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Abstract

A nonlinear interior point method associated with the kinematic theorem of limit analysis is proposed. Associating these two
tools enables one to determine an upper bound of the limit loading of a Gurson material structure from the knowledge of the sole
yield criterion. We present the main features of the interior point algorithm and an original method providing a rigorous kinematic
bound from a stress formulation of the problem. This method is tested by solving in plane strain the problem of a Gurson infinite
bar compressed between rough rigid plates. To cite this article: F. Pastor et al., C. R. Mecanique 334 (2006).
 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Méthode cinématique par les contraintes et optimisation convexe : cas du matériau de Gurson. Nous proposons une
méthode d’optimisation de type point intérieur associée au théorème cinématique de l’analyse limite. L’association de ces deux
outils permet de déterminer la borne cinématique du chargement limite d’une structure en matériau de Gurson à partir de la
connaissance du seul critère de plasticité. On expose d’abord brièvement la méthode « point intérieur » de résolution d’un problème
comportant des conditions linéaires et des conditions non linéaires, puis une formulation originale et rigoureuse, en contraintes,
de l’approche cinématique. Cette méthode est validée en résolvant en déformation plane le problème d’une barre en matériau de
Gurson comprimée entre deux plateaux rigides rugueux. Pour citer cet article : F. Pastor et al., C. R. Mecanique 334 (2006).
 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

In the matter of ductile failure of porous materials, Gurson’s criterion [1] is the most widely accepted because it is
based on a homogenization method and on the kinematic approach of limit analysis. Gurson’s model treats a hollow
von Mises sphere or cylinder with macroscopic strain imposed on the boundary. Recently, in [2], the Gurson model
has been validated for a porous material with spherical cavities using both lower and upper-bound methods of limit
analysis. The criterion that he proposed for an isotropic matrix containing cylindrical cavities is expressed as follows,
in plane strain:

(σx − σy)
2 + 4σ 2

xy

4k2
+ 2f cosh

(
σx + σy

2k

)
= 1 + f 2 (1)

where f is the porosity rate of the material and k the flow stress in shear or cohesion.
On the other hand, F. Pastor and E. Loute developed an interior point algorithm to solve a general limit analysis

problem. These optimization problems present a linear objective function and a mix of linear and nonlinear convex
constraints. For problems where the yield criterion is the von Mises one, the nonlinear constraints are convex quadratic
inequalities, giving rise to a conic programming problem for which efficient algorithms exist [3]. The Gurson criterion
leads to convex inequality constraints which do not fit with the conic programming formulation. An experimental
implementation in MATLAB for the case of quadratic inequality constraints, adapted from an algorithm presented by
Vial [4] for general convex programming problems, was presented in [5] and improved in [6,7]. These papers focus
on solving the plane strain static problems of a Mises material and a Gurson material.

The classical solution of the kinematic problem is more complex, in particular in the Gurson case, because the
dissipated power rate is not always analytical. In the present Note, this difficulty is circumvented by using a complete
stress kinematic formulation requiring only the expression of the yield criterion. This formulation is more general than
that of Anderhegen and Knopfel [8] in the case of a linear, continuous velocity field. Furthermore, it is a different,
more general formulation than its recent, technical extension by Krabbenhoft et al. [9] in the case of linear, piecewise
continuous velocity field, where a velocity discontinuity segment is simulated by means of two (or three in the 3D
case) thin finite elements.

2. Interior point method and convex optimization

The general form of the optimization problems to solve is as follows, in mathematical notation:

min cT x

s. t. Ax = b

f (x) + s = 0
(2)

where c, x ∈ R
n, b ∈ R

m, A ∈ R
m×n is the matrix of the linear constraints, f = (f1, . . . , fp) is a vector-valued

function of p quadratic convex numeric functions fi , and s ∈ R
p
+ is the vector of slack variables associated with these

convex constraints. In [6] the A matrix was made full-row rank by using the so-called Cauchy reciprocity conditions,
for example in the cases where two diagonals intersect in a square of finite elements, as in Fig. 1. Here, this problem
does not exist because the stress variables are only plastically admissible, as will be seen later.

Fig. 1. Left: compression of a bar between rough rigid plates. Right: a discontinuity line.
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The primal-dual IP method consists in solving, instead of the previous problem, a series of the following problems,
parametrized by decreasing µ > 0, the barrier parameter:

min cT x − µ
∑p

i=1 ln(si)

s. t. Ax = b

f (x) + s = 0
(3)

It can be proved that (3) admits a solution if and only if the KKT conditions are satisfied:

c + AT w +
(

∂f

∂x

)T

y = 0

Ax − b = 0

f (x) + s = 0

YSe = µe

(4)

where w ∈ R
m, y ∈ R

p , Y , S are the diagonal matrices associated with y and s respectively, and e is a vector of 1.
µ > 0 and s > 0 imply y > 0. In other words: f are the convex nonlinear yield criteria, w the dual variables associated
with the linear constraints and y the dual variables associated with the yield criteria.

After solving a finite series of these problems, with µ going to 0 in a well-chosen manner, the solution of (2) is
approached as closely as needed. Indeed, when µ approaches zero, Eqs. (4) become close to the KKT conditions for
the original problem. The interior point solution of such a system is detailed in [6] and [7] in the static case of limit
analysis.

3. Limit analysis: a stress-based kinematic method

Now, mechanical notations are used. According to Salençon [10], a stress field σ is said to be admissible if it
is statically admissible (SA), i.e., equilibrium equations, continuity and stress boundary conditions are verified, and
plastically admissible (PA), i.e. f (σ ) � 0 where f (σ ) = 0 is the (convex) plasticity criterion of the material. In
the same way, a strain rate field v is admissible if it is kinematically admissible (KA), i.e., derived from a piecewise
continuous velocity field u with bounded discontinuities [u] and such that the velocity boundary conditions are verified
(in this case u will be said also KA), and plastically admissible (PA), i.e., the associated flow rules (6.i), (6.ii) are
verified.

Let us assume that the virtual power rate of the external loads P �
ext can be written as a scalar product of a load

vector Q� and a generalized velocity vector q(u). Following [8], the principle of virtual powers states that the stress
fields σ�, T � and the load vector Q� are in equilibrium, if for any KA u the following variational equation is verified:

P �
ext = Q� · q(u) =

∫
V

σ � : v dV +
∫
Sd

T �.[u]dS (5)

In relation (5), V is the volume of the mechanical system, Sd is the union of the velocity discontinuity surfaces.
The results in terms of Q� will be interpreted as a kinematical upper bound if, in the corresponding points of V , the
variables verify the following conditions, where qd is a fixed value of q:

v = λ
∂f

∂σ �
, f (σ �) = 0, λ � 0 (6.i)

[u] = ξ
∂fnt

∂T �
, fnt (T

�) = 0, ξ � 0 (6.ii)

q(u) = qd (6.iii)

The criterion fnt (T ) results from the projection of the plasticity criterion f (σ ) on the Mohr plane (σn, σnt ), where n

is the normal to the element of the discontinuity surface, and T is the stress vector on this element.
It is worth noting that, if relations (6.i), (6.ii) are verified, the quantities σ� : v and T �.[u] become the correspond-

ing, convex, unit dissipated power rates πV (v) and πd([u]) of LA.
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For the sake of simplicity, we assume (without generality loss) that the loading vector of the problem is a scalar,
imposed pressure Q� (we will examine the case of an imposed velocity later). We will show that relations (6.i) are
verified when solving the following problem using the Section 2 algorithm:

Max Q� (7.i)

[α]{σ�} − {β}Q� = 0 (7.ii)

f (σ �) � 0, σ � is constant inside the finite elements (7.iii)

fnt (T
�) � 0 at the ends of the discontinuity segments (7.iv)

+ KA velocity conditions (7.v)

3.1. Case of the virtual continuous velocity field

Here we use the numerical notation. The virtual, continuous velocity field {u} is taken as linearly varying on the
it triangular finite element of Sit area. Let us consider {σ�} a PA stress field constant on the finite elements. From its
definition, writing the external power rate P �

ext as qQ� = {u}T {β}Q� and using the classical FEM relation {v} = [B]{u}
for the nt elements assembling, the equalities in (5) become:

P �
ext =

nt∑
it=1

{vit }T {σ�
it }Sit =

nt∑
it=1

{uit }T
[
BT

it

]
Sit {σ�

it } = {u}T [α]{σ�} = {u}T {β}Q� (8)

Finally:

{u}T [[α]{σ�} − {β}Q�
] = 0 (9)

which is the basis of the above (7.ii) equations.
Let us consider now the solution of problem (2), with A = [[α],−{β}], b = 0, xT = {{σ�}T ,Q�}, the sign of

the c functional coefficients being changed because of the present maximization. The optimal primal-dual solution
({w}, {y}, {σ�},Q�) of this problem verifies equations (4) with µe = 0, i.e., yit � 0 if f (σ it ) = 0, null otherwise.
After transposition, the first equation of (4) becomes:

−{c}T + {w}T [[α],−{β}] + {y}T
{

∂f

∂σ �

}
= 0 (10)

Identifying −{w}T as {u}T , we note:

– the cj functional coefficients are null, except the Q� variable one. From the structure of [α] in (8), the normality
law in (6.i) is verified setting λit = yit

Sit
for each triangle;

– the coefficient cj of the Q� variable equals 1.0; then {u}T {β} = q = 1.0 = qd , as Q� does not have to verify any
criterion conditions: the kinematic loading condition is verified with qd = 1.

Symmetry and boundary velocity conditions are enforced as detailed in the following discontinuous case.

3.2. Case of the virtual discontinuous velocity field

According to [11] and [12], a discontinuity surface element (of normale n) can be assimilated to a thin area whose
thickness vanishes in such a manner that the normal derivatives go to infinity but the dissipated power rate remains
bounded. Then the appropriate static and kinematic variables are, respectively, the stress vector T � = (T �

n , T �
t ) =

(σ �
n , σ �

nt ) and the velocity jump vector [u] = ([un], [ut ]) associated by the normality law relative to the fnt (T
�) = 0

criterion.
The velocity jump [u] is defined as the velocity difference between two opposite points (of the adjacent triangles)

on the discontinuity segment 1-2 (Fig. 1, right). The power rate dissipated along the segment is written, with dS = 1 dl

here:

Pdiss
([u]) =

∫
π

([u])dl =
∫

T � · [u]dl, T � associated to [u] as in (6.ii) (11)
12 12
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Relation (11) then implies that [u] is PA anywhere along the segment 1-2. It is the case here as in the classical
kinematical method: when the problem (7) is solved, [u] results PA (as v in a finite element, see above) at the ends of
the segment 1-2. Then, from its linearly variation along 1-2, [u] is PA anywhere from the convex character of the set
of [u] PA due to the convexity of the yield criterion (see [10]). Now, from the convexity of function π([u]), we can
upper bound the dissipated power along 1-2 by writing:

Pdiss
([u]) � L12

(
π

([u1]
) + π

([u2]
))

/2 = L12
({[u]}T

1 {T �}1 + {[u]}T

2 {T �}2
)
/2 (12)

where L12 is the length of the segment 1-2, and {[u]}1 is associated with {T �}1, {[u]}2 with {T �}2. Then, to the
triangular element stresses, we add a stress vector, or a stress tensor, at each extremity of the discontinuity segments.
Indeed, two cases can occur:

– The function fnt is a priori known (as for Coulomb’s criterion) or it can be analytically expressed by injecting in
the initial criterion the projection condition vtt = 0: to each end of segment 1-2 is added a vector T � = (σ �

n , σ �
nt ),

which must verify the nonlinear constraint fnt (T
�) � 0.

– The function fnt is not known or it cannot be obtained analytically as in the case of the Gurson material studied
here. The difficulty is circumvented by adding a stress tensor σ defined in the (n, t) axes to the ends of the
discontinuity segment. The rows of the [B] matrix defining vtt (calculated for the thin zone) vanish, enforcing
the projection condition to be verified by the optimal solution. If the material is isotropic, the expression of the
criterion does not change in the (n, t ) axes.

Finally, the plasticity criterion is the sole ‘material’ information we need to use the present kinematic method. Note
that the extension of the above technique in the 3D case and tetrahedron element boundaries is straightforward.

Remarks. The boundary conditions such as zero displacement velocity are taken into account by vanishing the corre-
sponding rows of the [A] = [[α],−{β}] matrix. The case of the compression of a bar under rigid plates (see Fig. 1, left)
generally assumes the existence of an interface treated as a discontinuity surface obeying the bar material criterion in
the case of a perfectly rough interface, as in the tests below.

– Along AB at the bar-plate interface and in the plate, let us consider additional constant stress tensors (i.e., four
tensors in the case of Fig. 1) in front of the adjacent bar triangles, and also linearly varying velocity vectors, as
along a side of any bar triangle. Let N�

ip be the normal stress (i.e., σyy in the axes of Fig. 1), which is constant on
the plate side ip. Consider also uip the normal velocity along the plate side. If np is the number of these interface
sides of Sip area (np = 4 in Fig. 1), the present exterior power rate needed to move the plate is written, after
assembly:

P �
ext =

np∑
ip=1

N�
ip

∫
Sip

uip dS = {N�
p}T [γp]{up} = {u}T [γ ]{N�

p} (13)

where [γ ] is a constant matrix resulting from the velocity integrations, {N�
p} the vector of the normal stresses in

the plate, and {up} is the vector collecting the normal velocities (i.e., eight uip in Fig. 1).
– In a second step, we achieve the equality of the velocities uip with the first u1p = −U0 = −1.0. This is made

by condensing on the first row of [A] = [[α],−[β]] the rows associated with the following uip . Finally, we have
also an expression of type P �

ext = Q�q = u1pβQ�. The previous identification leads to qd = u1p = −1.0, i.e., the
kinematic loading condition to be verified.

– The general case of another convex contact law (see [10] for a complete presentation) here can be taken into
account by adding the yield criterion of the constitutive materials plus the contact law at each end: the normality
relative to the intersection of the three PA stress domains governing the behaviour of the global interface will also
be verified by the final, optimal solution.

The proposed kinematic method is rigorous and general. Moreover, it is usable when the analytic expression of the
power rate or the discontinuity criterion is not available, in the 2D case and in the 3D case as well. It is also a good
example of synergy between two different disciplines.
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4. Applications

To test the method, we study the problem of a Gurson bar compressed between two perfectly rough rigid plates
(Fig. 1) in plane strain. The functional to be optimized is the average normal stress F/(2Bk) for a ratio B/H = 2.
Due to the symmetries, only one quarter of the bar section is discretized. The stress tensor is constant on the triangular
element; the velocity field, linearly varying inside the triangle, is defined from the three apex velocities in the discon-
tinuous case, or from the velocities of the three nodes connected to the triangle otherwise. In the discontinuous case,
extra plate velocities are added to take into account the interface between the plate and the bar, as described above.

First, we implemented the method for f = 10−5. For this porosity rate, the Gurson criterion is a very fine ap-
proximation of the von Mises criterion in plane strain and we can control the admissible character of the solution by
checking, a posteriori, the admissibility of the virtual velocity fields; here only the PA condition (incompressibility
and [un] = 0) needs to be verified, other conditions being exact by construction.

After optimization using Matlab, the dual variables {w} associated with each linear constraint determine the veloc-
ity field. In addition to the PA conditions above, the functional is computed via the volumic dissipated power rate of
the von Mises material. All the computations are processed on a 2-GHz Apple Powermac G5 equipped with 4.5 Go of
RAM. Each mesh is labelled B × H (for example the 32 triangle-mesh of Fig. 1 is labelled 4 × 2). Table 1 provides
the kinematic bound for several meshes for the two cases.

In all these cases, the von Mises PA condition is checked at less than 10−5: this precision is very good, specially
taking into account the interior point character of the method. The dissipated power rate is also a posteriori verified at
less than 10−5. In addition, the static bound 2.4247 in [6] is to be compared to the present best kinematic bound, i.e.,
2.4467. Note that the discontinuous, piecewise linearized approach in [13], using the Ben-Tal linearization (equivalent
to the substitution of an exterior 256-sided polygon to the von Mises criterion) gives the kinematic values 2.47400,
2.45444, and 2.44696 for the 20 × 10, 40 × 20, 60 × 30 cases, respectively. Not only the method is validated, but
simulating a von Mises material by a low-porosity Gurson material (even in the continuous case) seems to be useful
in this problem that is well known for the so-called incompressibility locking in terms of finite element method.

For a 16% porosity Gurson material, in the continuous velocity case below, we can note in Table 2 that solving
problem is easier, as expected from the better conditioning of the Jacobian/Hessian matrices. The static bound obtained
in [6] was 1.6499, to be compared to 1.6586 obtained here as upper bound. Indeed, here there is no possibility of
comparison to other kinematic methods.

Table 3 gives the corresponding results in the discontinuous case. These results improve the results obtained without
discontinuities very little, whereas the problem sizes (and CPU times) increase greatly. They confirm that considering
discontinuous velocities is not very useful when the criterion is bounded in all directions, as for the von Mises case in
plane stress.

Table 1
Kinematic bounds for f = 10−5 using the continuous and discontinuous meshes

Size Continuous field Discontinuous field

PA verification Result Time PA verification Result Time

20 × 10 5 × 10−6 2.5137 27 s 3 × 10−6 2.4738 3 m 57 s
40 × 20 1 × 10−5 2.4741 9 m 14 s 6 × 10−5 2.4542 1 h 27 m
60 × 30 1 × 10−5 2.4599 57 m 35 s 9 × 10−6 2.4467 7 h 58 m
80 × 40 2 × 10−5 2.4526 3 h 15 m 31 s / / /

Table 2
Kinematic bounds for f = 0.16 using the continuous mesh

Mesh Variables Linear const. Convex const. Result Time

20 × 10 2403 790 801 1.6779 8 s
40 × 20 9603 3180 3201 1.6655 4 m 35 s
60 × 30 21 603 7170 7201 1.6611 30 m 28 s
80 × 40 38 403 12 760 12 801 1.6586 1 h 32 m
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Table 3
Kinematic bounds for f = 0.16 using the discontinuous mesh

Size Variables Linear const. Convex const. Result Time

20 × 10 9600 4741 3200 1.6681 4 m 9 s
40 × 20 38 400 19 081 12 800 1.6606 1 h 22 m
60 × 30 86 400 43 021 28 800 1.6578 7 h 21 m
80 × 40 153 600 76 561 51 200 / >19 h

5. Concluding remarks

Associating of the kinematic theorem of limit analysis and the interior point optimization for nonlinear constraints
makes it possible to determine the kinematic bound of a problem from stress fields as variables. This association has
allowed to clearly explicit the method and to solve the problem of a von Mises and Gurson infinite bar compressed
under rough rigid plates. Assuming a continuous or discontinuous virtual velocity field, the method appears to be
efficient and general, needing only the yield criterion as information on the material. An extension of this work to
the discontinuous quadratic velocity fields, also based on convexity properties but too long to be presented here, is
currently operational.
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