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Abstract

The mechanical behavior of a partially saturated porous medium is addressed by means of a micro-to-macro reasoning. First
an estimate of the quadratic average over the solid phase of the equivalent shear strain is proposed. The latter is used in the fram
work of a nonlinear homogenization technique (‘modified secant’ method) in order to model the nonlinear poroelastic behavior in
partially saturated conditions. The determination of the macroscopic strength criterion is then considered. Finally, the influence of
membrane tension effects on strength is investigdtedite this article: L. Dormieux et al., C. R. Mecanique 334 (2006).

0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Influence des effets capillaires sur la résistance d’'un milieu poreux non satur€n met en ceuvre une démarche de change-
ment d’échelle pour étudier le comportement mécanique d'un milieu poreux non saturé. On propose d’abord une estimation de I
moyenne quadratique sur la phase solide, supposée élastique linéaire, de la déformation déviatorique équivalente. Celle-ci est mi
a profit ensuite pour la modélisation du comportement poroélastique non linéaire dans le cadre d’'une méthode d’homogénéisatio
non linéaire de type « sécante modifiée ». Pour finir, on présente une détermination approchée du critere de rupture macroscopiq
et on étudie I'influence des tensions de membrane sur ce cifguweciter cet article: L. Dormieux et al., C. R. Mecanique 334
(2006).
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1. Introduction

The representative elementary volurfzeof a porous medium is made up of a homogeneous solid m&tfix
and of a pore space”. The latter is divided into a liquid domaif¢ at pressurep, and a gazeous domai@s$
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at pressure,. We introduce the capillary pressupg = p, — p¢, and the mean pressure in the whole pore space:
p=Q—S8)pg+ S pe = pg — Srpc, Wheres, is the saturation ratio (volume fraction of the liquid domain in the
pore space). In Sections 2, 3 and 4, we assume that surface tension effects can be neglected. This means that capil
effects are only taken into account through the difference betweamd p, . In contrast, Section 5 is devoted to the
influence of these surface tensions.

The microscopic position vector is The mean values of a field(z) over the solid, porous, liquid or gazeous
domain are denoted by, (a),, (a)¢ and(a), respectively. The mean value over the whole r.e.v. is denoted)by
The porosity and the volume fractions of the liquid and the gazeous phases are denpted hpdes?.

The micromechanical point of view considers the r.e.v. as a structure. The microscopic strain and stress tensors &
denoted by ande . The applied loading is characterized by the presspigemdp,, and the macroscopic strain tensor
E, in the framework of uniform strain boundary conditions on the microscopic displacemery field) = E - z,
z € 982). The macroscopic stress tensor is then definel as(o). o

Given a second order tensar we introduce the intensity of the isotropic payt = tra/3, the deviatoric part
a% = q — 4,1, and the intensity of the deviatoric parf = \/a%": a9€V/2. The second and fourth order identity
tensors are respectively denotedlbgndl. We shall also refer t§ andK defined ag =1® 1/3 andK =1 — ]J.

2. Average strain level in a linear elastic solid phase

In this section, the solid phase is supposed to be isotropic linear elastic (tensor of elastic®ipdulk and shear
moduli k¥ andu®). The macroscopic state equation can be established as [1]:
¥+ pB=C"™. E 1)

Chom is the macroscopic elastic tensor in drained conditigns= pg =0), andB is the Biot tensor. The Bishop
effective stress appears on the left-hand side.

As an estimate of the deviatoric strain level in the solid phase, the quadratic aV&j)a}ge considered. The starting
point is the density * of potential energy of the solid phase per unit volume of porous medium. The potential energy
of the solid in the r.e.v. i§2|¥* and comprises the term of elastic energy and the work of the fluid pressures:

1
|.{2|lI/*:§/e:(CS:edVZ—pg/tredVZ—pg/trede 2
Q8 tols foli
and differentiating with respect {0, we obtain:

v dev. _dev de . . . de . de
2 2 Q¢ Qt

Observing that the microscopic stress respectively ré&ids in £2°, —p,1in £2¢, and—p,1in £2¢, Hill's lemma

yields:

ow* de
o =200, +{o: S —20 -0, @
This remark and Hill's lemma applied to (2) allow one to obtain:
1
W*ZE(Z:E —pg(pel:(e)g—pg<pg1:(e)g) (5)

In order to take advantage of (4), it appears that we need estimates for the average volume strains in both the liqu
and gas domains. The latter can be derived from the solution of the Eshelby problem for prestressed inclusions (see f
instance [2]). From now on, assuming an isotropic distribution of the solid and pore phases, the pores are represent
by spherical inclusions in the solid matrix. Accordingly, the average straifife = ¢, g) is estimated as the uniform
strain that is induced in a spherical pore saturated by a fluid at the presswembedded in an infinite solid medium
subjected to uniform strain boundary conditions at infinjty> Eq - z when|z| — oo (see Fig. 1) Eg represents the
average strairie) in the solid phase: B

(€ e=U—-S)"1:(Eo+pP:1);  (e)g=—S)1:(Eo+psP:1);  (e)s=Eo (6)
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£(z2) =FEo-z|z] - 0 s

Fig. 1. The generalized Eshelby problem.
Fig. 1. Le probleme d’Eshelby généralisé.

wheresS is the Eshelby tensor of a spherical inclusion in the solid matrix®edS : C* 1. We now take advantage
of the average rul& = (e) that providesEq as a function off, p, and p,, and we introduce this expression Bf
into (6):

(€)a = pa@l—S) L:P: 1+ (I—(1—¢)S) " : (E —pp@—S)L:P: 1) 7

with o = £ or g. Returning to (5), it appears that we have to estimate the total work of the fluid pressures. Introducing
p?=(1-S,)p?+ S, p? and using (7), we obtatn

Pa@®l: () =pB: (E—gol_)(]I—S)_l:IP’:l) +op2l:I-S)t:P:1 (8)

where we have used the Mori-Tanaka estimite ¢1: (I — (1 — ¢)S) ! of the Biot tensor (to be consistent with
(6)). After some algebra, the above quantity can also be rearranged into:

—2 o
pago“l:(e)a:faB:E+%—F(p(pz—ﬁz)l:(H—S)_l:P:l 9)

whereN is the Biot modulus (AN = (B — ¢1) : C*~1: 1). The last step consists in introducing the state equation (1)
and (9) into (5). This yields the following estimate of the potential energy in unsaturated conditions:
1 7”9
W*=ZE:C"°"™E—pB:E——— —Z(p2—p?)1:(1-5)"1:P:1 10
5 p on (PP =P -9) (10)
Interestingly, it is readily seen tha€ — 5% = S, (1 — S,) p2. Considering spherical pores and recalling the specific
expression of the Eshelby tensor for a spherical inclusion, the above expression reduces to:
1 _ P2 3p
g*=ZE:C"°"™:E—pB:E—~— —
2 P 2N 8
Eq. (11) appears as the extension to unsaturated conditions of the expression of the potential energy of the solid pha:
derived classically in the saturated case: the homogeneous pore pressureplaced by the average Still, from
an energy point of view, the last term in the above equation shows that the unsaturated conditions are not equivaler
to saturated conditions with = p. We now return to (4) and we take advantage of the macroscopic isotropy. From
Biot relations, we have [3]:

Sy(1—8,)p? (11)

Jehom dB 1 khom d1/N 1 akhom
m- (- ) -t e =i 12)
ks s kS ous s ks2 aus
Using (4), (11), (12) and the state equation (1), we derive an express{eﬁ)pbs a function oY, p andp.:
81/kh°m 3 81/Mh0m 3¢
2y _ 2 2 2
41— 90)<8d>5 =— e (X +p)— Tzd + Wsr(l =S p; (13)

For practical use of (13), we have to select a homogenization scheme providing estimates of the drained macroscopi
elastic modulik"®™ and .o

khom: K(ks, MA" QD), 'uhomz M(ks, MS’ g0) (14)

The Mori—-Tanaka scheme is adopted in the sequel.

1 Summation over repeated subscript is assumed.
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3. Nonlinear poroelastic behavior

We now address the nonlinear elastic behavior of the solid phase in isothermal conditions. We further assume th.
the state equation of the solid phase can be put in the form:

o0 =C(gg) : & withC’(gg) =3k°J + 2u° (e4)K (15)

C*(gq) is classically referred to as secant stiffness tensor. This nonlinearity only affects the shear modulus. The
nonlinear macroscopic poroelastic behavior can be estimated by means of the modified secant method [4]. The ids
is to approximate the tens@’ (¢4(z)) in every pointz of £2* by a uniform valueC* (sgf) Whereag‘f is the so-called
effective deviatoric strain: it represents an estimate of the deviatoric strain level in the solid phase. We use here tt
quadratic average introduced in Section 2:

vze ', C'(eq())~C’ (agf) with ssf = (sg)s (16)
The macroscopic state equation then has the same structure as the one obtained in the linear case (1):
T+ pB(5) =C"O™(S") . E 17

The effective strain is the solutimjf(z? + p1, p., Sy) of the nonlinear problem (13) and (14) with = p* (sjf).
4. Strength in partially saturated conditions

We now investigate the influence of partially saturated conditions on the strength of a porous medium.

We consider the case of a solid matrix of the von Mises type (strength critgfi@) = o, — k < 0). We use the
results obtained in Sections 2 and 3 to estimate the doGiff of admissible macroscopic stressBsWe introduce
a fictitious elastic solid whose behavior is nonlinear and described by (15). The shear modujysis chosen so
that the microscopic stress tends asymptotically towards the boundary of the domain of microscopic admissible
stresses [* (o) = 0) when the straim, is large enough (we symbolically notg — o0):

f( lim_ C(ea) a) —0 (18)

In the von Mises case, we can takleas a constant and® ~ k/(2s,).

Keeping p, and p. constant (the saturation rati is then also constant), we look for the stress states reached
asymptotically on radial macroscopic strain pathss E = Le, wheree represents the direction of the strain path in
the space of macroscopic strains. The macroscopic stress asymptotically developped on this strain path is locat
on the boundary oG"™ lim g~ £ € 3G"°™ When the local deviatoric straigy is large enough, note that
w®/k* <« 1, so the fictitious solid has an incompressible behavior. In that case, the Mori—-Tanaka scheme (14) become
simpler:

41—9) f h 1-9¢ f
khom: S (L€ : om _ S(.€ 19
Combining (13), (19) and recalling that (¢4) ~ k/(2¢4) in the domain of large strains, it is found that the macro-
scopic stress state asymptotically lies on an elliptic curve of g X;) plane:
— _(z £ 3 Y St
T A A T Rl ai-g 7
Strictly speaking, the strength predicted by the above criterion is not controlled by the effectivestrgdssince the
capillary pressurg,. also appears on the right-hand side. The unsaturated strength domain differs from the saturate
one at a uniform pressuig. This can be intuitively related to the extra amount of deviatoric stress created by the
difference of pressure in neighboring pores. This can be taken into account in replacing the sheariswétigth
solid by the corrected strengkh given by:

3¢S, (1—S,) p?
K=k l1—-——— —"°°¢ 21
\/ 41—¢) k2 (21)

(20)
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Fig. 2. Macroscopic strength criterion in the case of a von Mises solid matrix.
Fig. 2. Critére de résistance macroscopique dans le cas d’'une matrice solide de von Mises.

From a geometrical point of view, let us start from the strength criterion in the dry case, that corresponds to the ellipse
centered at the origin in Fig. 2. The strength criterion corresponding to the saturated state with fluid grassure
obtained by a translation to the right, since we expect ghatO (suction). The strength criterion for the unsaturated
state is obtained from the previous ellipse by the homothety with katio< 1.

5. Influence of membrane tension effects on strength

Capillary effects are responsible for membrane stresses developing in the intgifécestween the phases
(o, B €{¢,s, g}). In a 3-dimensional description, the latter can be translated in terms of Cauchy stresses of the form
yP1r (2)8ap(2) wherey®? s the surface tensiory is the identity tensor of the plarie tangent to/*#, anddgg is
the Dirac distribution associated to the surfd&é [5].

We again restrict to connected spherical pores and we refer to a partition of the pore space into gas-filled pores an
liquid-filled pores according to the pore raditisMore precisely, the pore is gas-filled (resp., liquid-filledy i r*
(resp.,r < r*). In other wordsy* is the critical radius separating liquid- and gas-filled pores. Neglecting hysteretic
phenomena, it can be regarded as a functiop.ofThe distribution of pore size is characterized by the density
(a(r) dr is the volume fraction of the pores with radius in the intefvat + dr]). The contribution of the liquid-gas
interface is neglected.

Due to surface tension in the interfaces, the surface force applied on the solid at the solid-fluid ba@tihdampt
equal to the pore pressupg. The latter must be replaced bpy= p, — 2y**/r. Note that the corrected fluid pressure
p’ is not uniform, neither in2¢ nor in £2¢. Still, the developments of the previous sections can be easily adapted. The
definition of the potential energy * can be generalized in the form:

|.Q|11/*=%/3:C5:edvz— f p()tredV, (22)
29 Qtuns
Despite the heterogeneity pf(z), it is readily seen that (4) remains valid. Howe\q_gandp_2 in (10) must be replaced
by
o oo
?:/a(r)p’(r) dr; p2= /ot(r)p/z(r) dr (23)
0 0
Instead of (20), the equation of the macroscopic limit states iridhg X;)-plane now reads:

3p —2 14+29/3 5 > 3 =
e (Ep )+ S X =k — —————(p'? = p’) 24
T S ai—g PP (24)
For practical implementation, the density functw(r) is required. The latter is derived from a classical procedure [6]
which is briefly recalled. The starting point is the capillary pressure curve p.(S,). In the sequel, the expression [7]

pe(Sy) = M(S;7 ™ — (25)

with 0 < m < 1, is adoptedM controls the magnitude of the capillary pressure induced by drying. A constant ratio
x between pore access radius and pore radius is assumed. For a perfectly wetting fluid, the Laplace law yields th
capillary pressure in the form,. = 2(y*¢ — y*%)/(xr*). Combining this equation with (25) allows to consider the
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Fig. 3. Isotropic strength disregarding (without) or taking into account (with) membrane tengier®3, x =0.1,m =0.8, M/k = 3.1, ¢ = 0.
Fig. 3. Résistance en traction/compression isotrope avec ou sans effet de mengba@®@; x =0,1,m =0,8, M/k =3,1,y5¢ = 0.

critical radius as a function*(S,) of the saturation ratio. According to the definitionsag#) andr*, the saturation
ratio can be expressed as

r*

S, = /a(r) dr (26)
0
Finally, differentiating (26) with respect t§). yields the density function:
. 1
a(r’) = W (27)

We now investigate the evolution of the strength during a drying experinSent 0, pg =0), starting from the satu-

rated statey, = 1, p, = 0). As shown by (24), the domain of admissible stresses is completely characterized by the
minimum (£-) and maximum £.5) admissible mean stresses. In the saturated state, notgtfiat= X . In the

model including membrane stresses effeglg, and X, are plotted agains§, at Fig. 3 respectively on the left and

right solid curves. When membrane effects are disregarBgdand X, are the intercepts of the dashed curve with

the horizontal liney = S,.. This illustrates the fact that the model without surface tension effects significantly under-
estimates the material strength. For the considered set of parameters, this model predicts that the material stren
vanishes for the critical saturation rati§" = 0.4. In contrast, when surface tension effects are taken into account, the
domain of admissible stresses is never empty, whatever the valije of
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