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Abstract

For the single-phase flow of a compressible liquid in a deformable double porosity medium, the closed homogenized model is
obtained with a total splitting between various cross mechanic–hydrodynamic effects. The transfer between matrix and fractures
is completed by the peristaltic effect and the effect of flow arising due to shearing strain. In the equation of deformations, a new
stress appears being generated by the cross effects and matrix relaxation. To cite this article: M. Panfilov et al., C. R. Mecanique
334 (2006).
 2006 Published by Elsevier SAS on behalf of Académie des sciences.

Résumé

Modèle homogénéisé d’un processus hydrodynamique–mécanique couplé en milieu de double porosité. Un modèle ho-
mogénéisé de l’écoulement d’un fluide monophasique compressible en milieu déformable double porosité, où les effets couplés
mécaniques–hydrodynamiques sont totalement séparés, est obtenu. Le transfert entre la matrice et les fractures est complété par un
effet péristaltique et par un écoulement du aux déformations de cisaillement. De nouvelles contraintes apparaissent suite aux effets
couplés et à la relaxation de la matrice. Pour citer cet article : M. Panfilov et al., C. R. Mecanique 334 (2006).
 2006 Published by Elsevier SAS on behalf of Académie des sciences.
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Version française abrégée

Le modèle macroscopique d’écoulement en milieu de double porosité est connu dans le cas d’un milieu non dé-
formable. Il possède un terme d’échange provoqué par la différence de pression de matrice et de fracture. Dans le
cas d’un milieu déformable le modèle macroscopique n’a été obtenu qu’à l’aide de certaines approximations (équi-
valence de pressions en matrice et fractures) qui supprimaient la double porosité. La difficulté essentielle d’obtention
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du modèle macroscopique est liée à l’inséparabilité des variables d’écoulement et de déformation à l’échelle du pro-
blème cellulaire, ce qui amène à l’apparition du comportement macroscopique fortement non local. Dans la présente
note nous avons obtenu le modèle macroscopique pour le cas d’un milieu déformable, en conservant la double poro-
sité et la différence de pressions. Le problème original d’écoulement-déformation est décrit par (1)–(3). Le modèle
homogénéisé a la forme (5)–(7), avec des paramètres effectifs définis à l’aide de (8) et de problèmes cellulaires (9).

L’approche est basée sur le remplacement de la forte non localité (une mémoire longue) par une non localité faible
(une mémoire courte) qui permet de décomposer tous les phénomènes non-locaux sous forme d’une superposition.
Ceci a été atteint à l’aide d’un choix entre les paramètres ω et ε définissant le rapport de perméabilités et l’échelle de
l’hétérogénéité respectivement. La structure des développements asymptotiques a la forme (4).

Dans le modèle obtenu, le terme d’échange entre la matrice et les fractures contient deux nouveaux effets : un effet
péristaltique qui signifie l’apparition d’un écoulement en fractures à cause de la compression/détente volumique de la
matrice, tandis que le deuxième effet décrit l’apparition de l’écoulement à cause de la déformation de cisaillement.
A son tour, l’équation de déformation montre l’apparition de nouvelles contraintes dues aux effets couplés.

1. Introduction

The flow of a low compressible liquid in an elastic deformable double porosity medium is examined in terms of
the homogenized behaviour. We apply the two-scale asymptotic homogenization method. The basic properties of a
double porosity medium are a small value of the parameter ω which is the ratio between the matrix and fracture
permeabilities, and a small value of the parameter ε which is the dimensionless heterogeneity scale (a fast oscillating
heterogeneity). The averaged models of flow in a non-deformable medium are well known [1,2]. All they display a
difference between the fracture and matrix pressures, a delay in matrix behaviour and a transfer process generated by
the pressure difference.

For a double porosity medium, it is usually assumed that ω ∼ ε2, which leads to a non-stationarity of the cell-
problem and, as a consequence, to arising of a transfer term in the macroscopic model which is described by an
integro-differential operator meaning the appearance of a strong non-locality (a long-term memory) in the system
behaviour. In a non-deformable medium this non-local operator can be successfully obtained, analyzed and simulated,
which is not the case of a deformable medium that occurs to be almost non-homogenizable due to high correlations
between the cross effects at the micro-scale. A typical cross effect has a twice nature: the displacement in rocks can
be caused by the pressure gradient (fluid flow), whereas the fluid pressure can be perturbed by a variation in time
of the porosity which is related to the divergence of the rock displacement vector. Due to this the displacement is a
space convolution with the pressure gradient, while the pressure is a space and time convolution with the divergence
of the displacement. The macroscopic model is then expected to represent a coupled system of the integro-differential
equations with implicitly defined space and time kernels. Such a system is useless being more complicated than the
original microscale model.

The effective mathematical description of such a combined strongly correlated cross process can be obtained only
in some particular cases. Due to this in various papers devoted to the examined system some approximations are
always introduced in order to obtain constructive results. Basically such an approximation consists in assuming that
the matrix and fracture pressures are equivalent [4], or the zero approximation for pressure does not depend on the
fast variable [3]. Both these hypotheses remove immediately any double porosity.

In the present Note we applied the approach developed in Panfilov [5] where both the true double porosity model
(with two different pressures) was obtained and the non-locality was reduced to a short-term memory. This case is
characterized by a softer ratio between ω and ε: ε2 < ω � 1. Due to this, we have succeeded in converting the nonlocal
operators into the differential relaxation operators of high order and to split all the cross effects from one other. The
obtained macroscale model is a true double porosity model with two pressures and exchange terms which represent a
generalization of the Barenblatt’s and Warren–Root’s term. We show that various exchange effects are characterized
by a number of various relaxation times. All the effective parameters including the relaxation times are determined in
a closed form through the solutions of the cell problems. The obtained cross terms have a clear physical origin which
is discussed in the final part of the Note.
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2. Problem formulation

Let us consider the one-phase weakly compressible flow in a linearly deformable medium consisted of highly per-
meable fractures (medium F ) submerged into a tight porous matrix (medium M). The fracture network is connected.
Each of the sub-domains Ωα , α = F ,M, is characterized by the rock permeability, Kα , and the porosity φα . The fluid
viscosity is assumed to be constant. The medium elastic deformations are described by Lamé’s coefficients, whereas
the Biot parameter is assumed to be equal to one in both sub-domains within the framework of this paper. The last
assumption means that the solid matter of rocks in non-deformable.

The medium heterogeneity is periodic. The ratio between the period size and the overall domain size is a small
parameter ε. We assume also that the medium is highly heterogeneous with respect to permeability, so that the matrix
and fracture mean permeabilities, KF0 and KM0, are very different from one other: ω = KM0/KF0 � 1.

Let x = (x1, x2, x3) be the space coordinates, τ the time, p the fluid pressure, u the elastic rock displacement
vector. The fluid flow is then described by the system of mass balance equations, in which the flow velocity obeys the
Darcy law:
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while the saturated rock deformations are described by the equilibrium between all the acting stresses (for α = F ,M):
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The conditions at the matrix-fracture interface Γ imply the continuity for the normal stresses, the fluid pressure,
the normal fluid flow rate and the normal displacement:[(
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where n is the exterior normal vector to the interface Γ , νi and µi are the Lamé coefficients of the medium rocks
(dimensionless); aF = KF/KF0 and ωaM = KM/KF0 are the fluid mobility (permeability divided to viscosity);
β = φCf where φ is the porosity, while Cf is the fluid compressibility; æ = P 0L/N0U0 is the ratio between the
normal strain in a saturated medium and in a dry medium.

System (1)–(3) is formulated in dimensionless form. The following characteristic scales were selected for variables
with dimension: N0: the mean value between all the Lamé coefficients; B0: the mean compressibility between βF

and βM; P 0: the maximum pressure drop along the overall medium; KF0: the mean permeability in sub-domain F ;
L: the domain size; T = B0L2/KF0: the characteristic time of elastic perturbation propagation along the distance L

through medium F ; U0 = P 0B0L: the characteristic elastic deformation caused by the pressure drop P 0.

3. Two-scale asymptotic expansions

In the classic version of the double porosity media parameter ω is usually equal to ε2 which leads to a difference
between the matrix and the fracture pressures of order one. This leads in turn to arising of an integro-differential
operator in the macroscale model which is responsible for the transfer between matrix and fracture media [5]. In the
case of a deformable medium, the ratio ω ∼ ε2 does not permit to separate the fast and slow variables both at the
scale of the cell problem and of the averaged equation [3]. So the obtained model can not be examined as really
homogenized.

As shown in [5], the effective averaged model with two various pressures in matrix and fractures can be obtained
if parameter ω is small but larger that ε2. In this case the difference between pressures will be lower than one, but still
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significant. We select the ratio between ω and ε in the following way: ε2 � ω � 1. More strictly, the range between
parameters is the following: ε2 < ω < ε < ε2/ω � 1. The asymptotic expansions for Eqs. (1)–(3) take the form:

p(x, y, τ ) = p0(x, τ ) +




ε2

ω
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10 (x, y, τ ) + ω · · · , y ∈ YM
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ω
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(4a)

u(x, y, τ ) = u0(x, τ ) + ε2

ω
u01(x, τ ) + εu10(x, y, τ ) + · · · , y ∈ YF , YM (4b)

The next steps of the constructive two-scale homogenization technique are as follows: (i) ‘y’ is examined as a new
independent variable; (ii) all the original functions and differential operators formulated in terms of x, τ are replaced
by their two-scale extended versions in terms of x, τ, y (∂/∂x → ∂/∂x + ε−1∂/∂y); (iii) the solution to the new
two-scale problems is searched in the space of y-periodic functions; (iv) Eqs. (4) are substituted into the two-scale
formulations of Eqs. (1)–(3); (v) applying the regular perturbation technique, the obtained flow equations are decom-
posed into an infinite system which determines the successive approximations; (vi) the solvability of the obtained
problems imposes some integral conditions on the coefficients of series (4), according to the Fredholm alternative;
(vii) the macroscopic model follows from the solvability condition applied to the zero terms of the asymptotic series.

4. Macroscopic model

For the macroscale pressures in fractures and matrix, PF and PM, and the displacement U we obtain the following
result with keeping the terms up to ε2/ω:
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The effective permeability is determined as:
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The effective Lamé coefficients are defined as in a dry medium:
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Nine relaxation tensors caused by the double porosity have the form:
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The difference between the macroscale model and the original microscale equations (1) is of order of ε2 + ε3ω

which tends to zero, as ε,ω → 0.

5. Cell problems

The effective parameters are defined through intermediary functions ψk(y), ϕ(y), θkm(y), σ(y), ξkmn(y), ζk(y),
ϕk(y), θkmn(y), σk(y) (k,m,n = 1,2,3), which are the solutions to the following series of cell problems:
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Due to the Fredholm alternative for an elliptic equation, each problem (9a), (9b) and (9i) has a unique periodic
solution defined up to an additive constant which is strictly determined in our case by the condition on the average
value. Each system (9c), (9d), (9e), (9f), (9g) and (9h) has a unique solution as a Dirichlet problem for the Laplace-like
equation in a bounded domain YM with piece-wise regular boundary.
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6. Analysis of the macroscopic model

System (4.1) shows the existence of two different macroscopic pressures, PF and PM, which is a typical property
of a double porosity medium resulting only from the high difference between the matrix and fracture permeabilities.
At the same time, the macroscopic displacement U is defined in a uniform way for matrix and fractures.

Eq. (5a) can be presented with introducing the transfer function between matrix and fracture, q , for which we can
obtain an equivalent formulation:
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with a summation over indexes m and n in all the terms.
The first term is the classic transfer caused by a pressure difference. The second term is a cross deformation-flow

effect which implies that a volumetric matrix compaction–extension causes a flow in the fractures. This is a typical
peristaltic effect observed in flexible tubes (blood artery, intestine, rubber hose), when an elastic expansion-dilatation
of tube walls produces liquid flow inside the tube. The third term represents a flow in fracture caused by shearing
strains in the matrix.

The equation of stresses, (7), can be presented in the following form more convenient to be explained:
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The stress Σ
(0)
ik may be examined as the classic averaged result which corresponds to a moderately heterogeneous

medium without double porosity. The new stress Σ
(1)
ik is caused by the double porosity, i.e., by the exceeding pressure

in matrix, which provokes additional deformations.
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