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Abstract

This Note presents a time-integration strategy for computing the evolution of structures embedding shape-memory alloys in
a thermomechanical setting. A variational formulation is associated with the scheme proposed, which allows one to study the
existence and unicity of solutions depending on the material model considered. A numerical example is presented to illustrate the
method and discuss the influence of the thermomechanical coupling. To cite this article: M. Peigney, C. R. Mecanique 334 (2006).
 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Un algorithme d’intégration en temps pour l’évolution thermomécanique des alliages à mémoire de forme. Cette Note
présente un algorithme d’intégration en temps pour l’évolution thermomécanique des structures formées d’alliages à mémoire de
forme. On donne une formulation variationnelle du problème discrétisé en temps, ce qui permet d’étudier l’existence et l’unicité de
solutions en fonction de la loi de comportement utilisée. Un exemple numérique est présenté afin d’illustrer la méthode et d’étudier
l’influence du couplage thermomécanique. Pour citer cet article : M. Peigney, C. R. Mecanique 334 (2006).
 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

The peculiar properties of Shape Memory Alloys (SMAs) are connected to the solid–solid phase transformation be-
tween austenite and martensite. Those materials have been extensively studied in the context of quasi-static evolutions,
supposing that the system is in thermal equilibrium at each time. The phase transformation in SMAs is known to pro-
duce heat (recoverable latent heat and irreversible frictional contributions), and the validity of the thermal equilibrium
assumption is in fact dependent on the rate of loading and on the thermal exchange conditions between the system and
its environment. To better predict the response of SMA systems, it is therefore necessary to take the thermomechanical
coupling into account, considering the temperature field as an unknown to be solved for. The time-discretization of
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the system obtained is not obvious, and difficulties of convergence have been observed in numerical simulations (see,
e.g., [1]). The purpose of this Note is to propose a time-discretization scheme for which existence of solutions to the
incremental problem is ensured for a large class of SMA material models.

2. Local equations

The analysis is conducted in the context of small perturbations. The displacement, stress and temperature are
denoted by v, σ and θ respectively. Some internal variables β are introduced to account for the phase transforma-
tion. In most models found in the literature, β represents the volume fractions of the different variants of martensite.
Those internal variables are required to belong to a closed and convex set T representing constraints on β . For
instance, if β = (β1, . . . , βn) where βi is the volume fraction of the variant i of martensite, then T is given by
{β | βi � 0; ∑n

i=1 βi � 1}. As pointed out by Frémond [2], the presence of such constraints implies that the mechan-
ical quantities are not necessarily differentiable with respect to time. Following Frémond [2], we will suppose that
left-derivatives exist for the quantities considered. All the time-derivatives in the following are left-derivatives.

The system occupies a volume Ω , in which a body force f d is imposed. Tractions T d are given on a part Γ T

of the boundary ∂Ω , while displacements vd are imposed on Γ v = ∂Ω − Γ T . The temperature is set equal to θd

on a portion Γθ of ∂Ω , and the heat flux qd
N is imposed on a portion Γq such that Γq ∩ Γθ = ∅. On the remaining

part Γr = ∂Ω − Γθ − Γq of the boundary, the heat flux is given by K ′(θ − θR) where K ′ is a (positive) heat transfer
coefficient between the system and its environment. In the volume Ω , the heat flux q is supposed to satisfy the
Fourier’s law q = −K∇θ where K is the thermal conductivity. The functions f d , T d , vd , θd , qd

N describing the
thermomechanical loading depend on the position x and on the time t .

The principle of virtual power and the two principles of thermodynamics yield a general form for the equations
governing the system. This analysis must be carried out in the framework of non-smooth mechanics (see [2]) to
account for the constraints on β . The resulting equations are

σ = ∂w

∂ε
, B = −∂w

∂β
, s = −∂w

∂θ
(1.1)

ε = (∇v + t∇v)/2 (1.2)

B = Br + Bd (1.3)

−K
∂θ

∂n
= qd

N on Γq, −K
∂θ

∂n
= K ′(θ − θR) on Γr (1.4)

v ∈Kv, σ ∈Kσ , θ ∈ Kθ (1.5)

Br ∈ ∂IT (β), Bd ∈ ∂Φ(β̇) (1.6)

Bd .β̇ − θ ṡ + K�θ = 0 (1.7)

where the sets Kv ,Kσ ,Kθ are defined by

Kv = {
v | v = vd on Γ v

}
, Kσ = {

σ | divσ + f d = 0 in Ω; σ .n = T d on Γ T
}
,

Kθ = {
θ | θ = θd on Γθ

}
(2)

In (1), IT is the indicator function of the set T (i.e., null in T and infinite outside T ), w is the free energy and the
dissipation potential Φ is a convex positive function such that Φ(0) = 0. The notation ∂ denotes the subdifferential
(see [3]). Several expressions have been proposed for w and Φ . For latter reference, we consider as an example the
model of Anand and Gurtin [4], defined by

w(ε,β, θ) = 1

2

(
ε −

n∑
i=1

βiε
tr
i

)
: L :

(
ε −

n∑
i=1

βiε
tr
i

)
+ λT

θT

(θ − θT )

(
n∑

i=1

βi

)
+ c(θ − θR) − cθ log(θ/θR)

Φ(β̇) = G

n∑
i=1

|β̇i |
(3)

This model considers n variants of martensite, each variant being characterized by its volume fraction βi and its
transformation strain εtr. The tensor L is the symmetric positive definite elasticity tensor, λT is the latent heat at
i
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temperature θT , c is the specific heat and θR is a reference temperature. The positive parameter G determines the
mechanical dissipation.

3. Simplification of the heat equation

The heat equation (1.7) can be rewritten as

K�θ + θ
∂2w

∂θ∂ε
ε̇ + θ

∂2w

∂θ2
θ̇ +

(
θ

∂2w

∂θ∂β
+ Bd

)
.β̇ = 0 (4)

The last term in this equation can be interpreted as a heat source created by the phase transformation. This source
breaks up in two parts: the heat S1 = Bd .β̇ associated with the dissipative behaviour, and the recoverable latent

heat S2 = θ β̇. ∂2w
∂θ∂β

. Experimental evidence (see, e.g., [5]) shows that S1 is small compared to S2. Let us give some

indicative figures using the model of Anand and Gurtin [4]: in this model, S1 is equal to
∑

i G|β̇i | and S2 is equal
to λT (θ/θT )

∑
i β̇i . Typical values of (G,λT , θ, θT ) given in [4] are G = 4.7 MPa, λT = 110 MPa, θ = 300 K, θT =

271 K. This leads to |S1/S2| < 3.9%.
In such a framework, it is reasonable to drop the term S1 = Bd .β̇ in the heat equation, which therefore simplifies

as

K�θ − θ ṡ = 0 (5)

4. Introduction of a finite time-step problem

We now address the time discretization of the system formed by Eqs. (1.1)–(1.6) along with (5). Supposing that
the fields v0, β0, θ0 at time t0 are known, the problem is to determine the fields v, β , θ at time t0 + δt with δt > 0.
To this purpose, we propose to estimate v, β , θ by solving the following problem:

(v,β, θ) verify (1.1)–(1.5) at time t0 + δt (6.1)

Br ∈ ∂IT (β), Bd ∈ ∂Φ
(
(β − β0)/δt

)
(6.2)

Kδt

[
�θ + ∇θ0

θ0
.∇(θ0 − θ)

]
− θ0(s − s0) = 0 (6.3)

where s0 = s(ε0,β0, θ0).
It should be verified that (6.3) is a time-discretization of (5) in the sense that (6.3) coincides with (5) in the limit

δt → 0. To do so, let us substitute in (6.3) the following development:

θ = θ0 + θ̇ δt + o(δt), s = s0 + ṡδt + o(δt) (7)

We find

Kδt

(
�θ0 + δt�θ̇ − ∇θ0

θ0
∇ θ̇ δt

)
− θ0ṡδt + o(δt) = 0 (8)

Dividing by δt and taking the limit δt → 0 shows that

K�θ0 − θ0ṡ = 0 (9)

This proves that (6.3) is a time-discretization of the heat equation (5), although not as intuitive as the standard implicit
time-discretization of (5), given by:

Kδt�θ − θ0(s − s0) = 0 (10)

Motivation of the scheme (6) is that a variational formulation can be given.
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5. Variational formulation of the finite time-increment problem

We denote by Kβ the set of fields β such that β(x) ∈ T for all x in Ω . We introduce a functional F defined on the
convex set Kv ×Kβ ×Kθ by

F(v,β, θ) =
∫
Ω

w
(
ε(v),β, θ

)
dω −

∫
Ω

f d .v dω −
∫

Γ T

T d .v da + δt

∫
Ω

Φ
(
(β − β0)/δt

)
dω

+
∫
Ω

θs0 dω + δt

∫
Ω

K

(
−1

2

1

θ0
‖∇θ‖2 +

(‖∇θ0‖
θ0

)2

θ

)
dω

− δt

∫
Γq

qd
N

θ0
θ da − K ′ δt

2

∫
Γr

(θ − θR)2

θ0
da (11)

The solutions of (6) are the solutions of the following problem:

Find (v,β, θ) ∈Kv ×Kβ ×Kθ such that for all (v∗,β∗, θ∗) ∈Kv ×Kβ ×Kθ :
0 � ∂F

∂v
(v∗ − v) + ∂F

∂β
(β∗ − β) + ∂F

∂θ
(θ∗ − θ) (12)

Let us briefly justify this result: writing down the stationary conditions in (12) with respect to v∗ give the equations
σ = ∂w/∂ε and σ ∈ Kσ . The stationary conditions with respect to θ∗ are found to give the relations (1.4) and (6.3)
by use of the following identity:

−
∫
Ω

∇θ

θ0
.∇(δθ)dω =

∫
Ω

div

(∇θ

θ0

)
δθ dω −

∫
∂Ω

δθ
∇θ

θ0
.nda (13)

Now taking v∗ = v and θ∗ = θ in (12), we obtain

−B.(β∗ − β) + δtΦ
(
(β∗ − β0)/δt

) − δtΦ
(
(β − β0)/δt

)
� 0 for all β∗ ∈ T (14)

Consider the convex functions φ and ψ defined respectively by φ(β ′) = δtΦ((β ′ − β0)/δt) and ψ(β ′) = φ(β ′) +
IT (β ′) for all β ′ (not necessarily in T ). We have −B.δβ + ψ(β + δβ) − ψ(β) � 0 for all δβ , which means that B

belongs to the subdifferential ∂ψ(β). Note that φ is a proper convex lower semi-continuous function. The function
IT is also proper, lower semi-continuous, and convex because T is a non-empty, closed, convex set. It follows from
a classical result of convex analysis (see [3]) that ∂ψ = ∂(φ + IT ) = ∂φ + ∂IT . Therefore, any B satisfying (14)
verifies (6.2).

The variational formulation (12) allows one to study the existence and unicity of solutions for the time-integrated
problem (6). Suppose in particular that w is convex with respect to (v,β) and concave with respect to θ . Then the
functional F is convex with respect to the fields (v,β) and concave with respect to the field θ , so that a saddle point
exists (provided adequate functional spaces are chosen for Kv , Kβ and Kθ ). Such a saddle point (v,β, θ) verifies (12)
and therefore is solution of (6). If there is strict convexity and concavity, this saddle point is unique.

In the model of Anand and Gurtin [4], the free energy w is given by (3) and therefore is convex in (ε,β) and
concave in θ . Consequently, the problem (6) has a solution. Notice that F is not strictly convex in (ε,β), so unicity
of the solution to (6) is not ensured.

As another example, let us consider the model of Auricchio and Petrini [6], in which the internal variable β is a
symmetric tensor corresponding to the transformation strain. Using the expressions given in [6], it can be verified that
the free energy in this model is strictly convex with respect to (ε,β) and strictly concave with respect to θ , as long
as θ remains in the superelastic regime (defined by θ > Mf for a characteristic temperature Mf considered in [6]). In
this setting, the existence and unicity of a solution to the finite-step incremental problem (6) is guaranteed.

Remark 1. When the temperature field θ is assumed to be known, the functional F to consider reduces to the first
line of (11). This essentially corresponds to the incremental variational formulation introduced by Miehe et al. [7] for
studying isothermal evolutions of inelastic materials.
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Remark 2. So far Φ has been considered as independent on θ . When Φ depends both on β̇ and θ , the term ∂Φ

in (1.6) and (6.2) is replaced by the partial derivative ∂β̇Φ . If Φ(β̇, θ) can be written as f (θ β̇) for some differentiable
function f , then the solutions of (12) are found to be solutions of (6.1), (6.2) together with the following equation:

Kδt

[
�θ + ∇θ0

θ0
.∇(θ0 − θ)

]
− θ0(s − s0) + θ0

θ
(β − β0).∂β̇Φ

(
θ,

β − β0

δt

)
= 0 (15)

This equation is a time-discretization of the fully coupled heat equation (1.7): in this case, the variational problem (12)
allows one to tackle the fully coupled thermomechanical evolution.

6. Numerical example

The approach presented is used in conjunction with the model of Anand and Gurtin [4] to simulate the propagation
of a martensitic zone in a circular cylinder under traction. As the loading increases with time, transformation into
martensite takes place. For estimating the solution at t0 + δt starting from the solution at t0, a simple numerical
strategy consists in solving the incremental mechanical and thermal problems successively until convergence. When
the heat equation is discretized in a standard implicit form (10), neither the convergence of this iterative process nor
the existence of a solution is ensured. When the heat equation is instead discretized in the form (6.3) as proposed, a
solution to the incremental problem does exist and the iterative process can be interpreted as a relaxation algorithm
for finding a saddle point of F . The number of iterations necessary to reach convergence with each one of these
discretizations is shown on Table 1. This results show that the method proposed allows for better computational costs.

The solid-line curve on Fig. 1 shows the total volume fraction of martensitic as a function of the displacement im-
posed ud . The dashed-line curve on Fig. 1 corresponds to the case where thermal effects are neglected: that isothermal
computation overestimates the total volume fraction of martensite by about 20%. This illustrates the importance of
taking the thermomechanical coupling into account.

Table 1
Number of iterations for solving the incremental problem

δt (s) 10−4 2 × 10−4 10−3 2 × 10−3

Standard discretization 9 11 17 16
Modified discretization 7 8 8 10

Fig. 1. Evolution of the total volume fraction of martensite.
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7. Conclusion

A robust time-integration scheme has been introduced for computing thermomechanical evolutions of SMAs.
A central point in the analysis is the fact that, in SMAs, the irreversible heat contribution is small compared to the
latent heat contribution. This enables one to write down a finite time-step evolution problem which can be formulated
as a saddle point problem. Such a variational formulation is in itself an improvement on the standard approach, as
existence of solutions to the finite time-step problem can be proved and better numerical convergence is observed.
This variational formulation is a first step towards studying the convergence of the time-discretized approximations
towards solutions of the time-continuous evolution problem.
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