
C. R. Mecanique 334 (2006) 243–251

http://france.elsevier.com/direct/CRAS2B/

On the impact of anisotropy on dispersion spectra of acoustic waves
in plates

Alexander L. Shuvalov

Laboratoire de Mécanique Physique, Université Bordeaux 1, UMR CNRS 5469, 351, cours de la Libération, 33405 Talence, France

Received 19 September 2005; accepted after revision 23 February 2006

Presented by Michel Combarnous

Abstract

A brief overview is given of specific features that can (or cannot) appear in the dispersion spectra of traction-free elastic homo-
geneous plates due to anisotropy. Its effect on the overall spectral configuration and on the short and long wave trends is illuminated
with a link to anisotropic traits of bulk and surface waves. Relevant classical and recent results are put together, and new points are
established. To cite this article: A.L. Shuvalov, C. R. Mecanique 334 (2006).
 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Impact de l’anisotropie sur les spectres de dispersion des ondes élastiques dans des plaques. Une courte vue d’ensemble
des traits spécifiquement liés à l’anisotropie, qui peuvent (ou ne peuvent pas) apparaître dans le spectre de dispersion des plaques
élastiques homogènes libres est proposée. L’effet de l’anisotropie sur la configuration spectrale dans son ensemble, ainsi que sur
ses limites petites et grandes longueurs d’onde, est mis en lumière à travers un lien avec les propriétés anisotropes des ondes de
volume et des ondes de surface. Les résultats classiques les plus marquants, ainsi que les résultats les plus récents, sont rassemblés
dans ce papier, et des points nouveaux sont établis. Pour citer cet article : A.L. Shuvalov, C. R. Mecanique 334 (2006).
 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

Acoustic-wave propagation in anisotropic plates receives much attention from theoretical and practical points of
view, see, e.g., [1–4]. It is well recognized, since the fundamental studies by Mindlin and coauthors [5–8], Solie and
Auld [9], Li and Thompson [10] and others, that plate dispersion spectra can be essentially affected and complexified
by anisotropy. This does not imply a plate material of necessarily low class of elastic symmetry. For any non-isotropic
material, taking a non-symmetric orientation of plate faces and of propagation direction can unfold, in principle, all
the variety of spectral ramifications. Anisotropy brings in new ‘degrees of freedom’ in the configuration and trends of
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dispersion curves, in the layout of their low- and high-frequency limits, etc. Are there any limitations on the existence
of extreme points and non-monotonicity of the velocity branches? How does the shape of bulk-wave slowness surface
affect the plate spectrum? Can all three low-frequency plate waves be slower than the bulk modes? Is it always the case
that the Rayleigh velocity is a high-frequency limit for two fundamental branches, and what does happen when there
is no or two Rayleigh waves? Knowing answers to these and other questions alike enables a qualitative prediction of
the spectrum, which is useful for its computation and for thoughtful interpretation of the numerical results. Besides
direct practical implication, it is both important and interesting to establish frontiers of spectral trends ‘unlocked’ by
anisotropy.

The objective of the present short survey, which is certainly far from being all-inclusive, is to outline certain
principal particularities that can (or cannot) occur in the dispersion spectrum of a free plate due to anisotropy. In
this context, some of the classical results are put together with recent findings and some new observations are made.
A detailed statement of the problem and rigorous discussion of analytical and numerical treatment of the dispersion
equation are available in the ample literature, which may be traced via the bibliography provided. The motivation of
this article is, however, to avoid equations and to adhere insomuch as possible to the pure reasoning grounds. Such
manner is appropriate and helpful for a survey; moreover, as we shall see, it can sometimes yield a new insight at a
remarkably ‘low cost’, saving lengthy derivations. Another methodological aspect of the exposition is highlighting
and exploiting a link between the plate-wave perspective and the background of the surface-wave theory. To this
end, it is pertinent to refer in the first lines to the recent reviews on surface and bulk acoustic waves [11–13] and on
elastostatics [14] for generally anisotropic media. The present precis is hoped to contribute, to some extent, to the
same purpose of elaborating the vast landscape of anisotropic elasticity.

For future use, introduce a nomenclature of geometry settings. They are identified in terms of anisotropy of three
reference planes: the boundary plane Rn, the sagittal plane Rt, and the plane Rm orthogonal to them (n is the normal
to the boundary, m is the wave normal, t = m × n). Either all these planes, or any one, or none of them may be
symmetry planes. These options decide about factorization of the free-plate dispersion equation. Having symmetry
planes along all three reference planes uncouples the shear-horizontal (SH) from the inplane branches, and splits the
latter ones into two families of the symmetric and antisymmetric branches (S and A). Symmetry of Rt alone keeps
the inplane/SH uncoupling. A single symmetry plane along either Rn or Rm ensures the uncoupled A and S families
of wave branches, whose 3D displacements and tractions are appropriately symmetric/antisymmetric about midplane
of the plate.1 A generic geometry with non-symmetric reference planes lifts any uncoupling and corresponding inter-
sections of dispersion branches. Obviously the strength of coupling induced by a certain dissymmetry is subject to the
quantitative measure of this dissymmetry.

2. Background

Consider a traction-free infinite plate of a uniform thickness d, which consists of a linearly elastic non-dissipative
material with constant density ρ and elastic coefficients cijkl . Plane acoustic waves, composed of bulk (homogeneous)
and/or inhomogeneous partial modes, propagate along the plate with a real trace velocity v depending on a real hor-
izontal wavenumber k or frequency ω = kv. As a starting point, recall the configuration of the dispersion spectrum
in the form v(k) or v(ω) for inplane (Lamb) waves in isotropic plates. The two fundamental branches originate at
k,ω = 0: the flexural branch goes up (from zero velocity) and the extensional branch goes down (from the beam
velocity) towards the Rayleigh wave velocity vR, approaching it at high k,ω exponentially (∝ e−kd ) from the op-
posite sides. The upper branches start at the cutoff frequencies of thickness resonances and uniformly decrease in k

(monotonicity in ω is subject to the sign of group velocity dω/dk). They form a terrace-like structure above the lon-
gitudinal wave velocity vl , then drop down and ultimately tend to the transverse wave velocity vt . The short wave
rate ∝ k−2 of the upper branches flattening near vl and of their asymptotical tendency to vt has been described by
Mindlin [16,17] (see also [18,19]) by way of the grids of bounds vl,t [1 + 1

2 (πnl,t /kd)2], nl, nt = 1,2, . . . . Juxtapos-

1 The case of a single symmetry plane along Rm , studied in [15] and [5–8] but rather scarcely mentioned since then, differs from the well-
elaborated treatment of the case of symmetric Rn by mere interchanging the vector components along m and n. This implies a difference in
partitioning into symmetric/antisymmetric families. For instance, the flexural branch belongs to a different symmetry type than the two other
fundamental branches when Rn is a single symmetry plane, but it falls into the same type as the quasi-SH0 branch when Rm is a single symmetry
plane (note a misprint for the latter case in [21]).
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ing this picture with the SH branches, unfastening shear horizontal and vertical wave velocities (vt → vSH �= vSV ),
and switching on the inplane/SH coupling produces a basic pattern of the spectrum for anisotropic plates. Its various
aspects have been investigated through Mindlin’s method of bounds and an explicit analysis of the uncoupled sym-
metric/antisymmetric dispersion equations for orthorhombic and monoclinic plates in the pioneer papers [5–10] and
in many subsequent studies; the Stroh formalism has been applied for arbitrary anisotropic plates in [20–23]. Some of
the principal spectral attributes remain typical or invariant in the presence of anisotropy: e.g., there always exist three
fundamental branches, normally two of them tend exponentially to vR; the terracing patterns of the upper branches and
their short wave limit (incorporating also the third fundamental branch) at the bulk-wave threshold usually maintain
the k−2-trend. At the same time, this common framework leaves plenty of room for novel properties due to anisotropy.

3. Effect of anisotropy of bulk-wave slowness surface

3.1. Preamble: the transonic states (TS)

The problems involving planar interfaces essentially depend on the local geometry of the bulk-wave slowness
surface S at the so-called transonic states (TS) [24–26]. For a given orientation of m and n, the occurrence of a TS at
velocity v = v(t.s.) implies that the slowness curve(s) in the cut by Rt touches the straight line parallel to n, and hence
that (usually) a pair of partial modes merge into a grazing mode (a bulk mode with energy flux lying in the boundary
plane Rn). It propagates along the slowness vector directed to the point of tangency and has the trace velocity v(t.s.),
which is the inverse of this slowness vector projection on m. The transonic state with the least v(t.s.) (= vL, see
Section 4) is specified as the first TS,2 the rest are termed the subsequent TS. For a fixed m and n, there are may
be at least 3 and at most 15 TS [24]. If Rn, Rm, Rt are symmetric, then all three bulk modes travelling along m are
assuredly grazing and so their velocities v = v(m) indicate the TS: v(m) = v(t.s.); if Rn or Rm is a single symmetry
plane, then at least one of these bulk modes is grazing. Other TS, arising due to anisotropic distortion of S (concavities
and/or misorientation about m), are oblique relatively to m in the sense that they are related to obliquely propagating
grazing modes. There may be up to three grazing modes with a given v(t.s.)—e.g., these occur in pairs symmetric with
respect to m when Rn and/or Rm are symmetry planes.

3.2. Fundamental branches

An oblique TS gives rise to partial inhomogeneous modes with nonzero real parts of their complex vertical
wavenumbers. The resulting phase interference permits the exponentially flattening Rayleigh plateau of the pair of
fundamental branches to acquire a non-uniform, rippling shape. The effect is especially pronounced in the case of Rn
and/or Rm being symmetry planes and the first TS being oblique. Then for v ∼ vR there are two pairs of interfering
inhomogeneous modes, which are equally prominent at the plate faces; moreover, the symmetric/antisymmetric un-
coupling allows intersection of the fundamental branches and hence their weaving pattern with multiple crossings. It
has been demonstrated in [9,10] for orthorhombic and monoclinic plates with symmetric Rn. Remarkably, when both
Rn, Rm and hence Rt are symmetry planes, the weaving pattern of the inplane fundamental A0 and S0 branches, if it
occurs, has all the crossing points at exactly the Rayleigh velocity vR [10]. Fig. 1 replots two typical examples of this
case from [9,10], with vR lying below or above the SH0 non-dispersive branch (see Section 4). Among other things,3

the weaving structure of fundamental branches is interesting for it necessitates an occurrence of local extrema of the
curves v(k) or v(ω), which is strictly ruled out if the sagittal plane Rt is isotropic. Note to this end that, in the case
of anisotropy, the short wave e−kd -asymptote applies rather to the envelopes of the fundamental branches above and
below the Rayleigh plateau, whereas their possible modulation within the overall exponential trend follows from a
more detailed calculation.

2 In the context of Section 3, if Rt is a symmetry plane then the first TS is tacitly understood as the first inplane one. In Sections 4, 5, the first TS
at vL implies the overall bulk-wave threshold, related in the case of symmetric Rt to either the inplane or the SH modes.

3 Note that all crossing points of symmetric and antisymmetric branches for a free plate remain the (real-valued) solutions when this plate is
loaded from one side by an arbitrary non-viscous fluid [21].
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Fig. 1. The dispersion spectra v(ω) (a) for a cubic copper plate, after [9], and (b) for an orthorhombic SB copper plate, after [10], both with the
orientation m ‖X1,n ‖ X3 so that the boundary and sagittal planes are symmetry planes. The spectra are plotted by means of the DISPERSE
package [27]. The long wave onset of the flexural branch is left out; the frequency is re-scaled to f = ω/2π . The insets in the upper left corner
show the bulk-wave slowness curves in the sagittal plane (s = v−1 is the horizontal slowness). The elasticity coefficients of the SB copper [10]

ensure that the concave TS at v
(m)
SV lies above the long wave origin point of the S0-branch; however, we have further increased c55 (140 instead of

109.4 GPa in [10]) in order to blow up the shaded area of the spectrum (b), which is discussed in Sections 3 and 5. The curvatures q of the TS at

v
(m)
l

, v
(m)
SV and v

(t.s.)
SV are: q ≈ 12.6, −9.5 and 5.1 mm/µs for (a); 27.5, −25.0 and 6.8 mm/µs for (b).

3.3. Short wave asymptotes for the upper branches

Anisotropy of the slowness surface S greatly diversifies the short wave behaviour of the upper branches at their
limit towards the first TS and at their intermediate broken plateaux related to the subsequent TS.

For one, anisotropy brings into play the curvature of TS, i.e., of the slowness curve(s) at the corresponding tangency
point. The role of curvature at the first (convex) TS has been brought out in [23]. The predominate trend of the
dispersion branches v(k), tending from above to the velocity vL of the first TS with the curvature q , has been found to
be v(k) − vL ∝ 1

2q(πn/kd)2 (cf. Section 2, where vL = vt = q for the isotropic case). Extending this consideration
to the branch-terracing near the velocity v(t.s.) of other TS yields a similar formula, now with q standing for the
subsequent TS curvature (and with v(t.s.) instead of vL). Thus it is readily seen that if a given TS is concave (q < 0)
and so the bulk modes tend to grazing propagation when v increases towards v(t.s.), then the corresponding terracing
structure of plate branches approaches v(t.s.) from below—unlike the case of isotropy. It also follows that, generally
speaking, the flattening and extent of spectral plateaux near a subsequent TS is scaled up or down by the smaller or
greater curvature of this TS. For the first or subsequent TS with a zero curvature q = 0 [25,26], the power rate k−σ

of the short wave asymptote has an exponent σ > 2, where σ is the order of lowest non-zero angular derivative of
slowness curve at the point of its tangency with n.

In the similar sense as mentioned above with regard to the fundamental branches, it is carefully noted that the
k−2-asymptote, determined by the TS curvature, estimates only an overall collective trend of the short wave limit
and of the terracing structure near, respectively, the first and subsequent TS. The shape of individual branches within
the collective trend is subject to the particularities of the given TS (whether it is oblique,4 involves one grazing
mode or more, etc.), its proximity to neighbouring TS, and in fact other causes. In the case of symmetric Rn and/or
Rm, a detailed arrangement of the symmetric/antisymmetric dispersion branches near TS may be elaborated through
Mindlin’s method of bounds. It explains [9,10] the weaving patterns, which ascend towards the concave TS and
descend towards the convex TS (like in Fig. 1). What is significant is that, given an increasing in k trend of the
terracing pattern tending as a whole to a concave TS, the individual branches v(k) inside those spectral clusters may

4 The uncoupled SH branches and their derivatives remain monotonic even if the SH transonic state is oblique (v(t.s.)
SH �= v

(m)
SH , which is when Rt

is a single symmetry plane).
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be decreasing—see the high-frequency range of the shaded area in Fig. 1(b). The reason for such behaviour is not
directly related to the TS properties and will be addressed in Section 5.

4. Link to the surface-wave theory

4.1. Leaky waves and supersonic surface waves (SSW)

Another ‘channel of influence’ of anisotropy on the plate dispersion spectra is via the behaviour of surface waves,
which are responsible for the short wave limit of, normally, the fundamental branches. This perspective is linked
inevitably to the theory of surface waves developed by Lothe, Barnett, Chadwick, Alshits, Ting and others (see bib-
liography in [28] and [11,12]). There, the trace velocity at the first TS is termed the limiting velocity vL and is said
to separate subsonic (v < vL) and supersonic (v > vL) ranges. The surface wave usually occurs as a unique sub-
sonic Rayleigh wave but certain orientations in an anisotropic halfspace admit a two-partial supersonic surface wave
(SSW), which, upon generic perturbation of the geometry, couples with the bulk mode and gives rise to the branch of
pseudo-Rayleigh, or leaky, waves with complex velocity [29]. A major insight into the admissible options is rendered
by the Barnett–Lothe theorem [30]. It states uniqueness of the subsonic Rayleigh wave and restricts its possible non-
existence to particular occasions, for which the bulk-wave threshold vL admits a single grazing bulk mode leaving the
surface free of traction and termed exceptional (see [11] for the precise formulation and its track record).

A particular clarity pertains to the case when the sagittal plane Rt is a symmetry plane and so the SH and in-
plane motions are uncoupled. Then the inplane (two-partial) Rayleigh wave always exists [31]. On varying elastic
coefficients, its velocity can freely pass through the first TS once it is associated with the SH, certainly exceptional,
grazing mode: vL = v

(t.s.)
SH . Thus the unique inplane Rayleigh wave is either subsonic, vR < vL, or supersonic (or

transonic), vR � vL = v
(t.s.)
SH . The latter is often specified as the symmetrical SSW—to emphasize that Rt is a sym-

metry plane. Analyzing its implication for the plate dispersion spectrum has been another significant stride made by
Solie and Auld [9]; further important qualitative and analytical considerations to this end are due to [10] and [23].
The occurrence of a symmetrical SSW vR > vL means that, in contrast to the typical spectral configuration, the short
wave extent of two inplane fundamental branches tending to the Rayleigh velocity vR is supersonic. Both branches are
either steady or form a weaving pattern, subject to the shape of the inplane slowness curves as discussed in Section 3.
Perturbing the orientation of Rt so that it is no longer a symmetry plane modifies the symmetrical SSW into the leaky
wave and brings back a ‘slightly subsonic’ (quasi-bulk [32,33]) Rayleigh wave with velocity vR � vL, splitting from
the quasi-SH first TS. This velocity is now the short wave limit for the quasi-SH0 branch and for the flexural branch,
whose shape transforms appropriately to restore the subsonic extent. Notably, if Rn is symmetric, those two funda-
mental branches can cross each other and then it is the flexural branch which tends to the subsonic Rayleigh velocity
vR from above—rather than from below as usual. Simultaneously, the supersonic extents of the ‘former’ fundamental
inplane branches, which have been exponentially approaching the SSW velocity vR > vL, now break due to coupling
with the (quasi) SH family and transform into prolonged segments of successive pairs of the upper branches. They
form a pairwise terracing pattern (of a somewhat different ‘microstructure’ than that near TS), which is asymptotically
close at high frequency to the real part of the leaky-wave velocity in the measure of its imaginary part. This pattern
is more distinct given a steady supersonic extent of the fundamental branches for the symmetric orientation of Rt;
otherwise their unfolding may produce a fairly intricate picture, probably complicated by the other trends towards
neighbouring TS. Instructive examples and observations are provided in [9,10,23].

The state of affairs, predicted by the Barnett–Lothe theorem, is more diverse in the general case of a non-symmetric
sagittal plane Rt. Now the options for surface wave do not reduce to the subsonic/supersonic alternative. Firstly,
there exists a possibility, exemplified by Chadwick [34], that the exceptional wave at vL is not accompanied by any
surface wave at all. In this case, two dispersive fundamental branches at high frequency tend to the non-dispersive
one v(k) = vL from above with the k−2-rate alongside the upper branches. Another special occasion, relatively more
common, is concerned with those SSW, termed secluded or non-symmetrical, which come about for certain lines
of m and n orientations in 3D space Ψ 3 of surface-wave geometry parameters [35,36]. Such orientations do not
generally admit an exceptional wave at vL and in that ensure the subsonic Rayleigh wave—thus two surface waves,
above and below vL, coexist. The subsonic surface-wave velocity vR < vL is, as usual, the short wave limit of two
fundamental plate branches. At first glance, the non-symmetrical SSW might also be thought to set the limit for
a pair of plate branches. It is noted, however, that, in contrast to the case of inplane/SH uncoupling, the packet
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of plate modes with the velocity vR > vL of a non-symmetrical SSW must include the bulk modes propagating
through reflections from the plate faces. The reflection is uncoupled from the SSW within the boundary problem
for a halfspace (single free surface) [37], but not for a plate once Rt is not a symmetry plane. That is why the
velocity vR > vL of a non-symmetrical SSW cannot be a limit of continuous plate branches, as is the case for a
symmetrical SSW, but it leads instead to the pairwise terracing of successive branches, which is basically similar to
their formation in the case of leaky wave evolving from a symmetrical SSW. An analytical account for this behaviour
has been given in [23]. A small perturbation of m and n away from the line of their orientations, admitting the
non-symmetrical SSW, also transforms the latter into a leaky wave; however, this has rather a slight quantitative
effect on the terracing pattern (see [23]). From the inverse viewpoint, it may thus be said that the vanishing of the
imaginary part of leaky-wave velocity does not imply a topological transformation of the plate spectrum, unless it
vanishes due to the confluence of Rt with a symmetry plane, in which case SH-uncoupling ‘heals up’ the broken
terracing into the continuous curves of two inplane fundamental branches tending to the symmetrical SSW velocity
vR > vL.

4.2. Degenerate modes

Surface-wave solutions in anisotropic media can have certain particularities due to degeneracy of complex vertical
wavenumbers, see [38]. Their double degeneracy, occurring on the lines of m,n orientations in the space Ψ 3 of
surface-wave geometry [39], renders the Rayleigh wave with a linear, on top of exponential, dependence on the
vertical coordinate. When so, then the short wave tendency of the fundamental branches towards vR becomes of
the order of

√
kd e−kd , which is slower than the usual rate e−kd (it may be related to a weaker localization at the

plate faces). Of methodological interest for plates is a one-partial, necessarily supersonic, surface wave stipulated by
degeneracy yet retaining usual, pure exponential form [40,41]. It is classified in [38] as W1A. Its occurrence entails
a non-dispersive, hence fundamental, plate branch consisting of two inhomogeneous plane modes. This is, however,
a sheer theoretical possibility, because W1A can come about only for appropriately fixed model values of material
constants.

4.3. Exceptional waves

It is clear from the definition of an exceptional wave, possible among one-partial bulk grazing modes at various
TS (not necessarily at the first TS as in the context of the Barnett–Lothe theorem5), that it always corresponds to a
non-dispersive fundamental branch in the plate dispersion spectrum. (The inverse is true to within barring a theoretical
possibility of the W1A-branch.) Chadwick has shown [24] that, for a fixed orientation of m and n, there may be up
to two exceptional waves with different trace velocity. Following [24], their plausible existence can be exemplified
in a simple way by taking a symmetric sagittal plane Rt, so that there is an exceptional SH mode yielding the non-
dispersive SH0 branch v

(t.s.)
SH for any m in Rt, and then finding the angular orientation ϕ of such propagation direction

m in Rt, for which the longitudinal bulk mode with velocity v
(m)
l is also exceptional and hence also produces a non-

dispersive branch. The equation to solve is ciijj (ϕ) = 0, where Xi ‖ m,Xj ‖ n, and it yields an appropriate root for
sin2 2ϕ subject to a rather stringent but quite tenable inequality on material constants (see details in [24, pp. 219, 220]).
The Rayleigh surface wave for the case in hand always exists and can always be arranged as subsonic relatively to the
SH0 branch: vR < vL = v

(t.s.)
SH . Thus, here is an example ensuring the plate spectrum with subsonic vR and two non-

dispersive fundamental branches (here, v
(t.s.)
SH and v

(m)
l ). The Rayleigh velocity vR < vL must render a limit for two

dispersive velocity branches, so one is the ‘remaining’ fundamental, flexural branch, whereas the other, contrary to the
typical spectral layout, is not a fundamental branch but extends from a thickness-resonance frequency. To underline
the usefulness of the complementary surface-wave and plate-wave perspectives, it is noted that a ban for more than
two exceptional waves proved in [24] becomes readily evident from the fact that there are three fundamental plate
branches and one of them (flexural) is always dispersive.

5 It can also be a one-partial degenerate bulk mode travelling along an acoustic axis of the tangent type, rather than a single mode as specified in
this theorem formulation, see Section 3.5 of [11].
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5. Non-monotonicity in the velocity spectrum and the long wave onset of the fundamental branches

5.1. Auxiliary notations

In this section, we denote the velocities of fundamental plate waves in the long wave limit ω,k = 0 by vα(0) ≡ v
(0)
α

(α = 1,2,3), reserving α = 1 for the flexural branch (v(0)
1 = 0). In the case of symmetric Rt, the velocities v

(0)
2 , v

(0)
3

are specified as v
(0)
ext for the inplane (quasi) extensional branch (S0 if Rn is also symmetric) and v

(t.s.)
SH for the SH0

non-dispersive branch.

5.2. Non-monotonicity

Let us return to the issue of non-monotonicity and extreme points of velocity branches. Recall first the state of
affairs for an isotropic plate. In this case, the branches v(k) are strictly decreasing. In view of the identity dv/dk =
g(dv/dω), where g = dω/dk � 0 is the (inplane) group velocity which is finite, the branches v(ω) admit an increasing
trend due to g < 0 and so may be non-monotonic, but they cannot have extreme points. Switching monotonicity of
velocity branches via a horizontal tangent (g stays positive) is thus an anisotropy-stipulated feature. Fig. 1 provides its
evident examples related to the weaving pattern of the fundamental branches and to the concave TS. Another possible
reason may be a flexural branch tending from below to the symmetrical SSW velocity (Section 4): on turning Rt away
from the symmetry plane, the break-up of the flexural branch yields an envelope of increasing regions of the otherwise
decreasing upper branches. These examples are not at all the only possibilities. At the same time, the velocity interval,
where v(k) and v(ω) may have extrema, is bounded.

According to [42], the branches v(k) must be uniformly decreasing (the sign of derivative of v(ω) must be inverse
to the sign of g) above the horizontal level V , which is laid by the long wave limit of one of the fundamental wave
velocities: it is max(v

(0)
2 , v

(0)
3 ) if Rt is not a symmetry plane, and v

(0)
ext (≶ v

(t.s.)
SH ) if Rt is a symmetry plane; in other

words, V is the largest of v
(0)
α , which is not itself the SH0-branch velocity v

(t.s.)
SH . Thus the curves v(k) and v(ω) admit

extreme points and resulting changes of monotonicity only for v � V or, more precisely, for v < V except at the point
ω,k = 0 itself and except in the particular case when V is set by a non-dispersive branch (which is not SH0).

One of the immediate consequences is that the long wave onset of the fastest fundamental velocity branch cannot
bend upwards—either it bends downwards or it is non-dispersive (see [20]). The existence of the monotonicity bound
V also underlies the spectral feature remarked in Section 3 and highlighted by Fig. 1(b). For the plate material and

geometry in hand, this bound V = v
(0)
ext =

√
(c11 − c2

13/c33)/ρ lies below the concave TS v(t.s.) = v
(m)
SV = √

c55/ρ (see
the shaded area in Fig. 1(b)). Hence, the dispersion branches within the terracing pattern, ascending to the concave TS
v(t.s.) > V , must switch to the decreasing trend above V .

Interestingly, subjecting the plate to fluid loading may cause the real part of the fastest dispersive fundamental
branch, which is now complex, to change its trend and to bend upwards (see [43]). It is also noteworthy that the
aforementioned bound of v(k) branches non-monotonicity is no longer unreservedly valid for piezoelectric plates.

5.3. Can all three fundamental branches start in the subsonic range?

Consider the long wave onset ω,k → 0 of the fundamental velocity branches vα(ω) or vα(k). The flexural branch
v1(ω) emerges from zero velocity as a subsonic wave (v < vL), thus consisting of the inhomogeneous modes only.
What can be said in this regard about the two upper fundamental branches? For an isotropic plate, the S0 extensional

branch always starts off as a supersonic wave: its origin point given by the beam velocity v = 2vt

√
1 − v2

t /v
2
l lies

above the SH0 non-dispersive branch v = vt , which represents the bulk-wave threshold vL (the first TS). Provided Rt

is a symmetry plane in an anisotropic plate, the origin v
(0)
ext of the (quasi) extensional branch may lie above or below

the SH0 branch v
(t.s.)
SH . For any one of these options, the SH0 branch may be supersonic (v(t.s.)

SH > vL) so that the first

TS is associated with an inplane mode, or the SH0 velocity may be the first TS itself (v(t.s.)
SH = vL). Assume the latter

case and also v
(0)
ext < vL, which is a fairly common setup. Now let us perturb the orientation of Rt away from the

symmetry plane so that the inplane/SH coupling is on. Among other possibilities, one may expect that the onset of
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the now dispersive quasi-SH0 branch could slip under vL and thus that all three fundamental branches would originate
below vL as packets of inhomogeneous partial modes. This speculation leads us to the general question—in principle,
can all three fundamental waves at ω,k → 0 be subsonic, i.e., can max(v

(0)
2 , v

(0)
3 ) be strictly less than vL?

The answer to this question is negative. Here is a simple proof, based on the existence of monotonicity bound V .
The presence of an exceptional wave, at vL or above, and/or of the one-partial, hence supersonic, surface wave W1A
(see Section 4) a priori negates the conjecture. Consider a generic case when there is neither exceptional wave nor
W1A, i.e., all three fundamental velocity branches are dispersive. Assume that vL > max(v

(0)
2 , v

(0)
3 ). Non-existence

of an exceptional wave guarantees a subsonic Rayleigh wave by the Barnett–Lothe theorem, hence at k → ∞ two
fundamental branches vα(k) tend to vR < vL and the third one tends to vL. The branch tending to vL would have to
reach max(v

(0)
2 , v

(0)
3 ), assumed below vL, and to increase above this level. But any branch v(k) must be decreasing

in the range v > max(v
(0)
2 , v

(0)
3 ) (= V for the case in hand). Thus here is a contradiction which proves that the initial

assumption is false and so vL � max(v
(0)
2 , v

(0)
3 ).

5.4. Relation of v
(0)
α to Rayleigh and bulk-wave velocities

Explicitly, the velocities and polarizations of the free-plate fundamental waves in the limit ω,k = 0 are de-
fined [20] by the eigenspectrum of the left off-diagonal block N3 of the Stroh matrix N, which plays a profound
role in anisotropic elasticity (see [28]). This link enables some useful inequalities for v

(0)
α . Ting [28, p. 472] has pre-

sented an identity showing that ρv2
R is less than the largest eigenvalue of N3. The eigenvalues of N3 are equal to

ρv
(0)2
α ; thus it immediately follows that the Rayleigh velocity is less than the largest of the long-wave plate velocities:

vR < max(v
(0)
2 , v

(0)
3 ) (note a misprint of formulation in [20]). In the case of a symmetric sagittal plane Rt, Ting’s iden-

tity leads to the especially simple relation vR = v
(0)
ext |AR ·m|, where AR is the unit-normalized polarization of Rayleigh

wave. Another observation involves the velocities v(m) of three bulk waves travelling along m: the largest of them is
always greater or equal than max(v

(0)
2 , v

(0)
3 ) [20]. Equality in the latter statement is a special option exemplified by

the longitudinal exceptional wave in Section 4.
By evaluating the long wave limit ω,k = 0 of free-plate waves, the eigenspectrum of N3 certainly incorporates the

possibilities of non-dispersive branches related to the exceptional waves or, theoretically, to the W1A surface wave.
For any orientation of m and n, both eigenvectors of N3 associated with nonzero eigenvalues are normal to n, hence
so is the polarization of exceptional waves and of W1A, which is in agreement with the well-known result of the
surface-wave theory.
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