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Abstract

The mechanical behavior of a partially saturated porous medium is addressed by means of a micro-to-macro reason
an estimate of the quadratic average over the solid phase of the equivalent shear strain is proposed. The latter is used in
work of a nonlinear homogenization technique (‘modified secant’ method) in order to model the nonlinear poroelastic be
partially saturated conditions. The determination of the macroscopic strength criterion is then considered. Finally, the infl
membrane tension effects on strength is investigated.To cite this article: L. Dormieux et al., C. R. Mecanique 334 (2006).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Influence des effets capillaires sur la résistance d’un milieu poreux non saturé.On met en œuvre une démarche de chan
ment d’échelle pour étudier le comportement mécanique d’un milieu poreux non saturé. On propose d’abord une estima
moyenne quadratique sur la phase solide, supposée élastique linéaire, de la déformation déviatorique équivalente. Celle
à profit ensuite pour la modélisation du comportement poroélastique non linéaire dans le cadre d’une méthode d’homog
non linéaire de type « sécante modifiée ». Pour finir, on présente une détermination approchée du critère de rupture mac
et on étudie l’influence des tensions de membrane sur ce critère.Pour citer cet article : L. Dormieux et al., C. R. Mecanique 334
(2006).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

The representative elementary volumeΩ of a porous medium is made up of a homogeneous solid matrixΩs

and of a pore spaceΩp. The latter is divided into a liquid domainΩ� at pressurep� and a gazeous domainΩg
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at pressurepg . We introduce the capillary pressurepc = pg − p�, and the mean pressure in the whole pore sp
p = (1 − Sr)pg + Srp� = pg − Srpc, whereSr is the saturation ratio (volume fraction of the liquid domain in
pore space). In Sections 2, 3 and 4, we assume that surface tension effects can be neglected. This means th
effects are only taken into account through the difference betweenp� andpg . In contrast, Section 5 is devoted to t
influence of these surface tensions.

The microscopic position vector isz. The mean values of a fielda(z) over the solid, porous, liquid or gazeo
domain are denoted by〈a〉s , 〈a〉p, 〈a〉� and〈a〉g respectively. The mean value over the whole r.e.v. is denoted by〈a〉.
The porosity and the volume fractions of the liquid and the gazeous phases are denoted byϕ, ϕ� andϕg .

The micromechanical point of view considers the r.e.v. as a structure. The microscopic strain and stress te
denoted byε andσ . The applied loading is characterized by the pressurespg andp�, and the macroscopic strain tens
E, in the framework of uniform strain boundary conditions on the microscopic displacement fieldξ (ξ(z) = E · z,
z ∈ ∂Ω). The macroscopic stress tensor is then defined asΣ = 〈σ 〉.

Given a second order tensora, we introduce the intensity of the isotropic partam = tra/3, the deviatoric par
adev = a − am1, and the intensity of the deviatoric partad = √

adev : adev/2. The second and fourth order ident
tensors are respectively denoted by1 andI. We shall also refer toJ andK defined asJ = 1⊗ 1/3 andK = I − J.

2. Average strain level in a linear elastic solid phase

In this section, the solid phase is supposed to be isotropic linear elastic (tensor of elastic moduliCs , bulk and shea
moduli ks andµs ). The macroscopic state equation can be established as [1]:

Σ + pB = C
hom : E (1)

Chom is the macroscopic elastic tensor in drained conditions (p� = pg = 0), andB is the Biot tensor. The Bisho
effective stress appears on the left-hand side.

As an estimate of the deviatoric strain level in the solid phase, the quadratic average〈ε2
d〉s is considered. The startin

point is the densityΨ ∗ of potential energy of the solid phase per unit volume of porous medium. The potential e
of the solid in the r.e.v. is|Ω|Ψ ∗ and comprises the term of elastic energy and the work of the fluid pressures:

|Ω|Ψ ∗ = 1

2

∫
Ωs

ε : C
s : ε dVz − p�

∫
Ω�

trε dVz − pg

∫
Ωg

trε dVz (2)

and differentiating with respect toµs , we obtain:

|Ω|∂Ψ ∗

∂µs
=

∫
Ωs

εdev : εdevdVz +
∫
Ωs

∂ε

∂µs
: C

s : ε dVz +
∫

Ωg

−pg1 : ∂ε

∂µs
dVz +

∫
Ω�

−p�1 : ∂ε

∂µs
dVz (3)

Observing that the microscopic stress respectively readsCs : ε in Ωs , −pg1 in Ωg , and−p�1 in Ω�, Hill’s lemma
yields:

∂Ψ ∗

∂µs
= 2(1− ϕ)

〈
ε2
d

〉
s
+

〈
σ : ∂ε

∂µs

〉
= 2(1− ϕ)

〈
ε2
d

〉
s

(4)

This remark and Hill’s lemma applied to (2) allow one to obtain:

Ψ ∗ = 1

2

(
Σ : E − p�ϕ

�1 : 〈ε〉� − pgϕ
g1 : 〈ε〉g

)
(5)

In order to take advantage of (4), it appears that we need estimates for the average volume strains in both
and gas domains. The latter can be derived from the solution of the Eshelby problem for prestressed inclusion
instance [2]). From now on, assuming an isotropic distribution of the solid and pore phases, the pores are re
by spherical inclusions in the solid matrix. Accordingly, the average strain inΩα (α = �, g) is estimated as the uniform
strain that is induced in a spherical pore saturated by a fluid at the pressurepα , embedded in an infinite solid mediu
subjected to uniform strain boundary conditions at infinity:ξ → E0 · z when|z| → ∞ (see Fig. 1).E0 represents th
average strain〈ε〉s in the solid phase:

〈ε〉� = (I − S)−1 : (E0 + p�P : 1); 〈ε〉g = (I − S)−1 : (E0 + pgP : 1); 〈ε〉s = E0 (6)
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Fig. 1. The generalized Eshelby problem.

Fig. 1. Le problème d’Eshelby généralisé.

whereS is the Eshelby tensor of a spherical inclusion in the solid matrix andP = S : Cs−1. We now take advantag
of the average ruleE = 〈ε〉 that providesE0 as a function ofE, p� andpg , and we introduce this expression ofE0
into (6):

〈ε〉α = pα(I − S)−1 : P : 1+ (
I − (1− ϕ)S

)−1 : (E − ϕp(I − S)−1 : P : 1
)

(7)

with α = � or g. Returning to (5), it appears that we have to estimate the total work of the fluid pressures. Intro
p2 = (1− Sr)p

2
g + Srp

2
� and using (7), we obtain1:

pαϕα1 : 〈ε〉α = pB : (E − ϕp(I − S)−1 : P : 1
) + ϕp21 : (I − S)−1 : P : 1 (8)

where we have used the Mori–Tanaka estimateB = ϕ1 : (I − (1− ϕ)S)−1 of the Biot tensor (to be consistent wi
(6)). After some algebra, the above quantity can also be rearranged into:

pαϕα1 : 〈ε〉α = pB : E + p2

N
+ ϕ

(
p2 − p2)1 : (I − S)−1 : P : 1 (9)

whereN is the Biot modulus (1/N = (B − ϕ1) : Cs−1 : 1). The last step consists in introducing the state equatio
and (9) into (5). This yields the following estimate of the potential energy in unsaturated conditions:

Ψ ∗ = 1

2
E : C

hom : E − pB : E − p2

2N
− ϕ

2

(
p2 − p2)1 : (I − S)−1 : P : 1 (10)

Interestingly, it is readily seen thatp2 − p2 = Sr(1 − Sr)p
2
c . Considering spherical pores and recalling the spe

expression of the Eshelby tensor for a spherical inclusion, the above expression reduces to:

Ψ ∗ = 1

2
E : C

hom : E − pB : E − p2

2N
− 3ϕ

8µs
Sr(1− Sr)p

2
c (11)

Eq. (11) appears as the extension to unsaturated conditions of the expression of the potential energy of the s
derived classically in the saturated case: the homogeneous pore pressureP is replaced by the averagep. Still, from
an energy point of view, the last term in the above equation shows that the unsaturated conditions are not e
to saturated conditions withP = p. We now return to (4) and we take advantage of the macroscopic isotropy.
Biot relations, we have [3]:

B =
(

1− khom

ks

)
1; ∂B

∂µs
= − 1

ks

∂khom

∂µs
1; ∂1/N

∂µs
= − 1

ks2

∂khom

∂µs
(12)

Using (4), (11), (12) and the state equation (1), we derive an expression of〈ε2
d〉s as a function ofΣ , p andpc:

4(1− ϕ)
〈
ε2
d

〉
s
= −∂1/khom

∂µs
(Σm + p)2 − ∂1/µhom

∂µs
Σ2

d + 3ϕ

4µs2
Sr(1− Sr)p

2
c (13)

For practical use of (13), we have to select a homogenization scheme providing estimates of the drained ma
elastic modulikhom andµhom:

khom= K(ks,µs,ϕ); µhom= M(ks,µs,ϕ) (14)

The Mori–Tanaka scheme is adopted in the sequel.

1 Summation over repeated subscript is assumed.
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3. Nonlinear poroelastic behavior

We now address the nonlinear elastic behavior of the solid phase in isothermal conditions. We further ass
the state equation of the solid phase can be put in the form:

σ = C
s(εd) : ε with C

s(εd) = 3ks
J + 2µs(εd)K (15)

Cs(εd) is classically referred to as secant stiffness tensor. This nonlinearity only affects the shear modu
nonlinear macroscopic poroelastic behavior can be estimated by means of the modified secant method [4].
is to approximate the tensorCs(εd(z)) in every pointz of Ωs by a uniform valueCs(εef

d ) whereεef
d is the so-called

effective deviatoric strain: it represents an estimate of the deviatoric strain level in the solid phase. We use
quadratic average introduced in Section 2:

∀z ∈ Ωs, C
s
(
εd(z)

) ≈ C
s
(
εef
d

)
with εef

d =
√〈

ε2
d

〉
s

(16)

The macroscopic state equation then has the same structure as the one obtained in the linear case (1):

Σ + pB
(
εef
d

) = C
hom(

εef
d

) : E (17)

The effective strain is the solutionεef
d (Σ + p1,pc, Sr) of the nonlinear problem (13) and (14) withµs = µs(εef

d ).

4. Strength in partially saturated conditions

We now investigate the influence of partially saturated conditions on the strength of a porous medium.
We consider the case of a solid matrix of the von Mises type (strength criterionf s(σ ) = σd − k � 0). We use the

results obtained in Sections 2 and 3 to estimate the domainGhom of admissible macroscopic stressesΣ . We introduce
a fictitious elastic solid whose behavior is nonlinear and described by (15). The shear modulusµs(εd) is chosen so
that the microscopic stressσ tends asymptotically towards the boundary of the domain of microscopic admi
stresses (f s(σ ) = 0) when the strainεd is large enough (we symbolically noteεd → ∞):

f s
(

lim
εd→∞ C

s(εd) : ε
)

= 0 (18)

In the von Mises case, we can takeks as a constant andµs ≈ k/(2εd).
Keepingp� andpc constant (the saturation ratioSr is then also constant), we look for the stress states rea

asymptotically on radial macroscopic strain pathsλ → E = λe, wheree represents the direction of the strain path
the space of macroscopic strains. The macroscopic stress asymptotically developped on this strain path
on the boundary ofGhom: lim|E|→∞ Σ ∈ ∂Ghom. When the local deviatoric strainεd is large enough, note th
µs/ks 
 1, so the fictitious solid has an incompressible behavior. In that case, the Mori–Tanaka scheme (14)
simpler:

khom= 4(1− ϕ)

3ϕ
µs

(
εef
d

); µhom= 1− ϕ

1+ 2ϕ/3
µs

(
εef
d

)
(19)

Combining (13), (19) and recalling thatµs(εd) ≈ k/(2εd) in the domain of large strains, it is found that the mac
scopic stress state asymptotically lies on an elliptic curve of the(Σm,Σd) plane:

3ϕ

4(1− ϕ)2
(Σm + p)2 + 1+ 2ϕ/3

(1− ϕ)2
Σ2

d = k2 − 3ϕSr(1− Sr)

4(1− ϕ)
p2

c (20)

Strictly speaking, the strength predicted by the above criterion is not controlled by the effective stressΣ +p1 since the
capillary pressurepc also appears on the right-hand side. The unsaturated strength domain differs from the s
one at a uniform pressurep. This can be intuitively related to the extra amount of deviatoric stress created
difference of pressure in neighboring pores. This can be taken into account in replacing the shear strengthk of the
solid by the corrected strengthk′ given by:

k′ = k

√
1− 3ϕSr(1− Sr)

4(1− ϕ)

p2
c

k2
(21)
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Fig. 2. Macroscopic strength criterion in the case of a von Mises solid matrix.

Fig. 2. Critère de résistance macroscopique dans le cas d’une matrice solide de von Mises.

From a geometrical point of view, let us start from the strength criterion in the dry case, that corresponds to th
centered at the origin in Fig. 2. The strength criterion corresponding to the saturated state with fluid pressp is
obtained by a translation to the right, since we expect thatp < 0 (suction). The strength criterion for the unsatura
state is obtained from the previous ellipse by the homothety with ratiok′/k < 1.

5. Influence of membrane tension effects on strength

Capillary effects are responsible for membrane stresses developing in the interfacesIαβ between the phase
(α,β ∈ {�, s, g}). In a 3-dimensional description, the latter can be translated in terms of Cauchy stresses of t
γ αβ1T (z)δαβ(z) whereγ αβ is the surface tension,1T is the identity tensor of the planeT tangent toIαβ , andδαβ is
the Dirac distribution associated to the surfaceIαβ [5].

We again restrict to connected spherical pores and we refer to a partition of the pore space into gas-filled p
liquid-filled pores according to the pore radiusr . More precisely, the pore is gas-filled (resp., liquid-filled) ifr > r∗
(resp.,r < r∗). In other words,r∗ is the critical radius separating liquid- and gas-filled pores. Neglecting hyste
phenomena, it can be regarded as a function ofpc. The distribution of pore size is characterized by the densityα(r)

(α(r)dr is the volume fraction of the pores with radius in the interval[r, r + dr]). The contribution of the liquid-ga
interface is neglected.

Due to surface tension in the interfaces, the surface force applied on the solid at the solid-fluid boundaryIαs is not
equal to the pore pressurepα . The latter must be replaced byp′ = pα −2γ αs/r . Note that the corrected fluid pressu
p′ is not uniform, neither inΩ� nor inΩg . Still, the developments of the previous sections can be easily adapte
definition of the potential energyΨ ∗ can be generalized in the form:

|Ω|Ψ ∗ = 1

2

∫
Ωs

ε : C
s : ε dVz −

∫
Ω�∪Ωg

p′(z) trε dVz (22)

Despite the heterogeneity ofp′(z), it is readily seen that (4) remains valid. However,p andp2 in (10) must be replace
by

p′ =
∞∫

0

α(r)p′(r)dr; p′2 =
∞∫

0

α(r)p′2(r)dr (23)

Instead of (20), the equation of the macroscopic limit states in the(Σm,Σd)-plane now reads:

3ϕ

4(1− ϕ)2
(Σm + p′)2 + 1+ 2ϕ/3

(1− ϕ)2
Σ2

d = k2 − 3ϕ

4(1− ϕ)
(p′2 − p′2) (24)

For practical implementation, the density functionα(r) is required. The latter is derived from a classical procedure
which is briefly recalled. The starting point is the capillary pressure curvepc = pc(Sr). In the sequel, the expression [

pc(Sr) = M(S
−1/m
r − 1)1−m (25)

with 0 < m < 1, is adopted.M controls the magnitude of the capillary pressure induced by drying. A constan
χ between pore access radius and pore radius is assumed. For a perfectly wetting fluid, the Laplace law y
capillary pressure in the formpc = 2(γ sg − γ s�)/(χr∗). Combining this equation with (25) allows to consider
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Fig. 3. Isotropic strength disregarding (without) or taking into account (with) membrane tensions;ϕ = 0.3, χ = 0.1, m = 0.8, M/k = 3.1, γ s� = 0.

Fig. 3. Résistance en traction/compression isotrope avec ou sans effet de membrane :ϕ = 0,3, χ = 0,1, m = 0,8, M/k = 3,1, γ s� = 0.

critical radius as a functionr∗(Sr) of the saturation ratio. According to the definitions ofα(r) andr∗, the saturation
ratio can be expressed as

Sr =
r∗∫

0

α(r)dr (26)

Finally, differentiating (26) with respect toSr yields the density function:

α(r∗) = 1

dr∗/dSr

(27)

We now investigate the evolution of the strength during a drying experiment (Ṡr < 0, pg = 0), starting from the satu
rated state (Sr = 1, p� = 0). As shown by (24), the domain of admissible stresses is completely characterized
minimum (Σ−

m ) and maximum (Σ+
m ) admissible mean stresses. In the saturated state, note that|Σ±

m | = Σ+. In the
model including membrane stresses effects,Σ−

m andΣ+
m are plotted againstSr at Fig. 3 respectively on the left an

right solid curves. When membrane effects are disregarded,Σ−
m andΣ+

m are the intercepts of the dashed curve w
the horizontal liney = Sr . This illustrates the fact that the model without surface tension effects significantly u
estimates the material strength. For the considered set of parameters, this model predicts that the materia
vanishes for the critical saturation ratioScr

r = 0.4. In contrast, when surface tension effects are taken into accoun
domain of admissible stresses is never empty, whatever the value ofSr .
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