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Abstract

Porous polycrystal-type microstructures built up of needle-like platelets or sheets are characteristic for a number of biological
and man-made materials. Herein, we consider (i) uniform, (ii) axisymmetrical orientation distribution of linear elastic, isotropic
as well as anisotropic needles. Axisymmetrical needle orientation requires derivation of the Hill tensor for arbitrarily oriented
ellipsoidal inclusions with one axis tending towards infinity, embedded in a transversely isotropic matrix; therefore, Laws’ integral
expression of the Hill tensor is evaluated employing the theory of rational functions. For a porosity lower 0.4, the elastic properties
of the polycrystal with uniformly oriented needles are quasi-identical to those of a polycrystal with solid spheres. However, as
opposed to the sphere-based model, the needle-based model does not predict a percolation threshold. As regards axisymmetrical
orientation distribution of needles, two effects are remarkable: Firstly, the sharper the cone of orientations the higher the anisotropy
of the polycrystal. Secondly, for a given cone, the anisotropy increases with the porosity. Estimates for the polycrystal stiffness
are hardly influenced by the anisotropy of the bone mineral needles. Our results also confirm the very high degree of orientation
randomness of crystals building up mineral foams in bone tissues. To cite this article: A. Fritsch et al., C. R. Mecanique 334
(2006).
 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Polycristaux poreux constitués d’aiguilles orientées de façon uniforme ou axisymétrique : homogénéisation des propriétés
élastiques. De nombreux matériaux biologiques ou manufacturés présentent une microstructure poreuse à morphologie polycris-
talline constituée de feuillets ou d’aiguilles. On s’intéresse ici à des cristaux solides élancés, doués d’un comportement linéaire
élastique isotrope ou anisotrope, dont les orientations sont distribuées de façon uniforme ou axisymétrique. Dans ce dernier cas,
l’approche micromécanique proposée fait appel à la connaissance du tenseur de Hill pour une inclusion ellipsoidale d’élancement
infini plongée dans un milieu isotrope transverse. L’expression intégrale de ce dernier donnée par Laws est évaluée numériquement
en employant la théorie des fonctions holomorphes. Pour une porosité inférieure à 0,4, les propriétés élastiques du polycristal es-
timées à partir d’un schéma basé sur des inclusions ellipsoidales sont très proches de celles obtenues avec un schéma basé sur des
inclusions sphériques. En revanche, à la différence du schéma basé sur des inclusions sphériques, le schéma basé sur des inclusions
ellipsoidales ne prédit pas de seuil de percolation. En ce qui concerne la situation d’une distribution axisymétrique des orienta-
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tions des cristaux solides, deux effets méritent d’être soulignés. D’une part, l’anisotropie est d’autant plus marquée que l’angle du
cône des orientations diminue. D’autre part, à angle de cône donné, l’anisotropie augmente avec la porosité. Les estimations de
l’élasticité du polycristal sont très faiblement affectées par l’anisotropie du minéral osseux. Ces résultats confirment le caractère
très largement désordonné de l’orientation des cristaux constituant des mousses minérales dans les tissus osseux. Pour citer cet
article : A. Fritsch et al., C. R. Mecanique 334 (2006).
 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

Porous polycrystal-type microstructures built up of needle-like platelets or sheets can be found in a number of
biological and man-made materials such as bone [1,2] or eggs [3], or at the cement paste level of concrete [4]. We here
deal with homogenization of their overall (linear) elastic properties, by means of self-consistent schemes. Thereby, the
solid phase (needles) is represented by cylindrical inclusions (a cylinder being the limit case of a prolate spheroid with
its long axis being very much larger than its spherical axis), and the (empty) pore inclusions (drained conditions) are
spherical; extension to pressurized pores according to [5] is straightforward. Subsequently, we consider (i) uniform,
(ii) axisymmetrical orientation distribution of isotropic as well as anisotropic needles with elasticity tensor Cs .

2. Uniform orientation distribution of needles

Uniformly oriented needles result in isotropic elastic properties of the polycrystal. The corresponding stiffness
estimate CSCS reads as

C
SCS = (1 − φ)Cs : 〈[I + P

SCS
cyl : (Cs − C

SCS)]−1〉 : {(1 − φ)
〈[

I + P
SCS
cyl : (Cs − C

SCS)]−1〉
+ φ

(
I − P

SCS
sph : C

SCS)−1}−1 (1)

with

〈[
I + P

SCS
cyl : (Cs − C

SCS)]−1〉 =
2π∫

ϕ=0

π∫
ϑ=0

[
I + P

SCS
cyl (ϑ,ϕ)

(
Cs − C

SCS)]−1 sinϑ dϑ dϕ

4π
(2)

where I, Iijkl = 1/2(δikδjl + δilδkj ), is the fourth-order unity tensor, δij is the Kronecker delta, φ denotes the porosity,
P

SCS
sph and P

SCS
cyl are the fourth-order Hill tensors for spherical and cylindrical inclusions, respectively. The Hill tensor

for spherical inclusions, P
SCS
sph , is widely available in the open literature [6,7]. The components of the Hill tensor for

cylindrical inclusions embedded in an isotropic medium are given for a base frame coinciding with the long axis of
the cylinder [6]. Transformation of Hill tensors related to differently oriented cylindrical inclusions, to one reference
frame can be expressed by Euler angles ϑ and ϕ, rendering P = P

SCS
cyl (ϑ,ϕ) in Eq. (2).

The numerical solution of (1) shows that the effective Young’s modulus ESCS is practically independent of the
needles’ Poisson’s ratio νs .

The question arises whether uniform orientation of needles can be appropriately considered by representing the
solid phase simply by spherical inclusions. The corresponding self-consistent estimate C

SCS for identical shape and
orientation of inclusions reads as (see, e.g., [8])

C
SCS = (1 − φ)Cs : {I + P

SCS
sph : (Cs − C

SCS)}−1 (3)

In case of an incompressible solid phase (with bulk modulus ks → ∞), (3) can be solved analytically:

µSCS = µs

3(1 − 2φ)

3 − φ
, kSCS = 4(1 − φ)

3φ
µSCS (4)

where kSCS and µSCS are the effective bulk and shear moduli, and µs is the shear modulus of the isotropic solid. This
scheme shows a percolation threshold exactly equal to φ = 1 , for any value of the Poisson’s ratio νs of the solid phase.
2
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Fig. 1. (a) Young’s modulus and (b) Poisson’s ratio of isotropic porous polycrystals, predicted by the sphere-based and needle-based models,
respectively (isotropic spheres . . . dashed lines, uniformly oriented isotropic needles . . . solid lines, uniformly oriented anisotropic needles . . .
dash–dot lines); (c) Anisotropic and isotropic elasticity of hydroxyapatite [9].

As for a compressible solid phase, the homogenized Young’s modulus ESCS can still be approximated by the affine
expression Es(1 − 2φ) with an error of at most 4% relative to the exact solution, i.e., ESCS is quasi-independent of
Poisson’s ratio.

On the entire porosity range, 0 < φ < 1, the self-consistent stiffness estimates based on uniformly oriented solid
needles are quasi-identical for both isotropic and anisotropic needle behavior (Fig. 1 (a) and (b), see Fig. 1(c) for
elastic constants [9] of hydroxyapatite crystals building up porous foams in bone [2]). In addition, on the interval
0 < φ < 0.4, these estimates are quasi-identical to those based on isotropic solid spheres [Fig. 1 (a) and (b)]. From
a physical viewpoint, one may argue that, at a sufficiently high concentration, both spherical as well as isotropic or
anisotropic needle-type particles build up similar contiguous matrices. Particularly, in the vicinity of φ = 0, the first-
order expansions of the homogenized elastic constants with respect to the porosity are identical for the two models
with an isotropic solid phase, reading as:

ESCS

Es

= 1 − 3

2

(1 − νs)(5νs + 9)

7 − 5νs

φ; νSCS = νs + φ
3(1 − 5νs)(1 − ν2

s )

2(7 − 5νs)
(5)

kSCS

ks

= 1 − 3

2

1 − νs

1 − 2νs

φ; µSCS

µs

= 1 − 15
1 − νs

7 − 5νs

φ (6)

However, as opposed to the sphere-based model, the needle-based model does not predict any percolation threshold,
i.e., ESCS, kSCS and µSCS → 0 only if the volume fraction of the solid phase becomes very small (φ → 1). From an
intuitive viewpoint, this is consistent with the ‘rice grain effect’: As compared to spheres, needles are more likely
to contact each other, especially at low volume fraction (φ → 1). A first-order expansion in the vicinity of φ = 1 of
µSCS (resp. kSCS) can be sought in the form µSCS ∼ m(1 − φ) [resp. kSCS ∼ k(1 − φ)]. As regards isotropic needles,
analytical expressions for m and k can be derived and proven to be independent of νs :

m = 71 − 2
√

79

1575
, k = −8 + 2

√
79

189
(7)

Accordingly, the limit of νSCS when φ tends towards 1 is independent of νs as well:

lim
φ→1

νSCS = 17 − √
79

35
(8)

3. Axisymmetric orientation distribution of needles

Axisymmetrically oriented needles result in transversely isotropic elastic properties of the polycrystal. With ϑ

being measured with respect to the symmetry axis of the orientation distribution, we consider (i) uniform needle
distribution in the cone [0, ϑmax], and (ii) Gaussian needle distribution around ϑmax/2 with standard deviation sϑ ;
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Fig. 2. Effect of axisymmetric distribution of anisotropic needles (uniformly distributed between ϑ = 0 and ϑ = ϑmax) on the longitudinal and
transverse Young’s moduli, Poisson’s ratios, and shear modulus for different porosities [(a) φ = 0.2, (b) φ = 0.6]. Longitudinal components are
shown as solid lines, transversal components as dashed lines, and the shear modulus as dotted line.

Fig. 3. Effect of axisymmetric distribution of anisotropic needles (Gaussian-type distributed around ϑmax/2 with standard deviation sϑ ) on the
longitudinal and transverse Young’s moduli and Poisson’s ratios for different porosities [(a) φ = 0.2, (b) φ = 0.6] and different standard deviations
(sϑ = 2.5◦ . . . thick lines, sϑ = 12◦ . . . thin lines). Longitudinal components are shown as solid lines, transversal components as dashed lines, and
the shear modulus as dotted line.

both expressed in terms of a distribution function F(ϑ). The corresponding stiffness estimate still obeys (1), while (2)
now reads as

〈(
I + P

SCS
cyl : δC

)−1〉 =
2π∫

ϕ=0

ϑmax∫
ϑ=0

F(ϑ)
[
I + P

SCS
cyl (ϑ,ϕ)

(
Cs − C

SCS)]−1 sinϑ dϑ dϕ

2π(1 − cosϑmax)
(9)

and while the Hill tensors P
SCS
cyl and P

SCS
sph now refer to inclusions in a transversely isotropic material.

Expressions for P
SCS
sph can be found in [1], and for determination of P

SCS
cyl we evaluate Laws’ double integral expres-

sion of the Hill tensor [10] for arbitrarily oriented cylindrical inclusions embedded in a transversely isotropic material,
employing the theory of rational functions. Thereby, we arrive at a single-integrated expression allowing for efficient
computational evaluation (see Appendix A).

We evaluated Eq. (9) for a uniform distribution of needles between 0 and a maximum angle ϑmax as well as for a
Gaussian distribution with different standard deviations around ϑmax/2, see Figs. 2 and 3. Two effects are remarkable
(Fig. 2): Firstly, as expected, the sharper the cone of orientations the higher is the anisotropy of the polycrystal.
Secondly, the higher the porosity the more pronounced is the effect of the non-uniform needle orientation distribution,
on both the Young’s modulus and the Poisson’s ratio. As compared to uniform needle distribution between ϑ = 0
and ϑ = ϑmax, the Gaussian distribution around ϑmax/2 with standard deviation sϑ significantly affects the effective
Poisson’s ratio (compare Figs. 2 and 3), while differences in Young’s and shear moduli are, on the average, less than
7% for the investigated distributions (Figs. 2 and 3).

4. Discussion

The present results are also noteworthy from a biomechanical viewpoint: In the ultrastructure of bones and min-
eralized tissues hydroxyapatite crystals build up a contiguous network or mineral foam [2,1]. Single crystals have
typical dimensions of 50 nm average length, 25 nm average width, and 1 to 7 nm thickness [11,12]. In a first approxi-
mation, they are often characterized as needles [12–14]. This renders the homogenization schemes developed here as
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appropriate for mineral foams occurring in bones. In particular, agreement between homogenized elastic properties of
uniformly oriented needles with those of spheres for a porosity lower 0.4 (Fig. 1) confirms the use of self-consistent
schemes with spherical inclusions for hydroxyapatite polycrystals [1], which have been validated by the experimental
data of [15,16]. At higher porosities, however, the needle-based scheme seems to be superior to the sphere-based
scheme, since the former accounts for contiguity of the crystals, leading to non-zero homogenized stiffness, while
the latter exhibits a percolation threshold beyond which the homogenized stiffness vanishes. Indeed, elasticity experi-
ments [17] reveal that mineral crystals do contribute to the overall stiffness of low-mineralized turkey leg tendon, with
a mineral foam porosity larger than 50%.

The present results also confirm the pronounced randomness of crystal orientation in bone tissues, revealed already
by chemical [18] or mechanical [2] means: Any pronounced orientation of needles leads to high anisotropy ratios
Etran/Elong far beyond two, and up to ten (Fig. 2). In real bone ultrastructure, however, this ratio lies always markedly
below two [19,15,2].

Appendix A. Hill tensor for arbitrarily oriented cylindrical inclusions embedded in a transversely isotropic
material

The starting point is Laws’ classical expression for the Hill tensor (see for instance [10,20]):

P = ω2ω3

4π

∫
|ξ |=1

�

(ξ · AT · A · ξ)3/2
dS(ξ) (A.1)

ξ is the unit length vector pointing from the origin of the sphere to the surface element dS(ξ). The second-order
tensor A describes the shape of the ellipsoid, with base vectors w1, w2 and w3 pointing in the principal directions of
the ellipsoid,

A = w1 ⊗ w1 + ω2w2 ⊗ w2 + ω3w3 ⊗ w3, ω3 � 1 (A.2)

The fourth-order tensor � is defined as

� = ξ
s⊗ K−1 s⊗ ξ , K = ξ · C · ξ (A.3)

The second-order tensor K is the acoustic tensor, C is the stiffness tensor of the transversely isotropic matrix.
s⊗ de-

notes the symmetrized tensor product.
The technique presented hereafter adapts the ideas presented in [21] and [7] to cylindrical inclusions. First, we

consider the denominator of expression (A.1). The unit vector ξ can be expressed in spherical coordinates Φ ∈ [0,2π]
and Θ ∈ [0,π] as ξ1 = sinΘ cosΦ , ξ2 = sinΘ sinΦ and ξ3 = cosΘ , so that dS = sinΘdΦdΘ . Since

ξ · AT · A · ξ = ω2
3 cos2 Θ + sin2 Θ

(
cos2 Φ + ω2

2 sin2 Φ
)

we find with x = cosΘ and γ 2 = 1
ω2

3
(cos2 Φ + ω2

2 sin2 Φ)

P = ω2

4π

2π∫
0

1∫
−1

γ 2

[x2 + (1 − x2)γ 2]3/2

�(x,Φ)

cos2 Φ + ω2
2 sin2 Φ

(−dx)dΦ (A.4)

Considering ω3 → ∞(γ → 0), and use of the “Dirac delta function” δ(x)

lim
γ→0

γ 2

[x2 + (1 − x2)γ 2]3/2
= 2δ(x),

∫
δ(x)f (x)dx = f (0) (A.5)

yields, with ω2 = 1,

P = 1

2π

2π∫
0

�

(
Θ = π

2
,Φ

)
dΦ (A.6)

Next, we consider the numerator of Eq. (A.1), � = ξ
s⊗ K−1

s⊗ ξ . Expressing ξ and K in terms of the base vectors w1
and w2, while adopting z = cotΦ , yields
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ξ = cosΦw1 + sinΦw2 = sinΦ(zw1 + w2) (A.7)

K = ξ · C · ξ = sin2 Φ
(
(zw1 + w2) · C · (zw1 + w2)

)
sin2Φ

(
z2Q + z

(
R + RT

) + T
)

︸ ︷︷ ︸
K′(z)

(A.8)

when having introduced the second-order tensors Q, R and T as

Q = w1 · C · w1, R = w1 · C · w2, T = w2 · C · w2 (A.9)

K(Φ) = sin2 Φ
(
z2Q + z

(
R + RT

) + T
)

︸ ︷︷ ︸
K′(z)

(A.10)

K′(z) is a second-order polynomial. In order to obtain the inverse of K′(z), we use the matrix of cofactors (algebraic
complements) co K′,

(
K(z)

)−1 = 1

sin2 Φ

(
K′)−1 = 1

sin2 Φ

1

det K′
(
co K′) (A.11)

The determinant of K′, det K′, is a sixth-order polynomial. Thus

� = ξ
s⊗ K−1 s⊗ ξ = 1

sin2 Φ

1

det K′
(
ξ

s⊗ (
co K′) s⊗ ξ

)

= 1

sin2 Φ

1

det K′
(
sin2 Φ(zw1 + w2)

s⊗ (
co K′) s⊗ (zw1 + w2)

)
(A.12)

Insertion of Eq. (A.12) into Eq. (A.6) and use of Φ = arccot z yields

P = 1

2π

2π∫
Φ=0

� dΦ = 1

2π
2

∞∫
z=−∞

�
dz

1 + z2
(A.13)

= 1

π

∞∫
−∞

(zw1 + w2)
s⊗ (co K′)

s⊗ (zw1 + w2)

(det K′)(1 + z2)
dz (A.14)

The integrand in (A.14) is a rational fraction with a sixth-order polynomial in the numerator and an eighth-order
polynomial in the denominator. Hence, the integration can be based on the Residue theorem:

∞∫
−∞

f (z)dz = 2iπ
∑
j

Res(f, zj ) (A.15)

where zj are the poles with a positive imaginary part, of the function f (z).
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