u*(X,y,8), v=&e*"v"X,y,¢), p1=p X, y,e)

the continuity equation i8% + v = 0, and the longitudinal equation becomes,

e(u*uy +v*uy) +uouy +ugu® = —px + keg_“u;y (20)

The pressure equation becomes

200k

/
u
0
£ pXX-l-p;ky—Zu—op;’f:O

showing that, using regular expansioasz 0. We have also, in the core flow

upvy = —s_zap;‘,

Fora > 0, in studying both the core flow and the boundary layer, we easily find,

P22 A (X)
T(Bys — 15y +10y3) + - - - (21)

u* =ePAXup+--- and v =—eP A (X)ug+ - (22)

pr=eP(X)+

wherep is not known andA (X) is the displacement function. It is noted that (22) is a first order solution to Eq. (20)
valid in the core flow.
In the lower boundary, to obtain a significant longitudinal equation, the first order regular approximation must be
written,
wW=UX,Y)+--, v'=eVX,Y)+---, p*=eP(X)+--- (23)
giving the equations,
Ux+Vy=0
xrwe=- (24)
YUx +V +UUx + VUy =—Px + Uyy

With k = ¢%. The Reynolds number is writtdRe= ¢3¢,
We thus obtain three cases for- 0 which can be also classified with the slope of the indentaltiers 1. This
can be written,

e =ReVG+®) o §—Re1+0)/G+a)

1)a>3ors < Re¥7.
In that case =0, p* =& P1(X) + --- and limy_, oo Uy = A(X).



J. Mauss et al. / C. R. Mecanique 334 (2006) 42—-47 47

2)a=3o0r8=Re¥/7,

This is the classical triple deck case. We have alwgys0 and liny_, ., U1 = A(X), but the pressure is given by

A//(x)
30

p*= g<171(X) + (6y° — 15y* + 10y3)) + -

3)0<a<iorRe¥" «§ «Rel3,
In that casep = 1 — 2, limy_, o, U1 = 0 and the pressure is given as in the case 2. The height of the perturbation is
smaller but the slope is larger. In fact, at this order, there is no displacement of the boundary layer.

For @ = 0, which is the limiting case of our model, the only change is in the core flow, but from (7) the regular
expansion are singular at the boundaries. It is very clear that the use of SCEM is necessary. If we use the SCEM, th
symmetric and asymmetric cases are treated in the same way.
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